Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 999
Filter
3.
PLoS One ; 19(6): e0306329, 2024.
Article in English | MEDLINE | ID: mdl-38941330

ABSTRACT

BACKGROUND: Many newborn screening programs worldwide have introduced screening for diseases using DNA extracted from dried blood spots (DBS). In Germany, DNA-based assays are currently used to screen for severe combined immunodeficiency (SCID), spinal muscular atrophy (SMA), and sickle cell disease (SCD). METHODS: This study analysed the impact of pre-analytic DNA carry-over in sample preparation on the outcome of DNA-based newborn screening for SCID and SMA and compared the efficacy of rapid extraction versus automated protocols. Additionally, the distribution of T cell receptor excision circles (TREC) on DBS cards, commonly used for routine newborn screening, was determined. RESULTS: Contaminations from the punching procedure were detected in the SCID and SMA assays in all experimental setups tested. However, a careful evaluation of a cut-off allowed for a clear separation of true positive polymerase chain reaction (PCR) amplifications. Our rapid in-house extraction protocol produced similar amounts compared to automated commercial systems. Therefore, it can be used for reliable DNA-based screening. Additionally, the amount of extracted DNA significantly differs depending on the location of punching within a DBS. CONCLUSIONS: Newborn screening for SMA and SCID can be performed reliably. It is crucial to ensure that affected newborns are not overlooked. Therefore a carefully consideration of potential contaminating factors and the definition of appropriate cut-offs to minimise the risk of false results are of special concern. It is also important to note that the location of punching plays a pivotal role, and therefore an exact quantification of TREC numbers per µl may not be reliable and should therefore be avoided.


Subject(s)
DNA , Muscular Atrophy, Spinal , Neonatal Screening , Severe Combined Immunodeficiency , Humans , Neonatal Screening/methods , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , DNA/genetics , DNA/blood , DNA/analysis , Dried Blood Spot Testing/methods , High-Throughput Screening Assays/methods , Polymerase Chain Reaction/methods
4.
Article in Russian | MEDLINE | ID: mdl-38884441

ABSTRACT

Advances in the treatment of spinal muscular atrophy (SMA) have revolutionized the field. SMA is a rare autosomal recessive neurodegenerative motor neuron disease in which wide phenotypic variability has been described. The rate of increase in neurological deficit and the severity of the disease is mainly determined by the amount of functional SMN (Survival of Motor Neuron) protein. However, the clinical picture may differ significantly in patients carrying homozygous deletions of the SMN1 gene (Survival of Motor Neuron 1) and an identical number of copies of the SMN2 gene (Survival of Motor Neuron 2). A family clinical case of adult patients with spinal muscular atrophy 5q with a homozygous deletion of the SMN1 gene and the same number of copies of the SMN2 gene, having a different clinical picture of the disease, is presented, and the dynamics of the condition against the background of oral pathogenetic therapy is presented.


Subject(s)
Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Humans , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 1 Protein/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Male , Homozygote , Gene Deletion , Adult , Female , Azo Compounds , Pyrimidines
5.
Pediatr Int ; 66(1): e15769, 2024.
Article in English | MEDLINE | ID: mdl-38742693

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by degeneration of lower motor neurons, resulting in progressive muscle weakness and atrophy. However, little is known regarding the cardiac function of children with SMA. METHODS: We recruited SMA patients younger than 18 years of age from January 1, 2022, to April 1, 2022, in the First Affiliated Hospital of Sun Yat-sen University. All patients underwent a comprehensive cardiac evaluation before treatment, including history taking, physical examination, blood tests of cardiac biomarkers, assessment of echocardiography and electrocardiogram. Age/gender-matched healthy volunteers were recruited as controls. RESULTS: A total of 36 SMA patients (26 with SMA type 2 and 10 with SMA type 3) and 40 controls were enrolled in the study. No patient was clinically diagnosed with heart failure. Blood tests showed elevated values of creatine kinase isoenzyme M and isoenzyme B (CK-MB) mass and high-sensitivity cardiac troponin T (hs-cTnT) in spinal muscular atrophy (SMA) patients. Regarding echocardiographic parameters, SMA children were detected with lower global left and right ventricular longitudinal strain, abnormal diastolic filling velocities of trans-mitral and trans-tricuspid flow. The results revealed no clinical heart dysfunction in SMA patients, but subclinical ventricular dysfunction was seen in SMA children including the diastolic function and myocardial performance. Some patients presented with elevated heart rate and abnormal echogenicity of aortic valve or wall. Among these SMA patients, seven patients (19.4%) had scoliosis. The Cobb's angles showed a significant negative correlation with LVEDd/BSA, but no correlation with other parameters, suggesting that mild scoliosis did not lead to significant cardiac dysfunction. CONCLUSIONS: Our findings warrant increased attention to the cardiac status and highlight the need to investigate cardiac interventions in SMA children.


Subject(s)
Echocardiography , Humans , Male , Female , Case-Control Studies , Child , Child, Preschool , Adolescent , Electrocardiography , Infant , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/physiopathology , Muscular Atrophy, Spinal/blood , Biomarkers/blood , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/physiopathology , Spinal Muscular Atrophies of Childhood/blood , Spinal Muscular Atrophies of Childhood/complications , Heart Function Tests/methods
6.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747911

ABSTRACT

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Pilot Projects , Genetic Testing/standards , Genetic Testing/methods , Neonatal Screening/standards , Neonatal Screening/methods , China , Dried Blood Spot Testing/standards , Dried Blood Spot Testing/methods , Quality Assurance, Health Care , Laboratories, Clinical/standards , Survival of Motor Neuron 1 Protein/genetics
7.
Pediatr Neurol ; 156: 147-154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781723

ABSTRACT

BACKGROUND: This study presents the findings of a newborn screening (NBS) pilot project for 5q-spinal muscular atrophy (5q-SMA) in multiple regions across Russia for during the year 2022. The aim was to assess the feasibility and reproducibility of NBS for SMA5q in diverse populations and estimate the real prevalence of 5q-SMA in Russia as well as the distribution of patients with different number of SMN2 copies. METHODS: The pilot project of NBS here was based on data, involving the analysis of 202,908 newborns. SMA screening assay was performed using a commercially available real-time polymerase chain reaction kit, the Eonis SCID-SMA. RESULTS: In one year, 202,908 newborns were screened, identifying 26 infants with homozygous deletion of SMN1 exon 7, yielding an estimated 5q-SMA incidence of 1:7804 newborns. It was found that 38.46% had two SMN2 copies, 42.31% had three copies, 15.38% had four copies, and 3.85% had five copies of SMN2. Immediate treatment was proposed for patients with two or three SMN2 copies. Infants with four or more SMN2 copies warranted further investigation on management and treatment. Short-term monitoring after gene therapy showed motor function improvements. Delays in treatment initiation were observed, including the testing for adeno-associated virus 9 antibodies and nonmedical factors. CONCLUSIONS: The study emphasizes the need for a standardized algorithm for early diagnosis and management through NBS to benefit affected families. Overall, the NBS program for 5q-SMA in Russia demonstrated the potential to improve outcomes and transform SMA from a devastating disease to a chronic condition with evolving medical requirements.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein , Humans , Pilot Projects , Infant, Newborn , Survival of Motor Neuron 2 Protein/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Russia/epidemiology , Male , Female , Prevalence , Incidence
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 661-668, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818549

ABSTRACT

Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease with a carrier frequency of 1/60 ~ 1/40, is characterized by severe clinical symptoms, high mortality rate, and expensive treatment costs. Carrier screening is of paramount importance to detect high-risk couples, and therefore to reduce the occurrence of SMA. In China, SMA carrier screening has become widespread, though there is still a lack of genetic counseling expertise. This article has focused on the current challenges for SMA carrier screening, including the screening methods, target population, screening procedures, and pre-/post-testing counseling. The aim is to standardize its application and counseling in the clinical practice.


Subject(s)
Genetic Carrier Screening , Genetic Counseling , Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Genetic Carrier Screening/methods , Genetic Testing/methods , Consensus , China
9.
Neuromuscul Disord ; 39: 42-45, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772073

ABSTRACT

Spinal muscular atrophy is an autosomal recessive genetic disease that can manifest with different phenotypes, classified as types 1 to 4, being type 4 the mildest form. We report a case of a 60-year-old man presenting with sudden onset of numbness in the right upper limb and with a family history of a 48-year-old brother with progressive weakness. At the first visit, his exam was unremarkable, except for a mild paresis of the right elbow extension and reduced right bicipital and tricipital reflexes. Electromyography revealed chronic motor neuronopathy and the genetic study confirmed a diagnosis of spinal muscular atrophy. At the follow-up visit his complains improved and his neurologic exam returned to normal. To our knowledge, this patient is the oldest asymptomatic SMA individual ever reported. This case highlights the need to exclude late onset spinal muscular atrophy in patients with indolent motor neuronopathy.


Subject(s)
Electromyography , Muscular Atrophy, Spinal , Humans , Male , Middle Aged , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/physiopathology
10.
Ann Clin Transl Neurol ; 11(5): 1090-1096, 2024 May.
Article in English | MEDLINE | ID: mdl-38600653

ABSTRACT

OBJECTIVES: Mandatory newborn screening (NBS) for spinal muscular atrophy (SMA) was implemented for the first time in Italy at the end of 2021, allowing the identification and treatment of patients at an asymptomatic stage. METHODS: DNA samples extracted from dried blood spot (DBS) from newborns in Apulia region were analysed for SMA screening by using a real-time PCR-based assay. Infants harbouring homozygous deletion of SMN1 exon 7 confirmed by diagnostic molecular tests underwent clinical and neurophysiological assessment and received a timely treatment. RESULTS: Over the first 20 months since regional NBS introduction, four out of 42,492 (0.009%) screened children were found to carry a homozygous deletion in the exon 7 of SMN1 gene, with an annual incidence of 1:10,623. No false negatives were present. Median age at diagnosis was 7 days and median age at treatment was 20.5 days. Three of them had two copies of SMN2 and received gene therapy, while the one with three SMN2 copies was treated with nusinersen. All but one were asymptomatic at birth, showed no clinical signs of disease after a maximum follow-up of 16 months and reached motor milestones appropriate with their age. The minimum interval between diagnosis and the treatment initiation was 9 days. INTERPRETATION: The timely administration of disease-modifying therapies prevented presymptomatic subjects to develop disease symptoms. Mandatory NBS for SMA should be implemented on a national scale.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Survival of Motor Neuron 1 Protein , Humans , Italy , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Female , Male , Survival of Motor Neuron 2 Protein/genetics , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacology , Infant
11.
Neurol Sci ; 45(8): 3699-3710, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38580877

ABSTRACT

The cognitive functioning of individuals with spinal muscular atrophy (SMA) is not well understood, prompting a call for more research to better grasp cognitive involvement in SMA. This study aims to explore recent findings regarding cognitive outcomes in SMA patients, including correlations between clinical features and cognitive abilities. The investigation seeks to identify commonly used measures for assessing cognitive function in this patient population. A scoping review following the Joanna Briggs Institute methodology examined literature until December 2023. Two databases were searched along with relevant article references using specific terms such as "spinal muscular atrophy," "SMA," "cognitive," "abilities," "functions," "intellective," or "intellectual." Screening focused on titles and abstracts from English language peer-reviewed journals. After the initial research, 1452 articles were identified. Subsequent screening and selection led to the inclusion of 13 articles in the review. Among these studies, four indicated a cognitive trend within the normal range for SMA patients. In four other studies, the majority of patients fell within the normal range. However, smaller proportions were observed to be either above or below the norm compared to the controls. Three studies reported noted cognitive performance below the average, while two showed above-average scores. The scoping review suggests that most SMA patients have cognitive abilities similar to the general population, with types II and III showing even lesser impact. However, certain cognitive domains may be affected in type I patients, highlighting the need for further research to fully understand cognitive involvement in SMA.


Subject(s)
Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/psychology , Muscular Atrophy, Spinal/complications , Muscular Atrophy, Spinal/physiopathology , Muscular Atrophy, Spinal/diagnosis , Cognition/physiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/physiopathology
12.
JAMA Pediatr ; 178(6): 540-547, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587854

ABSTRACT

Importance: There is increasing evidence that early diagnosis and treatment are key for outcomes in infants with spinal muscular atrophy (SMA), and newborn screening programs have been implemented to detect the disease before onset of symptoms. However, data from controlled studies that reliably confirm the benefits of newborn screening are lacking. Objective: To compare data obtained on patients with SMA diagnosed through newborn screening and those diagnosed after clinical symptom onset. Design, Setting, and Participants: This nonrandomized controlled trial used data from the SMARTCARE registry to evaluate all children born between January 2018 and September 2021 with genetically confirmed SMA and up to 3 SMN2 copies. The registry includes data from 70 participating centers in Germany, Austria, and Switzerland. Data analysis was performed in February 2023 so that all patients had a minimal follow-up of 18 months. Exposure: Patients born in 2 federal states in Germany underwent screening in a newborn screening pilot project. All other patients were diagnosed after clinical symptom onset. All patients received standard care within the same health care system. Main Outcomes: The primary end point was the achievement of motor milestones. Results: A total of 234 children (123 [52.6%] female) were identified who met inclusion criteria and were included in the analysis: 44 (18.8%) in the newborn screening cohort and 190 children (81.2%) in the clinical symptom onset cohort. The mean (SD) age at start of treatment with 1 of the approved disease-modifying drugs was 1.3 (2.2) months in the newborn screening cohort and 10.7 (9.1) months in the clinical symptom onset cohort. In the newborn screening cohort, 40 of 44 children (90.9%) gained the ability to sit independently vs 141 of 190 (74.2%) in the clinical symptom onset cohort. For independent ambulation, the ratio was 28 of 40 (63.6%) vs 28 of 190 (14.7%). Conclusions and Relevance: This nonrandomized controlled trial demonstrated effectiveness of newborn screening for infants with SMA in the real-world setting. Functional outcomes and thus the response to treatment were significantly better in the newborn screening cohort compared to the unscreened clinical symptom onset group. Trial Registration: German Clinical Trials Register: DRKS00012699.


Subject(s)
Neonatal Screening , Humans , Neonatal Screening/methods , Infant, Newborn , Female , Male , Infant , Germany , Registries , Muscular Atrophy, Spinal/diagnosis , Pilot Projects , Early Diagnosis
13.
Eur J Neurol ; 31(8): e16309, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38656662

ABSTRACT

BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a rare and progressive neuromuscular disorder with varying severity levels. The aim of the study was to calculate minimal clinically important difference (MCID), minimal detectable change (MDC), and values for the Hammersmith Functional Motor Scale Expanded (HFMSE) in an untreated international SMA cohort. METHODS: The study employed two distinct methods. MDC was calculated using distribution-based approaches to consider standard error of measurement and effect size change in a population of 321 patients (176 SMA II and 145 SMA III), allowing for stratification based on age and function. MCID was assessed using anchor-based methods (receiver operating characteristic [ROC] curve analysis and standard error) on 76 patients (52 SMA II and 24 SMA III) for whom the 12-month HFMSE could be anchored to a caregiver-reported clinical perception questionnaire. RESULTS: With both approaches, SMA type II and type III patients had different profiles. The MCID, using ROC analysis, identified optimal cutoff points of -2 for type II and -4 for type III patients, whereas using the standard error we found the optimal cutoff points to be 1.5 for improvement and -3.2 for deterioration. Furthermore, distribution-based methods uncovered varying values across age and functional status subgroups within each SMA type. CONCLUSIONS: These results emphasize that the interpretation of a single MCID or MDC value obtained in large cohorts with different functional status needs to be made with caution, especially when these may be used to assess possible responses to new therapies.


Subject(s)
Minimal Clinically Important Difference , Muscular Atrophy, Spinal , Humans , Male , Female , Child , Adolescent , Muscular Atrophy, Spinal/physiopathology , Muscular Atrophy, Spinal/diagnosis , Child, Preschool , Adult , Young Adult , Severity of Illness Index , Cohort Studies , Spinal Muscular Atrophies of Childhood/physiopathology , Spinal Muscular Atrophies of Childhood/diagnosis , Infant , Disability Evaluation
16.
Neuromuscul Disord ; 37: 29-35, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520993

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is the most common autosomal recessive neurological disease. Depletion in functional SMN protein leads to dysfunction and irreversible degeneration of the motor neurons. Over 95 % of individuals with SMA have homozygous exon 7 deletions in the SMN1 gene. Most of the remaining 4-5 % are compound heterozygous for deletion and a disease-associated sequence variant in the non-deleted allele. Individuals with SMA due to bi-allelic SMN1 sequence variants have rarely been reported. Data regarding their clinical phenotype, disease progression, outcome and treatment response are sparse. This study describes six individuals from three families, all with homozygous sequence variants in SMN1, and four of whom received treatment with disease-modifying therapies. We also describe the challenges faced during the diagnostic process and intrafamilial phenotypic variability observed between siblings.


Subject(s)
Muscular Atrophy, Spinal , Child , Humans , Exons , Motor Neurons , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Nerve Tissue Proteins/genetics , Phenotype , Survival of Motor Neuron 1 Protein/genetics
17.
Genes (Basel) ; 15(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38540372

ABSTRACT

In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.


Subject(s)
Muscular Atrophy, Spinal , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Real-Time Polymerase Chain Reaction/methods , Homozygote , Japan , Sequence Deletion , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics
18.
J Mol Diagn ; 26(5): 364-373, 2024 May.
Article in English | MEDLINE | ID: mdl-38490302

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.


Subject(s)
Muscular Atrophy, Spinal , Humans , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Mutation , Motor Neurons , Exons/genetics , Heterozygote , Survival of Motor Neuron 1 Protein/genetics
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 294-299, 2024 Mar 10.
Article in Chinese | MEDLINE | ID: mdl-38448017

ABSTRACT

OBJECTIVE: To explore the clinical application of preimplantation genetic testing for monogenic disorders (PGT-M) in an unique case with Spinal muscular atrophy (SMA) type 2+0. METHODS: A special SMA family presented at the Third Affiliated Hospital of Guangzhou Medical University on October 19, 2020 was selected as the study subject. Multiple ligation-dependent probe amplification (MLPA) and molecular tagging linkage analysis were carried out to identify the SMN1 genotype of the couple and their fetus. Subsequently, next-generation sequencing (NGS), molecular tagging linkage analysis, and chromosomal microarray analysis were employed to determine the haplotypes and validate the result of PGT-M on the 11 embryos derived for the couple. RESULTS: The female partner was identified as a carrier of the rare SMN1[2+0] variant, and prenatal diagnosis confirmed the fetus to be affected by SMA. Ultimately, PGT-M has successfully selected four embryos free from the pathogenic SMN1 variants and X chromosome deletion. CONCLUSION: PGT-M can effectively prevent the transmission of rare genetic variants such as the SMA 2+0 subtype in the families. Above finding has provided guidance for genetic counseling and family planning for the couple.


Subject(s)
Genetic Testing , Muscular Atrophy, Spinal , Pregnancy , Female , Humans , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Genotype , Genetic Counseling , Haplotypes
20.
BMC Neurol ; 24(1): 93, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468256

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a rare autosomal recessive hereditary neuromuscular disease caused by survival motor neuron 1 (SMN1) gene deletion or mutation. Homozygous deletions of exon 7 in SMN1 result in 95% of SMA cases, while the remaining 5% are caused by other pathogenic variants of SMN1. METHODS: We analyzed two SMA-suspected cases that were collected, with no SMN1 gene deletion and point mutation in whole-exome sequencing. Exon 1 deletion of the SMN gene was detected using Multiplex ligation-dependent probe amplification (MLPA) P021. We used long-range polymerase chain reaction (PCR) to isolate the SMN1 template, optimized-MLPA P021 for copy number variation (CNV) analysis within SMN1 only, and validated the findings via third-generation sequencing. RESULTS: Two unrelated families shared a genotype with one copy of exon 7 and a novel variant, g.70919941_70927324del, in isolated exon 1 of the SMN1 gene. Case F1-II.1 demonstrated no exon 1 but retained other exons, whereas F2-II.1 had an exon 1 deletion in a single SMN1 gene. The read coverage in the third-generation sequencing results of both F1-II.1 and F2-II.1 revealed a deletion of approximately 7.3 kb in the 5' region of SMN1. The first nucleotide in the sequence data aligned to the 7385 bp of NG_008691.1. CONCLUSION: Remarkably, two proband families demonstrated identical SMN1 exon 1 breakpoint sites, hinting at a potential novel mutation hotspot in Chinese SMA, expanding the variation spectrum of the SMN1 gene and corroborating the specificity of isolated exon 1 deletion in SMA pathogenesis. The optimized-MLPA P021 determined a novel variant (g.70919941_70927324del) in isolated exon 1 of the SMN1 gene based on long-range PCR, enabling efficient and affordable detection of SMN gene variations in patients with SMA, providing new insight into SMA diagnosis to SMN1 deficiency and an optimized workflow for single exon CNV testing of the SMN gene.


Subject(s)
Multiplex Polymerase Chain Reaction , Muscular Atrophy, Spinal , Humans , DNA Copy Number Variations/genetics , Workflow , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Motor Neurons , Exons/genetics , Survival of Motor Neuron 1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL