Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 88
1.
Article En | MEDLINE | ID: mdl-38848117

Two Gram-stain-negative, straight rods, non-motile, asporogenous, catalase-negative and obligately anaerobic butyrate-producing strains, HLW78T and CYL33, were isolated from faecal samples of two healthy Taiwanese adults. Phylogenetic analyses of 16S rRNA and DNA mismatch repair protein MutL (mutL) gene sequences revealed that these two novel strains belonged to the genus Faecalibacterium. On the basis of 16S rRNA and mutL gene sequence similarities, the type strains Faecalibacterium butyricigenerans AF52-21T(98.3-98.1 % and 79.0-79.5 % similarity), Faecalibacterium duncaniae A2-165T(97.8-97.9 % and 70.9-80.1 %), Faecalibacterium hattorii APC922/41-1T(97.1-97.3 % and 80.3-80.5 %), Faecalibacterium longum CM04-06T(97.8-98.0% and 78.3 %) and Faecalibacterium prausnitzii ATCC 27768T(97.3-97.4 % and 82.7-82.9 %) were the closest neighbours to the novel strains HLW78T and CYL33. Strains HLW78T and CYL33 had 99.4 % both the 16S rRNA and mutL gene sequence similarities, 97.9 % average nucleotide identity (ANI), 96.3 % average amino acid identity (AAI), and 80.5 % digital DNA-DNA hybridization (dDDH) values, indicating that these two strains are members of the same species. Phylogenomic tree analysis indicated that strains HLW78T and CYL33 formed an independent robust cluster together with F. prausnitzii ATCC 27768T. The ANI, AAI and dDDH values between strain HLW78T and its closest neighbours were below the species delineation thresholds of 77.6-85.1 %, 71.4-85.2 % and 28.3-30.9 %, respectively. The two novel strains could be differentiated from the type strains of their closest Faecalibacterium species based on their cellular fatty acid compositions, which contained C18 : 1 ω7c and lacked C15 : 0 and C17 : 1 ω6c, respectively. Phenotypic, chemotaxonomic and genotypic test results demonstrated that the two novel strains HLW78T and CYL33 represented a single, novel species within the genus Faecalibacterium, for which the name Faecalibacterium taiwanense sp. nov. is proposed. The type strain is HLW78T (=BCRC 81397T=NBRC 116372T).


Bacterial Typing Techniques , DNA, Bacterial , Faecalibacterium , Fatty Acids , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Feces/microbiology , Humans , RNA, Ribosomal, 16S/genetics , Taiwan , DNA, Bacterial/genetics , Fatty Acids/analysis , Adult , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Faecalibacterium/classification , Base Composition , MutL Proteins/genetics
2.
J Mol Biol ; 436(10): 168575, 2024 May 15.
Article En | MEDLINE | ID: mdl-38641238

DNA mismatch repair endonuclease MutL is a member of GHKL ATPase superfamily. Mutations of MutL homologs are causative of a hereditary cancer, Lynch syndrome. We characterized MutL homologs from human and a hyperthermophile, Aquifex aeolicus, (aqMutL) to reveal the catalytic mechanism for the ATPase activity. Although involvement of a basic residue had not been conceived in the catalytic mechanism, analysis of the pH dependence of the aqMutL ATPase activity revealed that the reaction is catalyzed by a residue with an alkaline pKa. Analyses of mutant aqMutLs showed that Lys79 is the catalytic residue, and the corresponding residues were confirmed to be critical for activities of human MutL homologs, on the basis of which a catalytic mechanism for MutL ATPase is proposed. These and other results described here would contribute to evaluating the pathogenicity of Lynch syndrome-associated missense mutations. Furthermore, it was confirmed that the catalytic lysine residue is conserved among DNA gyrases and microrchidia ATPases, other members of GHKL ATPases, indicating that the catalytic mechanism proposed here is applicable to these members of the superfamily.


Adenosine Triphosphatases , DNA Gyrase , DNA-Binding Proteins , Lysine , MutL Proteins , Transcription Factors , Humans , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Amino Acid Sequence , Catalysis , Catalytic Domain , Conserved Sequence , Hydrogen-Ion Concentration , Lysine/chemistry , Lysine/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , DNA Gyrase/chemistry , DNA Gyrase/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics
3.
J Mol Biol ; 436(11): 168589, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38677494

UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.


DNA Helicases , MutL Proteins , DNA/chemistry , DNA Helicases/chemistry , DNA Helicases/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Protein Binding , Protein Domains , Mesylates/chemistry , Cross-Linking Reagents/chemistry
4.
Sci Rep ; 13(1): 12503, 2023 08 02.
Article En | MEDLINE | ID: mdl-37532794

MutLα is essential for human DNA mismatch repair (MMR). It harbors a latent endonuclease, is responsible for recruitment of process associated proteins and is relevant for strand discrimination. Recently, we demonstrated that the MMR function of MutLα is regulated by phosphorylation of MLH1 at serine (S) 477. In the current study, we focused on S87 located in the ATPase domain of MLH1 and on S446, S456 and S477 located in its linker region. We analysed the phosphorylation-dependent impact of these amino acids on DNA binding, MMR ability and thermal stability of MutLα. We were able to demonstrate that phosphorylation at S87 of MLH1 inhibits DNA binding of MutLα. In addition, we detected that its MMR function seems to be regulated predominantly via phosphorylation of serines in the linker domain, which are also partially involved in the regulation of DNA binding. Furthermore, we found that the thermal stability of MutLα decreased in relation to its phosphorylation status implying that complete phosphorylation might lead to instability and degradation of MLH1. In summary, we showed here, for the first time, a phosphorylation-dependent regulation of DNA binding of MutLα and hypothesized that this might significantly impact its functional regulation during MMR in vivo.


DNA Mismatch Repair , DNA , Humans , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Phosphorylation , Protein Domains , DNA/metabolism , MutL Proteins/genetics , MutL Proteins/metabolism
5.
PLoS Genet ; 19(1): e1010592, 2023 01.
Article En | MEDLINE | ID: mdl-36608114

Meiotic recombination is a driving force for genome evolution, deeply characterized in a few model species, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, Zip2, Zip3, Zip4, Spo16, Msh4, and Msh5, members of the so-called ZMM pathway that implements the interfering meiotic crossover pathway in S. cerevisiae, have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. In this context, after investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii. Attempts to generate diploid strains with fully hybrid genomes invariably resulted in strains with frequent whole-chromosome aneuploidy and multiple extended regions of loss of heterozygosity (LOH), which mechanistic origin is so far unclear. Despite the lack of multiple ZMM pro-crossover factors in L. waltii, numbers of crossovers and noncrossovers per meiosis were higher than in L. kluyveri but lower than in S. cerevisiae, for comparable genome sizes. Similar to L. kluyveri but opposite to S. cerevisiae, L. waltii exhibits an elevated frequency of zero-crossover bivalents. Lengths of gene conversion tracts for both crossovers and non-crossovers in L. waltii were comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tract size in S. cerevisiae. L. waltii recombination hotspots were not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, L. waltii crossover interference was reduced relative to S. cerevisiae, with interference being detected only in the 25 kb distance range. Detection of positive inference only at short distance scales in the absence of multiple ZMM factors required for interference-sensitive crossovers in other systems likely reflects interference between early recombination precursors such as DSBs.


Meiosis , Crossing Over, Genetic , DNA-Binding Proteins/genetics , Meiosis/genetics , Microtubule-Associated Proteins/genetics , MutL Proteins/genetics , Saccharomycetales/genetics , Saccharomycetales/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Nat Commun ; 13(1): 5808, 2022 10 03.
Article En | MEDLINE | ID: mdl-36192430

Highly conserved MutS and MutL homologs operate as protein dimers in mismatch repair (MMR). MutS recognizes mismatched nucleotides forming ATP-bound sliding clamps, which subsequently load MutL sliding clamps that coordinate MMR excision. Several MMR models envision static MutS-MutL complexes bound to mismatched DNA via a positively charged cleft (PCC) located on the MutL N-terminal domains (NTD). We show MutL-DNA binding is undetectable in physiological conditions. Instead, MutS sliding clamps exploit the PCC to position a MutL NTD on the DNA backbone, likely enabling diffusion-mediated wrapping of the remaining MutL domains around the DNA. The resulting MutL sliding clamp enhances MutH endonuclease and UvrD helicase activities on the DNA, which also engage the PCC during strand-specific incision/excision. These MutS clamp-loader progressions are significantly different from the replication clamp-loaders that attach the polymerase processivity factors ß-clamp/PCNA to DNA, highlighting the breadth of mechanisms for stably linking crucial genome maintenance proteins onto DNA.


DNA Mismatch Repair , Escherichia coli Proteins , Adenosine Triphosphate/metabolism , DNA/metabolism , DNA Repair , Endonucleases/metabolism , Escherichia coli Proteins/metabolism , MutL Proteins/genetics , MutL Proteins/metabolism , MutS DNA Mismatch-Binding Protein/genetics , Nucleotides , Proliferating Cell Nuclear Antigen/metabolism
7.
Plant Physiol ; 190(3): 1747-1762, 2022 10 27.
Article En | MEDLINE | ID: mdl-35976143

Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.


Oryza , Saccharomyces cerevisiae Proteins , Animals , Oryza/genetics , Retroelements/genetics , Saccharomyces cerevisiae/genetics , Seeds/genetics , Meiosis/genetics , Mammals/genetics , MutL Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
8.
Nucleic Acids Res ; 50(11): 6224-6234, 2022 06 24.
Article En | MEDLINE | ID: mdl-35670670

DNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100-1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood. Here we show that the Escherichia coli MutL protein binds to the 3' end of the resected strand and blocks access of Pol I and Pol III. The cryo-EM structure of an 85-kDa MutL-DNA complex, determined to 3.7 Å resolution, reveals a unique DNA binding mode that positions MutL at the 3' end of a primer-template, but not at a 5' resected DNA end or a blunt DNA end. Hence, our work reveals a novel role for MutL in the final stages of mismatch repair by preventing premature DNA synthesis during removal of the mismatched strand.


DNA Mismatch Repair , Escherichia coli Proteins , MutL Proteins , DNA/metabolism , DNA-Directed DNA Polymerase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , MutL Proteins/genetics
9.
Cancer Genet ; 260-261: 30-36, 2022 01.
Article En | MEDLINE | ID: mdl-34852986

BACKGROUND: It is likely that additional genes for hereditary breast cancer can be identified using a discordant sib pair design. Using this design we identified individuals harboring a rare PMS1 c.605G>A variant previously predicted to result in loss of function. OBJECTIVES: A family-based design and predictive algorithms were used to prioritize candidate variants possibly associated with an increased risk of hereditary breast cancer. Functional analyses were performed for one of the candidate variants, PMS1 c.605G>A. METHODS: 1) 14 discordant sister-pairs from hereditary breast cancer families were identified. 2) Whole exome sequencing was performed and candidate risk variants identified. 3) A rare PMS variant was identified in 2 unrelated affected sisters but no unaffected siblings. 4) Functional analysis of this variant was carried out using targeted mRNA sequencing. RESULTS: Genotype-phenotype correlation did not demonstrate tracking of the variant with cancer in the family. Functional analysis revealed no difference in exon 6 incorporation, which was validated by analyzing PMS1 allele specific expression. CONCLUSIONS: The PMS1 c.605G>A variant did not segregate with disease, and there was no variant-dependent impact on PMS1 exon 6 splicing, supporting this variant is likely benign. Functional analyses are imperative to understanding the clinical significance of predictive algorithms.


Breast Neoplasms/genetics , Exome Sequencing/methods , Gene Expression Profiling/methods , MutL Proteins/genetics , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Adult , Algorithms , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Loss of Function Mutation , Middle Aged , Pedigree , Sequence Analysis, RNA , Siblings
10.
Ann Ital Chir ; 93: 188-194, 2022.
Article En | MEDLINE | ID: mdl-34807001

BACKGROUND: Microsatellites are short repeated DNA sequences normally found in the human genome. Following specific mutations, microsatellites can vary in the number of repeats thus making the DNA unstable. Microsatellite instability (MSI) is responsible for approximately 20% of rectal cancers, while the remaining 80% are caused by chromosomal instability. One of the following genes, MLH1, MLH2, MLH 6, and PMS2, is inactivated, leading to MSI colorectal cancers. AIM: This study aimed to analyze the expression of some MMR system genes presenting mutations in mucinous rectal cancer and their correlations with clinical data. METHODS: A retrospective study was performed on patients with rectal mucinous adenocarcinoma who underwent surgery between January 2000 and January 2017. We collected a total of 42 patients and analyzed the demographic data, histopathological results and MMR system genes mentioned above. RESULTS: Almost 93% of the cases analyzed had MSI-H and only 7% were MSI-L. For MLH1, 50% of stage T2 and 50% of stage T4 had weak expression, while in stage T3, 42.50% had moderate expression. Regarding the N stage, we found that 66.67% of the patients with moderate gene expression (2+) were N2, while 42% of the patients with weak expression were N0. For MSH2, the majority of patients with strong gene expression were in stage T3 (27%). Weak expression was found in 50% of the patients in stage T2, 35% of the patients in stage T3, and 33.3% in T4. In 44.44% of the weak expression was N2, while for strong expression, there was an equivalent percentage of 33.33% in stages N1 and N2. Describing the MSH6 gene, we found that the most heterogeneous results were in stage T3. Weak expression was observed in 38.46% of the patients, while moderate and strong expression was observed in 30.77% and 11.54% respectively. Analysis of PMS2 revealed that 66.67% of the patients in stage T4 had a weak expression of the gene, while the same expression was found in 38.46% of the patients in stage T3. A total of 23.08% of patients in stage T3 had strong gene expression. We also analyzed the overall gene expression. Thus, we found that three patients (7.14%) had only 1, three genes were expressed, nine (21.42%) had two genes and the remaining 27 patients had all 4. The 1-year survival rate in the analyzed lot was 75%, decreasing to 60% in the second year and 35% in the 3rd. There were no statistically significant differences in survival data between the stages or gene expression. CONCLUSIONS: Our study showed no statistical difference regarding the survival on different gene expression or staging, consistent with studies that found that mucin expression does not have a significant impact on local recurrence, nor does it affect nodal down staging. KEY WORDS: Mucinous adenocarcinoma, Microsatelites instability.


Adenocarcinoma, Mucinous , Rectal Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma, Mucinous/genetics , DNA Mismatch Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Microsatellite Instability , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Neoplasm Proteins/genetics , Rectal Neoplasms/genetics , Rectal Neoplasms/surgery , Retrospective Studies
11.
Microbiology (Reading) ; 167(12)2021 12.
Article En | MEDLINE | ID: mdl-34882086

Over the last 70 years, we've all gotten used to an Escherichia coli-centric view of the microbial world. However, genomics, as well as the development of improved tools for genetic manipulation in other species, is showing us that other bugs do things differently, and that we cannot simply extrapolate from E. coli to everything else. A particularly good example of this is encountered when considering the mechanism(s) involved in DNA mismatch repair by the opportunistic human pathogen, Pseudomonas aeruginosa (PA). This is a particularly relevant phenotype to examine in PA, since defects in the mismatch repair (MMR) machinery often give rise to the property of hypermutability. This, in turn, is linked with the vertical acquisition of important pathoadaptive traits in the organism, such as antimicrobial resistance. But it turns out that PA lacks some key genes associated with MMR in E. coli, and a closer inspection of what is known (or can be inferred) about the MMR enzymology reveals profound differences compared with other, well-characterized organisms. Here, we review these differences and comment on their biological implications.


DNA Mismatch Repair , Pseudomonas aeruginosa , Escherichia coli , Methylation , MutL Proteins/genetics , MutS DNA Mismatch-Binding Protein/genetics , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism
12.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 35-43, 2021 Nov 25.
Article En | MEDLINE | ID: mdl-34933735

Breast cancer is the most common cancer in women worldwide. Detection of breast cancer susceptibility genes is an important issue. Also, MLH3 is a DNA mismatch repair gene and mutation in this gene is harmful in different cancers. This study aimed to use exome sequencing to uncover previously undetected breast cancer-predisposing variants. Also, we investigated the MLH3 gene expression of breast cancer patients which can be a breast cancer susceptibility gene. A total of 80 samples including 40 paired normal and cancer tissue samples were collected at Zheen International Hospital, Erbil, Iraq. Exome sequencing was used to identify mutations. Different in silico tools were used to predict the effect of mutation on the structural features or protein function. Real-time PCR was used for assessing the expression of MLH3 in breast cancer patients. We identified 26 variants in breast cancer patients, 22 inherited variants were found in MLH3, CHECK2, BRCA1, BRCA2, BLM, TP53, MSH6, NBN and PTEN genes and 4 somatic variants were found in PALB2, RAD50 and RBM10 genes. It was found that the expression of the MLH3 gene in tumor samples was significantly down-regulated compared with normal tissues. Statistically, high significance was found. The decreased expression of MLH3 was significant in all ranges of ages and all breast cancer types. Also, the expression of MLH3 decreased significantly in patients with breast cancer grades of II and III. In conclusion, MLH3 can be used as a susceptibility gene especially in grades II and III of breast cancer.


Breast Neoplasms/genetics , Exome Sequencing/methods , Genetic Predisposition to Disease/genetics , MutL Proteins/genetics , Mutation , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Fanconi Anemia Complementation Group N Protein/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Grading , RecQ Helicases/genetics , Reverse Transcriptase Polymerase Chain Reaction
13.
Nat Commun ; 12(1): 5568, 2021 09 22.
Article En | MEDLINE | ID: mdl-34552065

Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway. Furthermore, it was possible to reconstitute a Rad27- and Msh2-Msh6-dependent MMR reaction in vitro using a mispaired DNA substrate and other MMR proteins. Our results demonstrate Rad27 defines an Exo1-independent eukaryotic MMR pathway that is redundant with at least two other MMR pathways.


DNA Mismatch Repair , Exodeoxyribonucleases/metabolism , Flap Endonucleases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA Ligases/metabolism , DNA, Fungal/metabolism , Exodeoxyribonucleases/genetics , Flap Endonucleases/genetics , MutL Proteins/genetics , MutL Proteins/metabolism , Mutation , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
14.
Nat Commun ; 12(1): 5005, 2021 08 18.
Article En | MEDLINE | ID: mdl-34408140

Embryonic aneuploidy from mis-segregation of chromosomes during meiosis causes pregnancy loss. Proper disjunction of homologous chromosomes requires the mismatch repair (MMR) genes MLH1 and MLH3, essential in mice for fertility. Variants in these genes can increase colorectal cancer risk, yet the reproductive impacts are unclear. To determine if MLH1/3 single nucleotide polymorphisms (SNPs) in human populations could cause reproductive abnormalities, we use computational predictions, yeast two-hybrid assays, and MMR and recombination assays in yeast, selecting nine MLH1 and MLH3 variants to model in mice via genome editing. We identify seven alleles causing reproductive defects in mice including female subfertility and male infertility. Remarkably, in females these alleles cause age-dependent decreases in litter size and increased embryo resorption, likely a consequence of fewer chiasmata that increase univalents at meiotic metaphase I. Our data suggest that hypomorphic alleles of meiotic recombination genes can predispose females to increased incidence of pregnancy loss from gamete aneuploidy.


Abortion, Spontaneous/genetics , Aneuploidy , Embryo Loss/genetics , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Abortion, Spontaneous/metabolism , Abortion, Spontaneous/physiopathology , Alleles , Animals , Crossing Over, Genetic , DNA Mismatch Repair , Embryo Loss/physiopathology , Female , Homologous Recombination , Humans , Litter Size , Male , Meiosis , Mice , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Pregnancy , Reproduction , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
15.
Nucleic Acids Res ; 49(16): 9327-9341, 2021 09 20.
Article En | MEDLINE | ID: mdl-34390347

The DNA mismatch repair (MMR) factor Mlh1-Pms1 contains long intrinsically disordered regions (IDRs) whose exact functions remain elusive. We performed cross-linking mass spectrometry to identify interactions within Mlh1-Pms1 and used this information to insert FRB and FKBP dimerization domains into their IDRs. Baker's yeast strains bearing these constructs were grown with rapamycin to induce dimerization. A strain containing FRB and FKBP domains in the Mlh1 IDR displayed a complete defect in MMR when grown with rapamycin. but removing rapamycin restored MMR functions. Strains in which FRB was inserted into the IDR of one MLH subunit and FKBP into the other subunit were also MMR defective. The MLH complex containing FRB and FKBP domains in the Mlh1 IDR displayed a rapamycin-dependent defect in Mlh1-Pms1 endonuclease activity. In contrast, linking the Mlh1 and Pms1 IDRs through FRB-FKBP dimerization inappropriately activated Mlh1-Pms1 endonuclease activity. We conclude that dynamic and coordinated rearrangements of the MLH IDRs both positively and negatively regulate how the MLH complex acts in MMR. The application of the FRB-FKBP dimerization system to interrogate in vivo functions of a critical repair complex will be useful for probing IDRs in diverse enzymes and to probe transient loss of MMR on demand.


DNA Mismatch Repair/genetics , Intrinsically Disordered Proteins/genetics , MutL Protein Homolog 1/genetics , MutL Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Protein Domains/genetics , Protein Multimerization/genetics , Saccharomyces cerevisiae/genetics , Sirolimus/pharmacology , Tacrolimus Binding Proteins/genetics
16.
J Genet Genomics ; 48(6): 485-496, 2021 06 20.
Article En | MEDLINE | ID: mdl-34257043

Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.


Crossing Over, Genetic , Meiosis/genetics , MutL Proteins/metabolism , Oryza/genetics , Chromosome Pairing , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Flowers/cytology , Flowers/genetics , Flowers/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutL Proteins/genetics , Mutation , Oryza/cytology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding
17.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article En | MEDLINE | ID: mdl-34088835

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ's dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


DNA Mismatch Repair/physiology , Endonucleases/metabolism , MutL Protein Homolog 1/metabolism , MutL Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Endonucleases/chemistry , Meiosis , Models, Molecular , MutL Protein Homolog 1/chemistry , MutL Protein Homolog 1/genetics , MutL Proteins/chemistry , MutL Proteins/genetics , Recombinational DNA Repair , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Nat Commun ; 12(1): 2940, 2021 05 19.
Article En | MEDLINE | ID: mdl-34011995

Resistance to endocrine treatment occurs in ~30% of ER+ breast cancer patients resulting in ~40,000 deaths/year in the USA. Preclinical studies strongly implicate activation of growth factor receptor, HER2 in endocrine treatment resistance. However, clinical trials of pan-HER inhibitors in ER+/HER2- patients have disappointed, likely due to a lack of predictive biomarkers. Here we demonstrate that loss of mismatch repair activates HER2 after endocrine treatment in ER+/HER2- breast cancer cells by protecting HER2 from protein trafficking. Additionally, HER2 activation is indispensable for endocrine treatment resistance in MutL- cells. Consequently, inhibiting HER2 restores sensitivity to endocrine treatment. Patient data from multiple clinical datasets supports an association between MutL loss, HER2 upregulation, and sensitivity to HER inhibitors in ER+/HER2- patients. These results provide strong rationale for MutL loss as a first-in-class predictive marker of sensitivity to combinatorial treatment with endocrine intervention and HER inhibitors in endocrine treatment-resistant ER+/HER2- breast cancer patients.


Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , DNA Mismatch Repair , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , DNA Mismatch Repair/drug effects , DNA Mismatch Repair/genetics , Drug Resistance, Neoplasm/genetics , Female , Gene Knockdown Techniques , Humans , MCF-7 Cells , Mice , Mice, Nude , Mice, SCID , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , MutL Proteins/genetics , MutL Proteins/metabolism , Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, ErbB-2/genetics , Receptors, Estrogen/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
19.
Hum Mol Genet ; 30(16): 1497-1508, 2021 07 28.
Article En | MEDLINE | ID: mdl-33949657

Our previous work has established a huntingtin knock-in (KI) pig model that displays striatal neuronal loss, allowing us to examine if somatic CAG expansion in striatum accounts for the preferential neurodegeneration in Huntington disease (HD). We found that HD KI pigs do not display somatic CAG expansion in striatum as HD KI mice and that the majority of polyQ repeats in exon 1 HTT in the striatum of HD KI mice are fairly stable. We also found that striatal MSH2 and MLH3, which are involved in DNA repair, are more abundant in mouse brains than pig brains. Consistently inhibiting MSH2 and MLH3 reduced the somatic CAG expansion in HD KI mouse striatum with no influence on neuropathology. Our findings suggest that somatic CAG expansion is species-dependent, occurs in a small fraction of the HD gene in mice, and does not critically contribute to HD neuropathology.


Huntington Disease , Animals , Corpus Striatum/pathology , Disease Models, Animal , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Mice, Transgenic , MutL Proteins/genetics , Neostriatum/pathology , Swine , Trinucleotide Repeat Expansion/genetics
20.
ACS Synth Biol ; 10(5): 1214-1226, 2021 05 21.
Article En | MEDLINE | ID: mdl-33843192

The development of complex phenotypes in industrially relevant bacteria is a major goal of metabolic engineering, which encompasses the implementation of both rational and random approaches. In the latter case, several tools have been developed toward increasing mutation frequencies, yet the precise control of mutagenesis processes in cell factories continues to represent a significant technical challenge. Pseudomonas species are endowed with one of the most efficient DNA mismatch repair (MMR) systems found in the bacterial domain. Here, we investigated if the endogenous MMR system could be manipulated as a general strategy to artificially alter mutation rates in Pseudomonas species. To bestow a conditional mutator phenotype in the platform bacterium Pseudomonas putida, we constructed inducible mutator devices to modulate the expression of the dominant-negative mutLE36K allele. Regulatable overexpression of mutLE36K in a broad-host-range, easy-to-cure plasmid format resulted in a transitory inhibition of the MMR machinery, leading to a significant increase (up to 438-fold) in DNA mutation frequencies and a heritable fixation of mutations in the genome. Following such an accelerated mutagenesis-followed by selection approach, three phenotypes were successfully evolved: resistance to antibiotics streptomycin and rifampicin (either individually or combined) and reversion of a synthetic uracil auxotrophy. Thus, these mutator devices could be applied to accelerate the evolution of metabolic pathways in long-term evolutionary experiments, alternating cycles of (inducible) mutagenesis coupled to selection schemes toward the desired phenotype(s).


DNA Mismatch Repair/genetics , Mutation Rate , Phenotype , Pseudomonas putida/genetics , Alleles , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Escherichia coli/genetics , Evolution, Molecular , Gene Expression , Genes, Bacterial , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , MutL Proteins/genetics , Mutagenesis , Plasmids/genetics
...