Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.227
Filter
1.
Natl Med J India ; 37(2): 86-88, 2024.
Article in English | MEDLINE | ID: mdl-39222530

ABSTRACT

Bacille Calmette-Guérin (BCG) vaccine has been used increasingly in immunotherapy, including treatment of non-muscle-invasive bladder cancer, as an adjuvant therapy in metastatic prostate cancer and metastatic melanoma. However, systemic infection from inadvertent intravenous (instead of intravesical) injection is uncommon and can have systemic ramifications. We encountered 3 patients with disseminated Mycobacterium bovis infection that ensued after intravenous BCG injection.


Subject(s)
BCG Vaccine , Mycobacterium bovis , Humans , BCG Vaccine/adverse effects , BCG Vaccine/administration & dosage , Male , Mycobacterium bovis/isolation & purification , Mycobacterium bovis/immunology , Middle Aged , Injections, Intravenous , Tuberculosis/drug therapy , Aged , Urinary Bladder Neoplasms/drug therapy
3.
Cell Mol Life Sci ; 81(1): 380, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222120

ABSTRACT

The cytokine IFNγ is a principal effector of macrophage activation and immune resistance to mycobacterial infection; however, pathogenic mycobacteria are capable of surviving in IFNγ-activated macrophages by largely unknown mechanisms. In this study, we find that pathogenic mycobacteria, including M. bovis BCG and M. tuberculosis can sense IFNγ to promote their proliferative activity and virulence phenotype. Moreover, interaction with the host intracellular environment increases the susceptibility of mycobacteria to IFNγ through upregulating expression of mmpL10, a mycobacterial IFNγ receptor, thereby facilitating IFNγ-dependent survival and growth of mycobacteria in macrophages. Transmission electron microscopy analysis reveals that IFNγ triggers the secretion of extracellular vesicles, an essential virulence strategy of intracellular mycobacteria, while proteomics identifies numerous pivotal IFNγ-induced effectors required for mycobacterial infection in macrophages. Our study suggests that sensing host IFNγ is a crucial virulence mechanism used by pathogenic mycobacteria to survive and proliferate inside macrophages.


Subject(s)
Interferon-gamma , Macrophages , Mice, Inbred C57BL , Mycobacterium tuberculosis , Interferon-gamma/metabolism , Interferon-gamma/immunology , Macrophages/microbiology , Macrophages/metabolism , Macrophages/immunology , Animals , Mice , Mycobacterium tuberculosis/pathogenicity , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/metabolism , Mycobacterium bovis/immunology , Mycobacterium bovis/metabolism , Humans , Host-Pathogen Interactions/immunology , Virulence , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Interferon gamma Receptor , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Macrophage Activation , Mycobacterium Infections/microbiology , Mycobacterium Infections/immunology , Mycobacterium Infections/metabolism , Mycobacterium Infections/pathology
4.
Front Immunol ; 15: 1423843, 2024.
Article in English | MEDLINE | ID: mdl-39100669

ABSTRACT

The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.


Subject(s)
BCG Vaccine , Immunity, Innate , Animals , Cattle , BCG Vaccine/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Injections, Subcutaneous , Mycobacterium bovis/immunology , Cytokines/metabolism , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Vaccination , Immunologic Memory
5.
BMC Genomics ; 25(1): 762, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107682

ABSTRACT

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), represents a significant problem for the agriculture industry as well as posing a risk for human health. Current diagnostic tests for bTB target the cell-mediated immune (CMI) response to infection with M. bovis, primarily through screening of animals with the tuberculin skin test. Epigenetic modifications have been shown to alter the course of the immune response and differentially methylated regions (DMRs) might also influence the outcome of the skin test in cattle. Whole Genome Bisulphite Sequencing (WGBS) was used to profile DNA methylation levels from peripheral blood of a group of cattle identified as test positive for M. bovis (positive for the single intradermal comparative tuberculin test (SICTT) and/or the interferon-γ release assay compared to a test negative control group [n = 8/group, total of 16 WGBS libraries]. Although global methylation profiles were similar for both groups across the genome, 223 DMRs and 159 Differentially Promoter Methylated Genes (DPMGs) were identified between groups with an excess of hypermethylated sites in SICTT positive cattle (threshold > 15% differential methylation). Genes located within these DMRs included the Interleukin 1 receptor (IL1R1) and MHC related genes (BOLA and BOLA-DQB). KEGG pathway analysis identified enrichment of genes involved in Calcium and MAPK signalling, as well as metabolism pathways. Analysis of DMRs in a subset of SICTT negative cattle that were IFN-γ positive showed differential methylation of genes including Interleukin 10 Receptor, alpha (IL10RA), Interleukin 17 F (IL17F) and host defence peptides (DEFB and BDEF109). This study has identified a number of immune gene loci at which differential methylation is associated with SICTT test results and the degree of methylation could influence effective host immune responses.


Subject(s)
DNA Methylation , Tuberculin Test , Tuberculosis, Bovine , Cattle , Animals , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/immunology , Tuberculin Test/veterinary , Mycobacterium bovis/immunology , Epigenesis, Genetic , Promoter Regions, Genetic
6.
PLoS Biol ; 22(8): e3002766, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39159267

ABSTRACT

We report here on the characterisation in mice of a noninvasive bacille Calmette-Guérin (BCG) skin challenge model for assessing tuberculosis (TB) vaccine efficacy. Controlled human infection models (CHIMs) are valuable tools for assessing the relevant biological activity of vaccine candidates, with the potential to accelerate TB vaccine development into the clinic. TB infection poses significant constraints on the design of a CHIM using the causative agent Mycobacterium tuberculosis (Mtb). A safer alternative is a challenge model using the attenuated vaccine agent Mycobacterium bovis BCG as a surrogate for Mtb, and intradermal (skin) challenge as an alternative to pulmonary infection. We have developed a unique noninvasive imaging system based on fluorescent reporters (FluorBCG) to quantitatively measure bacterial load over time, thereby determining a relevant biological vaccine effect. We assessed the utility of this model to measure the effectiveness of 2 TB vaccines: the currently licenced BCG and a novel subunit vaccine candidate. To assess the efficacy of the skin challenge model, a nonlinear mixed-effects models was built describing the decline of fluorescence over time. The model-based analysis identified that BCG vaccination reduced the fluorescence readout of both fluorophores compared to unvaccinated mice (p < 0.001). However, vaccination with the novel subunit candidate did not alter the fluorescence decline compared to unvaccinated mice (p > 0.05). BCG-vaccinated mice that showed the reduced fluorescent readout also had a reduced bacterial burden in the lungs when challenged with Mtb. This supports the fluorescence activity in the skin as a reflection of vaccine induced functional pulmonary immune responses. This novel noninvasive approach allows for repeated measurements from the challenge site, providing a dynamic readout of vaccine induced responses over time. This BCG skin challenge model represents an important contribution to the ongoing development of controlled challenge models for TB.


Subject(s)
BCG Vaccine , Disease Models, Animal , Mycobacterium tuberculosis , Skin , Animals , BCG Vaccine/immunology , Mice , Mycobacterium tuberculosis/immunology , Female , Skin/microbiology , Skin/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis/microbiology , Vaccine Efficacy , Mice, Inbred C57BL , Bacterial Load , Tuberculosis Vaccines/immunology , Vaccination/methods , Mycobacterium bovis/immunology , Humans
7.
Front Immunol ; 15: 1453046, 2024.
Article in English | MEDLINE | ID: mdl-39176082

ABSTRACT

X-linked severe combined immunodeficiency (X-SCID), caused by mutations in the gamma-chain gene of the interleukin-2 receptor (IL2RG), is a prevalent form of SCID characterized by recurrent and fatal opportunistic infections that occur early in life. The incidence of disseminated bacillus Calmette-Guérin (BCG) disease among children with SCID is much higher than in the general population. Here, we report the case of a 4-month-old male infant who presented with subcutaneous induration, fever, an unhealed BCG vaccination site, and hepatosplenomegaly. Metagenomic next-generation sequencing in blood, and the detection of gastric juice and skin nodule pus all confirmed the infection of Mycobacterium tuberculosis. Lymphocyte subset analysis confirmed the presence of T-B+NK immunodeficiency. Whole-exome and Sanger sequencing revealed a novel microdeletion insertion mutation (c.316_318delinsGTGAT p.Leu106ValfsTer42) in the IL2RG gene, resulting in a rare shift in the amino acid sequence of the coding protein. Consequently, the child was diagnosed with X-SCID caused by a novel mutation in IL2RG, complicated by systemic disseminated BCG disease. Despite receiving systemic anti-infection treatment and four days of hospitalization, the patient died three days after discharge. To the best of our knowledge, this specific IL2RG mutation has not been previously reported. In our systemic review, we outline the efficacy of systemic anti-tuberculosis therapy, hematopoietic stem cell transplantation, and gene therapy in children with SCID and BCG diseases caused by IL2RG gene mutation.


Subject(s)
Interleukin Receptor Common gamma Subunit , Tuberculosis , X-Linked Combined Immunodeficiency Diseases , Humans , Infant , Male , BCG Vaccine/administration & dosage , BCG Vaccine/adverse effects , BCG Vaccine/immunology , Exons , Interleukin Receptor Common gamma Subunit/genetics , Mutation , Mycobacterium bovis/immunology , Mycobacterium bovis/pathogenicity , Tuberculosis/immunology , Tuberculosis/prevention & control , X-Linked Combined Immunodeficiency Diseases/complications , X-Linked Combined Immunodeficiency Diseases/diagnosis , X-Linked Combined Immunodeficiency Diseases/genetics , X-Linked Combined Immunodeficiency Diseases/immunology
8.
Sci Rep ; 14(1): 14974, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38951667

ABSTRACT

Bovine alveolar macrophages (AMs) defend the lungs against pathogens such as Mycobacterium bovis (M. bovis), the causative agent of bovine tuberculosis. However, little is known about the surface molecules expressed by bovine AMs and whether there is heterogeneity within the population. The purpose of this study was to characterise the bovine AM cell surface phenotype using flow cytometry. Bronchoalveolar lavage samples from four different calves were stained with a combination of antibodies against immune cell molecules prior to flow cytometric analysis. To assess the degree of expression, we considered the distribution and relative intensities of stained and unstained cells. We demonstrated that bovine AMs have high expression of CD172a, ADGRE1, CD206, and CD14, moderate expression of CD80, MHC II, CD1b, and CD40, low expression of CX3CR1 and CD86, and little or no expression of CD16 and CD26. Two distinct subsets of bovine AMs were identified based on CD163 expression. Subsequent analysis showed that the CD163+ subset had greater expression of other typical macrophage molecules compared to the CD163- subset, suggesting that these cells may perform different roles during infection. The characterisation of the uninfected bovine AM phenotype will provide a foundation for the examination of M. bovis-infected AMs.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Macrophages, Alveolar , Receptors, Cell Surface , Animals , Cattle , Macrophages, Alveolar/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Receptors, Cell Surface/metabolism , Phenotype , Mycobacterium bovis/immunology , Flow Cytometry , Tuberculosis, Bovine/metabolism , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Immunophenotyping , Bronchoalveolar Lavage Fluid
9.
Autoimmunity ; 57(1): 2380465, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39034498

ABSTRACT

Systemic Lupus Erythematosus (SLE) is an autoimmune disorder that causes a breakdown of immune tolerance. Current treatments mainly involve general immunosuppression, increasing the risk of infections. On the other hand, Bacillus Calmette-Guérin (BCG) has been investigated as a potential therapy for autoimmune diseases in recent years, prompting an ongoing investigation. This study aimed to evaluate the effect of BCG vaccination on early and late clinical presentation of SLE in a murine disease model. MRL/MPJ-Faslpr mice were immunized with BCG or treated with PBS as a control. The progress of the disease was evaluated at 27 days post-immunization (dpi) (early) and 56 dpi (late). Clinical parameters and proteinuria were monitored. Blood samples were collected for measurement of antinuclear antibodies (ANAs), anti-double-stranded DNA (anti-dsDNA), and cytokine determination was performed using ELISA. Samples collected from mice were analyzed by flow cytometry and histopathology. We observed a clinical improvement in BCG-treated mice, reduced proteinuria in the latter stages of the disease, and decreased TNF-α. However, BCG did not elicit significant changes in ANAs, anti-dsDNA, histopathological scores, or immune cell infiltration. BCG was only partially beneficial in an SLE mouse model, and further research is needed to determine whether the immunity induced by this vaccine can counteract lupus's autoimmune response.


Subject(s)
Antibodies, Antinuclear , BCG Vaccine , Disease Models, Animal , Lupus Erythematosus, Systemic , Animals , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/drug therapy , Mice , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , BCG Vaccine/immunology , Female , Cytokines/metabolism , Proteinuria/immunology , Proteinuria/etiology , Vaccination , Mice, Inbred MRL lpr , Mycobacterium bovis/immunology , Tumor Necrosis Factor-alpha/blood
10.
PLoS One ; 19(7): e0307307, 2024.
Article in English | MEDLINE | ID: mdl-39024223

ABSTRACT

Tuberculosis (TB) is an infectious, chronic, and progressive disease occurring globally. Human TB is caused mainly by Mycobacterium tuberculosis (M. tuberculosis), while the main causative agent of bovine TB is Mycobacterium bovis (M. bovis). The latter is one of the most important cattle pathogens and is considered the main cause of zoonotic TB worldwide. The mechanisms responsible for tissue damage (necrosis) during post-primary TB remain elusive. Recently, IL-17A was reported to be important for protection against M. tuberculosis infection, but it is also related to the production of an intense inflammatory response associated with necrosis. We used two M. bovis isolates with different levels of virulence and high IL-17A production to study this important cytokine's contrasting functions in a BALB/c mouse model of pulmonary TB. In the first part of the study, the gene expression kinetics and cellular sources of IL-17A were determined by real time PCR and immunohistochemistry respectively. Non-infected lungs showed low production of IL-17A, particularly by the bronchial epithelium, while lungs infected with the low-virulence 534 strain showed high IL-17A expression on Day 3 post-infection, followed by a decrease in expression in the early stage of the infection and another increase during late infection, on Day 60, when very low bacillary burdens were found. In contrast, infection with the highly virulent strain 04-303 induced a peak of IL-17A expression on Day 14 of infection, 1 week before extensive pulmonary necrosis was seen, being lymphocytes and macrophages the most important sources. In the second part of the study, the contribution of IL-17A to immune protection and pulmonary necrosis was evaluated by suppressing IL-17A via the administration of specific blocking antibodies. Infection with M. bovis strain 534 and treatment with IL-17A neutralizing antibodies did not affect mouse survival but produced a significant increase in bacillary load and a non-significant decrease in inflammatory infiltrate and granuloma area. In contrast, mice infected with the highly virulent 04-303 strain and treated with IL-17A blocking antibodies showed a significant decrease in survival, an increase in bacillary loads on Day 24 post-infection, and significantly more and earlier necrosis. Our results suggest that high expression of IL-17A is more related to protection than necrosis in a mouse model of pulmonary TB induced by M. bovis strains.


Subject(s)
Interleukin-17 , Mice, Inbred BALB C , Mycobacterium bovis , Tuberculosis, Pulmonary , Interleukin-17/metabolism , Interleukin-17/immunology , Animals , Mycobacterium bovis/pathogenicity , Mycobacterium bovis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Mice , Virulence , Lung/microbiology , Lung/pathology , Lung/immunology , Female , Cattle
11.
Sci Rep ; 14(1): 13133, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849432

ABSTRACT

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Subject(s)
Cell Proliferation , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Cell Proliferation/drug effects , Neoplasms/immunology , Neoplasms/drug therapy , BCG Vaccine/immunology , BCG Vaccine/administration & dosage , Mycobacterium bovis/immunology , Lymphocyte Activation/drug effects , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Interleukins/metabolism , CD56 Antigen/metabolism , NK Cell Lectin-Like Receptor Subfamily C/metabolism
12.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892353

ABSTRACT

Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNÉ£) and its use in bovine selective breeding programs have not been explored. In the current study, IFNÉ£ production was measured using a specific IFNÉ£ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNÉ£ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNÉ£ in response to Mb.


Subject(s)
Genome-Wide Association Study , Interferon-gamma , Mycobacterium bovis , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Tuberculosis, Bovine , Animals , Cattle , Mycobacterium bovis/immunology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Tuberculosis, Bovine/genetics , Tuberculosis, Bovine/immunology , Tuberculosis, Bovine/microbiology , Phenotype , Genotype
13.
Int Immunopharmacol ; 137: 112384, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38878484

ABSTRACT

Selenium nanoparticles (SeNPs) enhance the immune response as adjuvants, increasing the efficacy of viral vaccines, including those for COVID-19. However, the efficiency of mucosal SeNPs in boosting vaccine-induced protective immunity against tuberculosis remains unclear. Therefore, this study aims to investigate whether the combination of SeNPs with the AH antigen (Ag85A-HspX) can boost respiratory mucosal immunity and thereby enhance the protective effects against tuberculosis. We synthesized SeNPs and assessed their impact on the immune response and protection against Mycobacterium bovis (M. bovis) as a mucosal adjuvant in mice, administered intranasally at a dose of 20 µg. SeNPs outperformed polyinosinic-polycytidylic acid (Poly IC) in stimulating the maturation of bone marrow-derived dendritic cells (BMDCs), which enhanced antigen presentation. SeNPs significantly activated and proliferated tissue-resident memory T cells (TRMs) and effector CD4+ T cells in the lungs. The vaccines elicited specific antibody responses in the respiratory tract and stimulated systemic Th1 and Th17 immune responses. Immunization with AH and SeNPs led to higher levels of mucosal secretory IgA in bronchoalveolar lavage fluid (BALF) and secretory IL-17 in splenocytes. Moreover, SeNPs immunized mice showed reduced M. bovis infection loads and inflammatory lesions in the lungs post-challenge. Notably, immunization with AH and SeNPs significantly reduced bacterial load in the lungs, achieving the lowest levels compared to all other tested groups. This study calls for pre-clinical investigation of AHB-SeNPs as an anti-bovine tuberculosis vaccine and for exploring its human vaccine potential, which is anticipated to aid in the development of innovative vaccines or adjuvants.


Subject(s)
Adjuvants, Immunologic , Antigens, Bacterial , Immunity, Mucosal , Mycobacterium bovis , Nanoparticles , Selenium , Animals , Mycobacterium bovis/immunology , Immunity, Mucosal/drug effects , Nanoparticles/administration & dosage , Mice , Adjuvants, Immunologic/administration & dosage , Female , Antigens, Bacterial/immunology , Mice, Inbred C57BL , Tuberculosis/immunology , Tuberculosis/prevention & control , Dendritic Cells/immunology , Dendritic Cells/drug effects , Tuberculosis Vaccines/immunology , Tuberculosis Vaccines/administration & dosage , Lung/immunology , Lung/microbiology , Bacterial Proteins/immunology
15.
Microbiol Spectr ; 12(8): e0055524, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916323

ABSTRACT

A Mycobacterium ulcerans human challenge model has the potential to fundamentally advance our understanding of early human immune responses to infection, while rapidly evaluating vaccines and other therapeutic interventions. Here, using a murine tail infection model, we tested a very well-characterized working cell bank of the proposed challenge isolate M. ulcerans JKD8049 in naïve and Mycobacterium bovis bacille Calmette-Guérin (BCG)-vaccinated BALB/c mice. All 10 naïve mice were successfully infected with 20 colony-forming units (CFU) of M. ulcerans [95% confidence interval (CI) 17-22 CFU] with a mean time to visible lesion of 86 days (95% CI 79-92 days). In the 10 vaccinated mice, there was a significant delay in the mean time to lesion compared to the naïve controls of 24 days (P = 0.0003), but all mice eventually developed ulcerative lesions. This study informs a future human infection model by demonstrating the successful application of the challenge agent in this in vivo model and highlights both the promise and the problems with trying to induce protective immunity against M. ulcerans. IMPORTANCE: In preparation for its proposed use in a controlled human infection model (CHIM), this study reports the successful infection of BALB/c mice using a carefully characterized, low-dose inoculum of Mycobacterium ulcerans JKD8049 (our proposed CHIM strain). We also demonstrate that Mycobacterium bovis bacille Calmette-Guérin delays the onset of disease but cannot alter the course of illness once a lesion becomes apparent. We also validate the findings of previous low-dose challenges that used less accurate methods to determine the inoculum, but our presented methodology is practical, accurate, and anticipated to be reproducible.


Subject(s)
Bacterial Vaccines , Buruli Ulcer , Disease Models, Animal , Mice, Inbred BALB C , Mycobacterium ulcerans , Animals , Mice , Mycobacterium ulcerans/immunology , Pilot Projects , Female , Humans , Buruli Ulcer/immunology , Buruli Ulcer/prevention & control , Buruli Ulcer/microbiology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Mycobacterium bovis/immunology , Vaccination , BCG Vaccine/immunology , BCG Vaccine/administration & dosage
16.
Front Immunol ; 15: 1380069, 2024.
Article in English | MEDLINE | ID: mdl-38835781

ABSTRACT

Bacillus Calmette-Guérin (BCG) is the first line treatment for bladder cancer and it is also proposed for melanoma immunotherapy. BCG modulates the tumor microenvironment (TME) inducing an antitumor effective response, but the immune mechanisms involved still poorly understood. The immune profile of B16-F10 murine melanoma cells was assessed by infecting these cells with BCG or stimulating them with agonists for different innate immune pathways such as TLRs, inflammasome, cGAS-STING and type I IFN. B16-F10 did not respond to any of those stimuli, except for type I IFN agonists, contrasting with bone marrow-derived macrophages (BMDMs) that showed high production of proinflammatory cytokines. Additionally, we confirmed that BCG is able to infect B16-F10, which in turn can activate macrophages and spleen cells from mice in co-culture experiments. Furthermore, we established a subcutaneous B16-F10 melanoma model for intratumoral BCG treatment and compared wild type mice to TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR3/7/9-/-, caspase 1-/-, caspase 11-/-, IL-1R-/-, cGAS-/-, STING-/-, IFNAR-/-, MyD88-/-deficient animals. These results in vivo demonstrate that MyD88 signaling is important for BCG immunotherapy to control melanoma in mice. Also, BCG fails to induce cytokine production in the co-culture experiments using B16-F10 and BMDMs or spleen cells derived from MyD88-/- compared to wild-type (WT) animals. Immunotherapy with BCG was not able to induce the recruitment of inflammatory cells in the TME from MyD88-/- mice, impairing tumor control and IFN-γ production by T cells. In conclusion, MyD88 impacts on both innate and adaptive responses to BCG leading to an efficient antitumor response against melanoma.


Subject(s)
BCG Vaccine , Immunotherapy , Melanoma, Experimental , Myeloid Differentiation Factor 88 , Signal Transduction , Animals , Mice , BCG Vaccine/immunology , BCG Vaccine/therapeutic use , Cell Line, Tumor , Cytokines/metabolism , Immunotherapy/methods , Macrophages/immunology , Macrophages/metabolism , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium bovis/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Tumor Microenvironment/immunology
17.
Vet Immunol Immunopathol ; 273: 110788, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838485

ABSTRACT

Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide. Therefore, developing effective tools to control this disease is crucial. Using a computational tool, we identified proteins in the M. bovis proteome that carry predictive binding peptides to BoLADRB3.2 and selected Mb0309, Mb1090, Mb1810 and Mb3810 from all the identified proteins. The expression of these proteins in a baculovirus-insect cell expression system was successful only for Mb0309 and Mb3810. In parallel, we expressed the ESAT-6 family proteins EsxG and EsxH in this system. Among the recombinant proteins, Mb0309 and EsxG exhibited moderate performance in distinguishing between cattle that test positive and negative to bTB using the official test, the intradermal tuberculin test (IDT), when used to stimulate interferon-gamma production in blood samples from cattle. However, when combined as a protein cocktail, Mb0309 and EsxG were reactive in 50 % of positive cattle. Further assessments in cattle that evade the IDT (false negative) and cattle infected with Mycobacterium avium paratuberculosis are necessary to determine the potential utility of this cocktail as an additional tool to assist the accurate diagnosis of bTB.


Subject(s)
Antigens, Bacterial , Mycobacterium bovis , Tuberculosis, Bovine , Mycobacterium bovis/immunology , Animals , Cattle , Antigens, Bacterial/immunology , Tuberculosis, Bovine/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Tuberculin Test/veterinary , Recombinant Proteins/immunology , Recombinant Proteins/genetics
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790096

ABSTRACT

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Subject(s)
Dual-Specificity Phosphatases , Macrophages , NF-kappa B , Signal Transduction , Animals , Mice , RAW 264.7 Cells , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Knockdown Techniques , Mycobacterium bovis/immunology , Cytokines/metabolism , Cytokines/genetics
19.
Sci Rep ; 14(1): 11898, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789479

ABSTRACT

We have previously reported the transcriptomic and lipidomic profile of the first-generation, hygromycin-resistant (HygR) version of the BCGΔBCG1419c vaccine candidate, under biofilm conditions. We recently constructed and characterized the efficacy, safety, whole genome sequence, and proteomic profile of a second-generation version of BCGΔBCG1419c, a strain lacking the BCG1419c gene and devoid of antibiotic markers. Here, we compared the antibiotic-less BCGΔBCG1419c with BCG. We assessed their colonial and ultrastructural morphology, biofilm, c-di-GMP production in vitro, as well as their transcriptomic and lipidomic profiles, including their capacity to activate macrophages via Mincle and Myd88. Our results show that BCGΔBCG1419c colonial and ultrastructural morphology, c-di-GMP, and biofilm production differed from parental BCG, whereas we found no significant changes in its lipidomic profile either in biofilm or planktonic growth conditions. Transcriptomic profiling suggests changes in BCGΔBCG1419c cell wall and showed reduced transcription of some members of the DosR, MtrA, and ArgR regulons. Finally, induction of TNF-α, IL-6 or G-CSF by bone-marrow derived macrophages infected with either BCGΔBCG1419c or BCG required Mincle and Myd88. Our results confirm that some differences already found to occur in HygR BCGΔBCG1419c compared with BCG are maintained in the antibiotic-less version of this vaccine candidate except changes in production of PDIM. Comparison with previous characterizations conducted by OMICs show that some differences observed in BCGΔBCG1419c compared with BCG are maintained whereas others are dependent on the growth condition employed to culture them.


Subject(s)
BCG Vaccine , Biofilms , Cyclic GMP , Lipidomics , Macrophages , Mycobacterium bovis , Myeloid Differentiation Factor 88 , Transcriptome , Animals , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , BCG Vaccine/immunology , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Mycobacterium bovis/genetics , Mycobacterium bovis/immunology , Biofilms/growth & development , Cytokines/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gene Expression Profiling , Lectins, C-Type
20.
PLoS Negl Trop Dis ; 18(5): e0012223, 2024 May.
Article in English | MEDLINE | ID: mdl-38805568

ABSTRACT

Bovine tuberculosis (bTB) is a chronic zoonotic disease affecting cattle of all age groups including wild animals. It poses a significant threat to public health and high economic losses to dairy farmers. While the disease has been eradicated from most of the developed countries through extensive surveillance, testing and culling strategy, it is endemic in Africa, Asia, and the Middle East countries. Currently, there is limited research regarding the prevalence of bTB in cattle in Bhutan. This study aimed to determine the seroprevalence of bTB in cattle in six districts of eastern Bhutan. A two-stage probability proportional to size (PPS) sampling strategy was used to determine the number of animals from which serum samples needed to be collected in each district and sub-district. All farms and cattle for sampling were randomly selected from the data in the annual livestock census of 2020. The samples were tested using bTB ELISA test kit. The seroprevalence and their 95% confidence intervals were calculated. Logistic regression models were constructed to assess the influence of various individual animal and environmental risk factors (breed, age, sex, source of animal, body condition scores of animals, respiratory system status) associated with sero-positivity in animals. The study revealed an apparent seroprevalence of 2.57% (25/971 cattle; 95% CI:1.58-3.57), with an estimated true seroprevalence of 0.91% (95% CI: 0.0-2.81). However, none of the variables were found to be significantly associated with bTB seroprevalence in cattle. We recommend, further sampling and employment of confirmatory testing to fully ascertain the extent of bTB in the cattle herds in eastern Bhutan for prevention and control.


Subject(s)
Tuberculosis, Bovine , Animals , Cattle , Bhutan/epidemiology , Seroepidemiologic Studies , Tuberculosis, Bovine/epidemiology , Tuberculosis, Bovine/microbiology , Risk Factors , Female , Male , Mycobacterium bovis/immunology , Prevalence , Antibodies, Bacterial/blood
SELECTION OF CITATIONS
SEARCH DETAIL