Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.856
Filter
1.
Toxins (Basel) ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38922131

ABSTRACT

Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in the blood serum and endometrial tissue samples of participants with previously proven endometrial cancer and to find possible contributions to cancer development. In the cohort clinical trial, 52 participants aged between 44 and 86 were studied. The participants were divided into two groups: patients or matched controls. All patients had previously histologically diagnosed endometrial cancer. The cancer patients were divided into low-grade endometrioid and low- plus high-grade endometrioid groups. Controls had no history of endometrial malignancy or premalignancy. Blood serum and endometrial tissue samples were obtained from all study patients. We compared the concentrations of total Aflatoxins (Afs), Deoxynivalenol (DON), Ochratoxin-A (OTA), T2-toxin and HT2 toxin (T2/HT2 toxin), Zearalenone (ZEN), alpha-Zearalenol (α-ZOL), and Fumonisin B1 (FB1) in the serum and endometrium between the different study groups. As a result, we can see a significant correlation between the higher levels of Afs and zearalenone and the presence of endometrial cancer. In the case of Afs, DON, OTA, T2/HT2 toxins, ZEN, and alpha-ZOL, we measured higher endometrial concentrations than in serum. Considering the effect of mycotoxins and eating habits on cancer development, our results might lead to further research exploring the relationship between certain mycotoxins and endometrium cancer.


Subject(s)
Endometrial Neoplasms , Mycotoxins , Female , Humans , Endometrial Neoplasms/blood , Mycotoxins/blood , Mycotoxins/analysis , Middle Aged , Aged , Adult , Aged, 80 and over , Endometrium/metabolism , Endometrium/pathology , Case-Control Studies
2.
Toxins (Basel) ; 16(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38922139

ABSTRACT

Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Mycotoxins , Pesticides , Mycotoxins/analysis , Pesticides/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Biomimetics , Humans , Food Contamination/analysis , Biomimetic Materials/chemistry
3.
Toxins (Basel) ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38922145

ABSTRACT

Mycotoxins are potent fungal toxins that frequently contaminate agricultural crops and foods. Mycotoxin exposure is frequently reported in humans, and children are known to be particularly at risk of exceeding safe levels of exposure. Urinary biomonitoring is used to assess overall dietary exposure to multiple mycotoxins. This study aims to quantify multi-mycotoxin exposure in UK children and to identify major food groups contributing to exposure. Four repeat urine samples were collected from 29 children (13 boys and 16 girls, aged 2.4-6.8 years), and food diaries were recorded to assess their exposure to eleven mycotoxins. Urine samples (n = 114) were hydrolysed with ß-glucuronidase, enriched through immunoaffinity columns and analysed by LC-MS/MS for deoxynivalenol (DON), nivalenol (NIV), T-2/HT-2 toxins, zearalenone (ZEN), ochratoxin A (OTA) and aflatoxins. Food diaries were analysed using WinDiet software, and the daily intake of high-risk foods for mycotoxin contamination summarised. The most prevalent mycotoxins found in urine samples were DON (95.6% of all samples), OTA (88.6%), HT-2 toxin (53.5%), ZEN (48.2%) and NIV (26.3%). Intake of total cereal-based foods was strongly positively associated with urinary levels of DON and T-2/HT-2 and oat intake with urinary T-2/HT-2. Average daily mycotoxin excretion ranged from 12.10 µg/d (DON) to 0.03 µg/d (OTA), and co-exposure to three or more mycotoxins was found in 66% of samples. Comparing mycotoxin intake estimates to tolerable daily intakes (TDI) demonstrates frequent TDI exceedances (DON 34.2% of all samples, T-2/HT-2 14.9%, NIV 4.4% and ZEN 5.2%). OTA was frequently detected at low levels. When mean daily OTA intake was compared to the reference value for non-neoplastic lesions, the resulting Margin of Exposure (MoE) of 65 was narrow, indicating a health concern. In conclusion, this study demonstrates frequent exposure of UK children to multiple mycotoxins at levels high enough to pose a health concern if exposure is continuous.


Subject(s)
Dietary Exposure , Food Contamination , Mycotoxins , Humans , Male , Female , Child , Mycotoxins/urine , Mycotoxins/analysis , Child, Preschool , United Kingdom , Dietary Exposure/analysis , Food Contamination/analysis , Biological Monitoring , Diet
4.
Toxins (Basel) ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38922144

ABSTRACT

Mycotoxins, secondary metabolites synthesized by various filamentous fungi genera such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria, are potent toxic compounds. Their production is contingent upon specific environmental conditions during fungal growth. Arising as byproducts of fungal metabolic processes, mycotoxins exhibit significant toxicity, posing risks of acute or chronic health complications. Recognized as highly hazardous food contaminants, mycotoxins present a pervasive threat throughout the agricultural and food processing continuum, from plant cultivation to post-harvest stages. The imperative to adhere to principles of good agricultural and industrial practice is underscored to mitigate the risk of mycotoxin contamination in food production. In the domain of food safety, the rapid and efficient detection of mycotoxins holds paramount significance. This paper delineates conventional and commercial methodologies for mycotoxin detection in ensuring food safety, encompassing techniques like liquid chromatography, immunoassays, and test strips, with a significant emphasis on the role of electrochemiluminescence (ECL) biosensors, which are known for their high sensitivity and specificity. These are categorized into antibody-, and aptamer-based, as well as molecular imprinting methods. This paper examines the latest advancements in biosensors for mycotoxin testing, with a particular focus on their amplification strategies and operating mechanisms.


Subject(s)
Biosensing Techniques , Food Contamination , Food Safety , Mycotoxins , Mycotoxins/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Food Microbiology/methods , Humans , Animals
5.
Toxins (Basel) ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38922162

ABSTRACT

Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant threats to global food safety and public health. These compounds can contaminate a variety of crops, leading to economic losses and health risks to both humans and animals. Traditional lab analysis methods for mycotoxin detection can be time-consuming and may not always be suitable for large-scale screenings. However, in recent years, machine learning (ML) methods have gained popularity for use in the detection of mycotoxins and in the food safety industry in general due to their accurate and timely predictions. We provide a systematic review on some of the recent ML applications for detecting/predicting the presence of mycotoxin on a variety of food ingredients, highlighting their advantages, challenges, and potential for future advancements. We address the need for reproducibility and transparency in ML research through open access to data and code. An observation from our findings is the frequent lack of detailed reporting on hyperparameters in many studies and a lack of open source code, which raises concerns about the reproducibility and optimisation of the ML models used. The findings reveal that while the majority of studies predominantly utilised neural networks for mycotoxin detection, there was a notable diversity in the types of neural network architectures employed, with convolutional neural networks being the most popular.


Subject(s)
Food Contamination , Machine Learning , Mycotoxins , Mycotoxins/analysis , Food Contamination/analysis , Animals , Humans , Neural Networks, Computer
6.
Toxins (Basel) ; 16(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38922169

ABSTRACT

Maize (Zea mays L.) stands as a vital staple food globally, holding significant nutritional and economic value. However, its susceptibility to mycotoxin contamination under stressful environmental conditions poses a considerable concern. This study aimed to assess the quality and pasting characteristics of maize varieties across two distinct regions and examine the occurrence of mycotoxins influenced by climatic factors. Five maize varieties were cultivated in triplicate in the Golegã and Coruche regions. The nutritional composition (protein, fat, fiber, ash, starch, and lutein), pasting properties, and mycotoxin levels were evaluated. A statistical analysis revealed notable differences in the nutritional profiles of the maize varieties between the two regions, particularly in the protein and lutein content. The peak viscosity ranged from 6430 to 8599 cP and from 4548 to 8178 cP in the maize varieties from the Coruche and Golegã regions, respectively. Additionally, a significant correlation was observed between the climatic conditions and the grain nutritional quality components (p < 0.05). The M variety showed the highest ash content, protein content, final viscosity, and setback viscosity and the lowest peak viscosity. The Y variety revealed the lowest fat, fiber, and lutein content and the maximum peak viscosity. The incidence of mycotoxins was notably higher in the varieties from Coruche, which was potentially attributable to higher temperatures and lower precipitation levels leading to more frequent drought conditions. Fumonisin B1 was detected in 58% of the varieties from Coruche and 33% of the samples from Golegã, while deoxynivalenol was found in 87% and 80% of the varieties from Coruche and Golegã, respectively. The H variety, which was harvested in Coruche, exhibited the highest number of fumonisins and higher amounts of protein, lutein, and fat, while fumonisins were not detected in the Golegã region, which was potentially influenced by the precipitation levels. The K variety revealed higher protein and lutein contents, a lower amount of fat, excellent pasting properties (a higher peak viscosity and holding strength and a lower peak time), and no fumonisins B1 or B2. This variety may be considered well adapted to higher temperatures and drier conditions, as verified in the Coruche region. In conclusion, our study underscored the profound impact of environmental factors on the quality and occurrence of mycotoxins in maize varieties.


Subject(s)
Mycotoxins , Zea mays , Zea mays/chemistry , Mycotoxins/analysis , Food Contamination/analysis , Nutritive Value , Viscosity
7.
Toxins (Basel) ; 16(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38922172

ABSTRACT

Mycotoxins are toxic secondary metabolites produced by various fungi that can contaminate food crops, which, in turn, may lead to human exposure. Chronic exposure to mycotoxins can cause adverse health effects including reproductive and developmental toxicity. Pregnant women and their foetuses present a vulnerable group for exposure to mycotoxins that can cross the placenta. Human biomonitoring of mycotoxins provides a real-life approach to estimate internal exposure. In this pilot study, 24-h urine samples from 36 pregnant Dutch women were analysed for aflatoxin M1 (AFM1), total deoxynivalenol (DON), de-epoxy-deoxynivalenol (DOM-1), total zearalenone (ZEN), total α-zearalenol (α-ZEL), total ß-zearalenol (ß-ZEL) and total zearalanone (ZAN), where 'total' refers to mycotoxins and their conjugated forms. Serum samples from these women were analysed for fumonisin B1 (FB1) and ochratoxin A (OTA). All samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most prevalent mycotoxins were total DON, total ZEN and OTA, with a detection frequency of 100%. DOM-1, total α-ZEL and total ß-ZEL were detected but to a lesser extent, while AFM1, total ZAN and FB1 were undetected. Median concentrations were 4.75 µg total DON/L, 0.0350 µg DOM-1/L, 0.0413 µg total ZEN/L, 0.0379 µg total α-ZEL/L, 0.0189 µg total ß-ZEL/L, and 0.121 µg OTA/L. The calculated median concentration for total ZEN and its metabolites was 0.105 µg/L. Based on two separate risk assessment approaches, total DON exposure in this group was considered to be of low concern. Similarly, exposure to total ZEN and its metabolites in this group was of low concern. For OTA, the risk of non-neoplastic effects was of low concern based on exposure in this group, and the risk of neoplastic effects was of low concern in the majority of participants in this group. The findings of this pilot study confirm the presence of mycotoxins in the urine and serum of pregnant Dutch women, with total DON, total ZEN, and OTA most frequently detected. Exposure to all measured mycotoxins was considered to be of low concern in this group, except for exposure to OTA, which was of low concern for the majority of participants. The study's findings offer valuable insights but should be confirmed using a larger and more diverse sample of the Dutch general population.


Subject(s)
Biological Monitoring , Mycotoxins , Humans , Female , Mycotoxins/urine , Mycotoxins/blood , Mycotoxins/analysis , Pregnancy , Adult , Netherlands , Pilot Projects , Risk Assessment , Young Adult , Tandem Mass Spectrometry , Maternal Exposure/adverse effects
8.
Toxins (Basel) ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38922175

ABSTRACT

The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.


Subject(s)
Clay , Juglans , Mycotoxins , Rhodotorula , Juglans/chemistry , Rhodotorula/metabolism , Mycotoxins/analysis , Mycotoxins/chemistry , Clay/chemistry , Geotrichum/drug effects , Geotrichum/metabolism , Nuts/chemistry , Aluminum Silicates/chemistry , Minerals
9.
Anal Methods ; 16(25): 4124-4135, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38860427

ABSTRACT

This paper describes an extensive study in which a multiclass QuEChERS based approach was optimized for determination of 150 pesticides and 7 mycotoxins in table olives. Three versions of QuEChERS were evaluated and compared (unbuffered, citrate and acetate buffering). A combination of EMR-Lipid cartridges and liquid nitrogen or freezer freezing out were tested for clean-up of the oily olive extracts. Analysis of the extracts were performed by LC-MS/MS triple quadrupole. The best results were achieved using acetate QuEChERS with liquid nitrogen for clean-up. For validation, organic olives were ground and spiked at 4 concentrations with pesticides and mycotoxins (n = 5). The linearity of the calibration curves was assessed by analyzing calibration standards of 7 concentrations which were prepared separately in acetonitrile and in blank olive extract (n = 5). The validation study demonstrated that the calculated r2 was ≥0.99 for 144 pesticides and 6 mycotoxins, when the calibration curves were prepared in matrix extract, showing satisfactory linearity. Matrix effects were within the range of ±20% for only 46 pesticides and one mycotoxin. Then, to ensure reliable quantification, calibration standards had to be matrix-matched. In accuracy experiments 138 pesticides and 6 mycotoxins presented recoveries from 70 to 120% and RSD ≤ 20% for at least 2 of the 4 spike concentrations evaluated, being successfully validated. The integrated QuEChERS and LC-MS/MS method meet MRL for 11 of the 21 pesticides regulated for olives in Brazil and for 132 pesticides which are regulated in the EU law. Eleven commercial table olive samples were analyzed and 4 of them tested positive for pesticides. All the positive samples violate the Brazilian law and one sample violates also the European law.


Subject(s)
Mycotoxins , Olea , Pesticides , Tandem Mass Spectrometry , Olea/chemistry , Brazil , Mycotoxins/analysis , Tandem Mass Spectrometry/methods , Pesticides/analysis , Chromatography, Liquid/methods , Food Contamination/analysis , Reproducibility of Results
10.
J Agric Food Chem ; 72(26): 14975-14983, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38898562

ABSTRACT

Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.


Subject(s)
Calcium , Depsipeptides , Mitochondria , Mitochondria/metabolism , Mitochondria/drug effects , Calcium/metabolism , Humans , Depsipeptides/pharmacology , Mycotoxins/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Cell Line, Tumor
11.
Pestic Biochem Physiol ; 202: 105951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879336

ABSTRACT

The abuse of chemical insecticides has led to strong resistance in cockroaches, and biopesticides with active ingredients based on insect pathogens have good development prospects; however, their slow effect has limited their practical application, and improving their effectiveness has become an urgent problem. In this study, the interaction between Serratia marcescens and Metarhizium anisopliae enhanced their virulence against Blattella germanica and exhibited a synergistic effect. The combination of S. marcescens and M. anisopliae caused more severe tissue damage and accelerated the proliferation of the insect pathogen. The results of high-throughput sequencing demonstrated that the gut microbiota was dysbiotic, the abundance of the opportunistic pathogen Weissella cibaria increased, and entry into the hemocoel accelerated the death of the German cockroaches. In addition, the combination of these two agents strongly downregulated the expression of Imd and Akirin in the IMD pathway and ultimately inhibited the expression of antimicrobial peptides (AMPs). S. marcescens released prodigiosin to disrupted the gut homeostasis and structure, M. anisopliae released destruxin to damaged crucial organs, opportunistic pathogen Weissella cibaria overproliferated, broke the gut epithelium and entered the hemocoel, leading to the death of pests. These findings will allow us to optimize the use of insect pathogens for the management of pests and produce more effective biopesticides.


Subject(s)
Cockroaches , Gastrointestinal Microbiome , Metarhizium , Serratia marcescens , Animals , Serratia marcescens/pathogenicity , Serratia marcescens/physiology , Metarhizium/pathogenicity , Metarhizium/physiology , Gastrointestinal Microbiome/drug effects , Cockroaches/microbiology , Prodigiosin/pharmacology , Mycotoxins/metabolism , Blattellidae/microbiology , Pest Control, Biological/methods , Virulence , Depsipeptides
12.
BMC Microbiol ; 24(1): 209, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877423

ABSTRACT

Fungi can spoil the majority of baked products. Spoilage of cake during storage is commonly associated with fungi. Therefore, this study aimed to assess the quality of different types of cakes sold in the market. The most predominant fungal genera in the tested cake samples (14 samples) were Aspergillus spp., and Penicillium spp. On Potato Dextrose Agar (PDA), the medium fungal total count was 43.3 colonies /g. Aspergillus was the most dominant genus and was isolated from six samples of cake. Aspergillus was represented by 3 species namely, A. flavus, A. niger, and A. nidulans, represented by 13.32, 19.99, and 3.33 colonies /g respectively. On Malt Extract Agar (MEA) Medium, the fungal total count was 123.24 colonies / g. Aspergillus was the most dominant isolated genus from 11 samples of cake and was represented by 5 species, namely, A. flavus, A. niger, A. ochraceous, A. terreus, and A. versicolor (26. 65, 63.29, 3.33, 6.66, and 3.33 colonies / g , respectively). Twenty-four isolates (88.88 %) of the total tested twenty-seven filamentous fungi showed positive results for amylase production. Ten isolates (37.03%) of the total tested filamentous fungi showed positive results for lipase production, and finally eleven isolates (40.74 %) of the total fungal isolates showed positive results for protease production. Aflatoxins B1, B2, G1, G2, and ochratoxin A were not detected in fourteen collected samples of cake. In this study, clove oil was the best choice overpeppermint oil and olive oil for preventing mold development when natural agents were compared. It might be due to the presence of a varietyof bioactive chemical compounds in clove oil, whose major bioactive component is eugenol, which acts as an antifungal reagent. Therefore, freshly baked cake should be consumed within afew days to avoid individuals experiencing foodborne illnesses.


Subject(s)
Food Microbiology , Fungi , Mycotoxins , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Fungi/genetics , Mycotoxins/analysis , Aspergillus/isolation & purification , Aspergillus/enzymology , Penicillium/isolation & purification , Penicillium/enzymology , Food Contamination/analysis , Aflatoxins/analysis , Lipase/metabolism , Amylases/metabolism , Amylases/analysis
13.
Mol Plant Pathol ; 25(6): e13485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877764

ABSTRACT

Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.


Subject(s)
Cell Wall , Fusarium , Plant Diseases , Trichothecenes , Triticum , Trichothecenes/metabolism , Fusarium/pathogenicity , Fusarium/metabolism , Triticum/microbiology , Plant Diseases/microbiology , Cell Wall/metabolism , Cell Wall/drug effects , Plasmodesmata/metabolism , Mycotoxins/metabolism
14.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894248

ABSTRACT

Red ginseng is widely used in food and pharmaceuticals due to its significant nutritional value. However, during the processing and storage of red ginseng, it is susceptible to grow mold and produce mycotoxins, generating security issues. This study proposes a novel approach using hyperspectral imaging technology and a 1D-convolutional neural network-residual-bidirectional-long short-term memory attention mechanism (1DCNN-ResBiLSTM-Attention) for pixel-level mycotoxin recognition in red ginseng. The "Red Ginseng-Mycotoxin" (R-M) dataset is established, and optimal parameters for 1D-CNN, residual bidirectional long short-term memory (ResBiLSTM), and 1DCNN-ResBiLSTM-Attention models are determined. The models achieved testing accuracies of 98.75%, 99.03%, and 99.17%, respectively. To simulate real detection scenarios with potential interfering impurities during the sampling process, a "Red Ginseng-Mycotoxin-Interfering Impurities" (R-M-I) dataset was created. The testing accuracy of the 1DCNN-ResBiLSTM-Attention model reached 96.39%, and it successfully predicted pixel-wise classification for other unknown samples. This study introduces a novel method for real-time mycotoxin monitoring in traditional Chinese medicine, with important implications for the on-site quality control of herbal materials.


Subject(s)
Mycotoxins , Neural Networks, Computer , Panax , Panax/chemistry , Mycotoxins/analysis , Mycotoxins/chemistry , Hyperspectral Imaging/methods
15.
Food Microbiol ; 122: 104532, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839238

ABSTRACT

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Subject(s)
Genome, Fungal , Multigene Family , Mycotoxins , Penicillium , Phylogeny , Secondary Metabolism , Penicillium/genetics , Penicillium/metabolism , Mycotoxins/metabolism , Mycotoxins/genetics , Food Contamination/analysis , Patulin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Nuts/microbiology , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Food Microbiology , Corylus/microbiology , Heterocyclic Compounds, 4 or More Rings , Indoles , Piperazines
16.
Anal Chem ; 96(25): 10121-10126, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38874092

ABSTRACT

A novel "windmill" three-channel light-emitting diode induced fluorescence detector (LED-IF) was proposed to maximize the excitation efficiency and fluorescence collection efficiency. Compared with the typical collinear arrangement, the fluorescence intensity of the three channels was increased by 7.85, 3.88, and 2.94 times, respectively. The compact shaping optical path was designed to obtain higher excitation efficiency and a lower background stray light effect caused by high divergence angle high-power ultraviolet (UV)-LEDs simultaneously, which increased the sensitivity of three channels by 4.6 to 5.7 times. It was found that using a photodiode (PD) with a flat window and a larger photosensitive surface can collect the Lambertian emission fluorescence in the flow cell more efficiently, increasing the signal-to-noise ratio of each channel 1.3 to 1.8 times. The limits of detection (LODs, 3 times peak-peak noise) of aflatoxin B2 (AFB2), ochratoxin (OTA), and zearalenone (ZEN) were 0.33, 1.80, and 28.2 ng/L, respectively. Finally, six mycotoxins were analyzed simultaneously by the detector coupling with HPLC. The results showed that the sensitivity of the detector was at the best level to date, which was better than that of the top commercial fluorescence detectors (FLDs). The developed detector has the advantages of having small volume, low cost, and long lifetime and being robust, which has wide application and market prospects.


Subject(s)
Mycotoxins , Mycotoxins/analysis , Spectrometry, Fluorescence , Limit of Detection , Fluorescence , Miniaturization
17.
World J Microbiol Biotechnol ; 40(8): 236, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850454

ABSTRACT

Alternaria alternata is a prevalent postharvest pathogen that generates diverse mycotoxins, notably alternariol (AOH) and alternariol monomethyl ether (AME), which are recurrent severe contaminants. Nitrogen sources modulate fungal growth, development, and secondary metabolism, including mycotoxin production. The GATA transcription factor AreA regulates nitrogen source utilization. However, little is known about its involvement in the regulation of nitrogen utilization in A. alternata. To examine the regulatory mechanism of AaAreA on AOH and AME biosynthesis in A. alternata, we analyzed the impact of diverse nitrogen sources on the fungal growth, conidiation and mycotoxin production. The use of a secondary nitrogen source (NaNO3) enhanced mycelial elongation and sporulation more than the use of a primary source (NH4Cl). NaNO3 favored greater mycotoxin accumulation than did NH4Cl. The regulatory roles of AaAreA were further clarified through gene knockout. The absence of AaAreA led to an overall reduction in growth in minimal media containing any nitrogen source except NH4Cl. AaAreA positively regulates mycotoxin biosynthesis when both NH4Cl and NaNO3 are used as nitrogen sources. Subcellular localization analysis revealed abundant nuclear transport when NaNO3 was the sole nitrogen source. The regulatory pathway of AaAreA was systematically revealed through comprehensive transcriptomic analyses. The deletion of AaAreA significantly impedes the transcription of mycotoxin biosynthetic genes, including aohR, pksI and omtI. The interaction between AaAreA and aohR, a pathway-specific transcription factor gene, demonstrated that AaAreA binds to the aohR promoter sequence (5'-GGCTATGGAAA-3'), activating its transcription. The expressed AohR regulates the expression of downstream synthase genes in the cluster, ultimately impacting mycotoxin production. This study provides valuable information to further understand how AreA regulates AOH and AME biosynthesis in A. alternata, thereby enabling the effective design of control measures for mycotoxin contamination.


Subject(s)
Alternaria , Fungal Proteins , GATA Transcription Factors , Gene Expression Regulation, Fungal , Lactones , Mycotoxins , Nitrogen , Alternaria/genetics , Alternaria/metabolism , Alternaria/growth & development , Mycotoxins/metabolism , Mycotoxins/biosynthesis , GATA Transcription Factors/metabolism , GATA Transcription Factors/genetics , Nitrogen/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lactones/metabolism , Spores, Fungal/metabolism , Spores, Fungal/growth & development , Spores, Fungal/genetics
18.
Compr Rev Food Sci Food Saf ; 23(4): e13397, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924311

ABSTRACT

Fungal infections of fresh fruits and vegetables (FFVs) can lead to safety problems, including consumer poisoning by mycotoxins. Various strategies exist to control fungal infections of FFVs, but their effectiveness and sustainability are limited. Recently, new concepts based on the microbiome and pathobiome have emerged and offer a more holistic perspective for advancing postharvest pathogen control techniques. Understanding the role of the microbiome in FFV infections is essential for developing sustainable control strategies. This review examines current and emerging approaches to postharvest pathology. It reviews what is known about the initiation and development of infections in FFVs. As a promising concept, the pathobiome offers new insights into the basic mechanisms of microbial infections in FFVs. The underlying mechanisms uncovered by the pathobiome are being used to develop more relevant global antifungal strategies. This review will also focus on new technologies developed to target the microbiome and members of the pathobiome to control infections in FFVs and improve safety by limiting mycotoxin contamination. Specifically, this review stresses emerging technologies related to FFVs that are relevant for modifying the interaction between FFVs and the microbiome and include the use of microbial consortia, the use of genomic technology to manipulate host and microbial community genes, and the use of databases, deep learning, and artificial intelligence to identify pathobiome markers. Other approaches include programming the behavior of FFVs using synthetic biology, modifying the microbiome using sRNA technology, phages, quorum sensing, and quorum quenching strategies. Rapid adoption and commercialization of these technologies are recommended to further improve the overall safety of FFVs.


Subject(s)
Fruit , Vegetables , Fruit/microbiology , Vegetables/microbiology , Fungi , Microbiota , Antifungal Agents/pharmacology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Mycotoxins
19.
Front Biosci (Elite Ed) ; 16(2): 12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38939909

ABSTRACT

Fungi are a large group of eukaryotic microorganisms that can readily adapt to diverse environments and occur in almost all climatic zones and continents. Although some fungi are inevitable in the environment for the decay and recycling of organic material, many species are known to produce secondary metabolites, and these mycotoxins, when ingested with food or feed materials, can adversely affect animal and human health. Among the toxigenic fungi, Fusarium species are recognized as so-called field fungi, invading crops and producing mycotoxins predominantly before harvest. Fusarium produces a wide array of mycotoxins, causing different plant diseases. Fusariosis causes significant economic losses in a wide range of crops. Fusarium secondary metabolites, particularly trichothecenes, are potent toxins in mammalian species and cause diverse adverse effects in humans and animals. Other prominent Fusarium toxins with entirely different chemical structures are zearalenone and its derivatives and fumonisins. With an entirely different life cycle, toxins of endophytes belonging to the genus Epichloë and Neothyphodium coenophialum and Neothyphodium lolii comprise an animal health risk, particularly for grazing animals. This review aimed to summarize the adverse effects of selected Fusarium and Epichloë toxins, with a special emphasis on their occurrence in roughages and their mechanisms of action, and describe their effect on animal health and welfare and the potentially related public health risks.


Subject(s)
Fusarium , Mycotoxicosis , Mycotoxins , Mycotoxins/toxicity , Animals , Hypocreales
20.
Toxins (Basel) ; 16(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38787070

ABSTRACT

Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal origin. Therefore, controlling mycotoxin exposure in animals is of utmost importance. A systematic literature search was conducted in this study to retrieve the results of monitoring exposure to mycotoxins in food-producing animals over the last five years (2019-2023), considering both external exposure (analysis of feed) and internal exposure (analysis of biomarkers in biological matrices). The most commonly used analytical technique for both approaches is LC-MS/MS due to its capability for multidetection. Several mycotoxins, especially those that are regulated (ochratoxin A, zearalenone, deoxynivalenol, aflatoxins, fumonisins, T-2, and HT-2), along with some emerging mycotoxins (sterigmatocystin, nivalenol, beauvericin, enniantins among others), were studied in 13,818 feed samples worldwide and were typically detected at low levels, although they occasionally exceeded regulatory levels. The occurrence of multiple exposure is widespread. Regarding animal biomonitoring, the primary objective of the studies retrieved was to study mycotoxin metabolism after toxin administration. Some compounds have been suggested as biomarkers of exposure in the plasma, urine, and feces of animal species such as pigs and poultry. However, further research is required, including many other mycotoxins and animal species, such as cattle and sheep.


Subject(s)
Animal Feed , Food Contamination , Mycotoxins , Animals , Cattle , Animal Feed/analysis , Biological Monitoring , Food Contamination/analysis , Livestock , Mycotoxins/analysis , Poultry , Sheep , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...