Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.697
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39201546

ABSTRACT

Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.


Subject(s)
Cilia , Myeloproliferative Disorders , Humans , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/physiopathology , Cilia/metabolism , Cilia/pathology , Animals , Bone Marrow/pathology , Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Mechanotransduction, Cellular , Extracellular Matrix/metabolism , Signal Transduction , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology
2.
Best Pract Res Clin Haematol ; 37(2): 101552, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39098796

ABSTRACT

Chronic myeloid leukemia is defined by the presence of the Philadelphia translocation t (9; 22) resulting in the BCR::ABL1 fusion. The other myeloproliferative neoplasms (MPN) subtypes also carry typical chromosomal abnormalities, which however are not pathognomonic for a specific entity of MPN. According to the WHO classification the distinction between these entities is still based on the integration of cytological, histopathological and molecular findings. Progression of CML into accelerated and blastic phase is usually driven by additional chromosome abnormalities and ABL1 kinase mutations. In the other MPN subtypes the additional mutations besides driver gene mutations in JAK2, MPL and CALR have a decisive impact on the propensity for progression. In addition, the sequence in which the driver mutations and risk conveying additional mutations have been acquired appears to play an important role. Here, we review cytogenetic and molecular changes in CML and MPN that should be evaluated during diagnosis and disease monitoring.


Subject(s)
Janus Kinase 2 , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Mutation , Myeloproliferative Disorders , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Chromosome Aberrations , Genomics/methods , Fusion Proteins, bcr-abl/genetics , Receptors, Thrombopoietin/genetics , Calreticulin/genetics , Translocation, Genetic
3.
Cancer Genet ; 286-287: 25-28, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964162

ABSTRACT

OBJECTIVES: The International Consensus Classification (ICC) and 5th Edition of the World Health Organization Classification (WHO-5) made substantive updates to the classification of myeloid neoplasms. This study compares the systems in a series of myeloid neoplasms with increased blasts, analyzing implications for diagnostic workflow and reporting. METHODS: Bone marrow biopsies categorized as myelodysplastic syndrome with excess blasts (MDS-EB) or acute myeloid leukemia (AML) by WHO-R4 were identified. Results of morphology review, karyotype, fluorescence in situ hybridization, and next-generation sequencing were compiled. Cases were retrospectively re-classified by WHO-5 and ICC. RESULTS: 46 cases were reviewed. 28 cases (61 %) had ≥20 % blasts, with the remaining cases having 5-19.5 % blasts. The most common differences in classification were 1) the designation of MDS versus MDS/AML (10/46, 22 %) for cases with 10-19 % blasts and 2) the ICC's designation of TP53 variants as a separate classifier for AML (8/46, 17 %). Bi-allelic/multi-hit TP53 alterations were identified in 15 cases (33 %). Variants of potential germline significance were identified in 29 (63 %) cases. CONCLUSIONS: While terminology differences between WHO-5 and ICC exist, both systems invoke similar opportunities for improved reporting: standardized classification of pathogenic variants (notably TP53), streamlined systems to evaluate for potential germline variants, and integrated reporting of morphologic and genetic data.


Subject(s)
Myelodysplastic Syndromes , World Health Organization , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/classification , Myelodysplastic Syndromes/pathology , Male , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/classification , Female , Retrospective Studies , Middle Aged , Aged , Pathology, Molecular , Pathologists , High-Throughput Nucleotide Sequencing , Adult , Aged, 80 and over , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/classification , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/diagnosis
5.
Hum Pathol ; 149: 66-74, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879086

ABSTRACT

CSF3R activating mutation is a genetic hallmark of chronic neutrophilic leukemia (CNL), and is also present in a subset of atypical chronic myeloid leukemia (aCML), but infrequent in other myeloid neoplasms. However, the occurrence of CSF3R mutations in various myeloid neoplasms is not well studied. Here we evaluate the spectrum of CSF3R mutations and the clinicopathologic features of CSF3R mutated myeloid neoplasms. We retrospectively identified CSF3R mutations in a variety of myeloid neoplasms: two CNL, three atypical chronic myeloid leukemia (aCML), nine acute myeloid leukemia (AML), one chronic myelomonocytic leukemia, and one myeloproliferative neoplasm. The prototypic T618I mutation was found in 50% of cases: CNL (2/2), aCML (2/3) and AML (4/9). We observed a new recurrent CSF3R mutation Q776* in 25% of cases, and a potential-germline mutation in a 20-year-old patient. Co-occurring mutations were often in epigenetic modifier and spliceosome. IDH/RUNX1 and tumor suppressor mutations were frequent in AML but absent in CNL/aCML. All CNL/aCML patients succumbed within 2-years of diagnosis. We demonstrate that CSF3R mutations are not restricted to CNL. CNL and aCML show similar clinicopathologic and molecular features, suggesting that CNL may be best classified as myelodysplastic/myeloproliferative neoplasm rather than myeloproliferative neoplasm.


Subject(s)
Leukemia, Neutrophilic, Chronic , Mutation , Receptors, Colony-Stimulating Factor , Humans , Receptors, Colony-Stimulating Factor/genetics , Male , Middle Aged , Female , Aged , Leukemia, Neutrophilic, Chronic/genetics , Leukemia, Neutrophilic, Chronic/pathology , Retrospective Studies , Adult , Young Adult , Aged, 80 and over , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA Mutational Analysis , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology , Genetic Predisposition to Disease , Biomarkers, Tumor/genetics , Phenotype
6.
Int J Mol Sci ; 25(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38928358

ABSTRACT

Myeloproliferative neoplasms (MPNs), namely, polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), are clonal stem cell disorders defined by an excessive production of functionally mature and terminally differentiated myeloid cells. MPNs can transform into secondary acute myeloid leukemia (sAML/blast phase MPN) and are linked to alterations in the redox balance, i.e., elevated concentrations of reactive oxygen species and markers of oxidative stress (OS), and changes in antioxidant systems. We evaluated OS in 117 chronic phase MPNs and 21 sAML cases versus controls by measuring total antioxidant capacity (TAC) and 8-hydroxy-2'-deoxy-guanosine (8-OHdG) concentrations. TAC was higher in MPNs than controls (p = 0.03), particularly in ET (p = 0.04) and PMF (p = 0.01). MPL W515L-positive MPNs had higher TAC than controls (p = 0.002) and triple-negative MPNs (p = 0.01). PMF patients who had treatment expressed lower TAC than therapy-free subjects (p = 0.03). 8-OHdG concentrations were similar between controls and MPNs, controls and sAML, and MPNs and sAML. We noted associations between TAC and MPNs (OR = 1.82; p = 0.05), i.e., ET (OR = 2.36; p = 0.03) and PMF (OR = 2.11; p = 0.03), but not sAML. 8-OHdG concentrations were not associated with MPNs (OR = 1.73; p = 0.62) or sAML (OR = 1.89; p = 0.49). In conclusion, we detected redox imbalances in MPNs based on disease subtype, driver mutations, and treatment history.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Antioxidants , Myeloproliferative Disorders , Humans , Male , Female , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Middle Aged , Aged , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Antioxidants/metabolism , Adult , Oxidative Stress , Aged, 80 and over , Blast Crisis/metabolism , Blast Crisis/genetics , Blast Crisis/pathology , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology
8.
Br J Haematol ; 205(1): 48-60, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853641

ABSTRACT

Myeloproliferative neoplasms (MPN) are characterized by a clonal proliferation of myeloid lineage cells within the bone marrow. The classical BCR-ABL negative MPNs are comprised of polycythaemia vera, essential thrombocythaemia and primary myelofibrosis. Historically, the majority of MPNs are diagnosed in adults older than 60 years of age; however, in recent years, there has been recognition of MPNs in the adolescent and young adult (AYA) population. AYAs with MPN, typically defined as between the ages of 15 and 39 years old, may comprise up to 20% of patients diagnosed with MPN. They demonstrate unique patterns of driver mutations and thrombotic events and remain at risk for progression to more aggressive disease states. Given the likely long length of time they will live with their disease, there is a significant unmet need in identifying well-tolerated and effective treatment options for these patients, particularly with the advent of disease modification. In this review, we provide a comprehensive overview of the clinical features, disease course and management of AYA patients with MPN and, in doing so, highlight key characteristics that distinguish them from their older counterparts.


Subject(s)
Myeloproliferative Disorders , Humans , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/genetics , Adolescent , Adult , Young Adult , Male , Female
11.
J Hematol Oncol ; 17(1): 43, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853260

ABSTRACT

BACKGROUND: Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS: Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1ß. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS: Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS: Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.


Subject(s)
Inflammation , Janus Kinase 2 , Myeloproliferative Disorders , Neutrophils , Animals , Neutrophils/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Humans , Inflammation/genetics , Inflammation/pathology , Calreticulin/genetics , Calreticulin/metabolism , Mice, Transgenic , Mice, Inbred C57BL , Cytokines/metabolism
12.
Exp Hematol ; 135: 104246, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763471

ABSTRACT

Key studies in pre-leukemic disorders have linked increases in pro-inflammatory cytokines with accelerated phases of the disease, but the precise role of the cellular microenvironment in disease initiation and evolution remains poorly understood. In myeloproliferative neoplasms (MPNs), higher levels of specific cytokines have been previously correlated with increased disease severity (tumor necrosis factor-alpha [TNF-α], interferon gamma-induced protein-10 [IP-10 or CXCL10]) and decreased survival (interleukin 8 [IL-8]). Whereas TNF-α and IL-8 have been studied by numerous groups, there is a relative paucity of studies on IP-10 (CXCL10). Here we explore the relationship of IP-10 levels with detailed genomic and clinical data and undertake a complementary cytokine screen alongside functional assays in a wide range of MPN mouse models. Similar to patients, levels of IP-10 were increased in mice with more severe disease phenotypes (e.g., JAK2V617F/V617F TET2-/- double-mutant mice) compared with those with less severe phenotypes (e.g., CALRdel52 or JAK2+/V617F mice) and wild-type (WT) littermate controls. Although exposure to IP-10 did not directly alter proliferation or survival in single hematopoietic stem cells (HSCs) in vitro, IP-10-/- mice transplanted with disease-initiating HSCs developed an MPN phenotype more slowly, suggesting that the effect of IP-10 loss was noncell-autonomous. To explore the broader effects of IP-10 loss, we crossed IP-10-/- mice into a series of MPN mouse models and showed that its loss reduces the erythrocytosis observed in mice with the most severe phenotype. Together, these data point to a potential role for blocking IP-10 activity in the management of MPNs.


Subject(s)
Chemokine CXCL10 , Myeloproliferative Disorders , Polycythemia , Animals , Humans , Male , Mice , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Disease Models, Animal , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mice, Knockout , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/metabolism , Polycythemia/genetics , Polycythemia/pathology , Polycythemia/etiology , Female
13.
Blood Cancer Discov ; 5(4): 276-297, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38713018

ABSTRACT

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.


Subject(s)
Calgranulin B , Chromosomes, Human, Pair 8 , Myeloproliferative Disorders , Proto-Oncogene Proteins c-myc , Trisomy , Chromosomes, Human, Pair 8/genetics , Humans , Trisomy/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Animals , Mice , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Primary Myelofibrosis/metabolism , Signal Transduction/genetics
14.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
15.
Clin Exp Med ; 24(1): 106, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771542

ABSTRACT

Typical BCR::ABL1-negative myeloproliferative neoplasms (MPN) are mainly referred to as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofbrosis (PMF). Granulocytes in MPN patients are involved in their inflammation and form an important part of the pathophysiology of MPN patients. It has been shown that the immunophenotype of granulocytes in MPN patients is altered. We used flow cytometry to explore the immunophenotype of MPN patients and correlate it with clinical parameters. The results showed that PMF patients and PV patients had higher CD15+CD11b+ granulocytes than ET patients and normal controls. When grouped by gene mutation, changes in the granulocyte immunophenotype of MPN patients were independent of the JAK2V617F and CALR mutations. There was no significant heterogeneity in immunophenotype between ET patients and Pre-PMF, and between Overt-PMF and Pre-PMF patients. Granulocytes from some MPN patients showed an abnormal CD13/CD16 phenotype with a significant increase in mature granulocytes on molecular and cytomorphological grounds, and this abnormal pattern occurred significantly more frequently in PMF patients than in ET patients. CD15-CD11b- was negatively correlated with WBC and Hb and positively correlated with DIPSS score, whereas high CD10+ granulocytes were significantly and negatively associated with prognostic system IPSS and DIPSS scores in PMF patients. In conclusion, this study demonstrates the landscape of bone marrow granulocyte immunophenotypes in MPN patients. MPN patients, especially those with PMF, have a significant granulocyte developmental overmaturation phenotype. CD10+ granulocytes may be involved in the prognosis of PMF patients.


Subject(s)
Flow Cytometry , Fusion Proteins, bcr-abl , Granulocytes , Immunophenotyping , Myeloproliferative Disorders , Humans , Male , Middle Aged , Female , Granulocytes/pathology , Adult , Aged , Fusion Proteins, bcr-abl/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/immunology , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/pathology , Aged, 80 and over , China , Young Adult , Calreticulin/genetics , CD11b Antigen/genetics , Polycythemia Vera/genetics , Polycythemia Vera/pathology , Polycythemia Vera/immunology , Mutation , Asian People/genetics , East Asian People
16.
Clin Lab Med ; 44(2): 339-353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821648

ABSTRACT

Despite the apparent complexity of the molecular genetic underpinnings of myeloid neoplasms, most myeloid mutational profiles can be understood within a simple framework. Somatic mutations accumulate in hematopoietic stem cells with aging and toxic insults, termed clonal hematopoiesis. These "old stem cells" mutations, predominantly in the epigenetic and RNA spliceosome pathways, act as "founding" driver mutations leading to a clonal myeloid neoplasm when sufficient in number and clone size. Subsequent mutations can create the genetic flavor of the myeloid neoplasm ("backseat" drivers) due to their enrichment in certain entities or act as progression events ("aggressive" drivers) during clonal evolution.


Subject(s)
Myelodysplastic Syndromes , Myeloproliferative Disorders , Humans , Mutation , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/metabolism
17.
Am J Clin Pathol ; 162(3): 233-242, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38597584

ABSTRACT

OBJECTIVES: Myeloproliferative neoplasm, unclassifiable (MPN-U, revised to MPN, not otherwise specified in the fifth edition of the World Health Organization classification) is a heterogeneous category of primary marrow disorders with clinical, morphologic, and/or molecular features that preclude classification as a more specific MPN subtype due to stage at diagnosis, overlapping features between MPN subtypes, or the presence of coexisting disorders. Compared with other MPN subtypes, the contribution of the mutational landscape in MPN-U in conjunction with other clinical and morphologic biomarkers to prognosis has been less well investigated. METHODS: We performed a multicenter, retrospective study of MPN-U (94 cases) to better define the clinicopathologic features, genetic landscape, and clinical outcomes, including subgroups of early-stage, advanced-stage, and coexisting disorders. The Dynamic International Prognostic Scoring System (DIPSS) plus scoring system was applied to assess its relevance to MPN-U prognosis. RESULTS: Multivariate analysis demonstrated bone marrow blast count and DIPSS plus score as statistically significant in predicting overall survival. Univariate analysis identified additional potential poor prognostic markers, including abnormal karyotype and absence of JAK2 mutation. Secondary mutations were frequent in the subset analyzed by next-generation sequencing (26/37 cases, 70.3%) with a borderline association between high molecular risk mutations and overall survival. CONCLUSIONS: This study, as one of the largest of MPN-U studies incorporating both clinicopathologic and molecular data, moves toward identification of biomarkers that better predict prognosis in this heterogeneous category.


Subject(s)
Janus Kinase 2 , Mutation , Myeloproliferative Disorders , Humans , Male , Female , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Myeloproliferative Disorders/diagnosis , Middle Aged , Retrospective Studies , Aged , Adult , Prognosis , Janus Kinase 2/genetics , Aged, 80 and over , Bone Marrow/pathology , Young Adult , Adolescent
18.
Leukemia ; 38(6): 1266-1274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684821

ABSTRACT

Therapy-related myeloid neoplasms (tMN) are complications of cytotoxic therapies. Risk of tMN is high in recipients of autologous hematopoietic stem cell transplantation (aHSCT). Acquisition of genomic mutations represents a key pathogenic driver but the origins, timing and dynamics, particularly in the context of preexisting or emergent clonal hematopoiesis (CH), have not been sufficiently clarified. We studied a cohort of 1507 patients undergoing aHSCT and a cohort of 263 patients who developed tMN without aHSCT to determine clinico-molecular features unique to post-aHSCT tMN. We show that tMN occurs in up to 2.3% of patients at median of 2.6 years post-AHSCT. Age ≥ 60 years, male sex, radiotherapy, high treatment burden ( ≥ 3 lines of chemotherapy), and graft cellularity increased the risk of tMN. Time to evolution and overall survival were shorter in post-aHSCT tMN vs. other tMN, and the earlier group's mutational pattern was enriched in PPM1D and TP53 lesions. Preexisting CH increased the risk of adverse outcomes including post-aHSCT tMN. Particularly, antecedent lesions affecting PPM1D and TP53 predicted tMN evolution post-transplant. Notably, CH-derived tMN had worse outcomes than non CH-derived tMN. As such, screening for CH before aHSCT may inform individual patients' prognostic outcomes and influence their prospective treatment plans. Presented in part as an oral abstract at the 2022 American Society of Hematology Annual Meeting, New Orleans, LA, 2022.


Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cell Transplantation , Mutation , Neoplasms, Second Primary , Transplantation, Autologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Male , Middle Aged , Female , Transplantation, Autologous/adverse effects , Adult , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/genetics , Neoplasms, Second Primary/therapy , Aged , Prognosis , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Young Adult , Adolescent , Protein Phosphatase 2C/genetics , Tumor Suppressor Protein p53/genetics , Follow-Up Studies , Lymphoma/therapy , Lymphoma/etiology , Lymphoma/genetics , Survival Rate
20.
Nat Commun ; 15(1): 2989, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582902

ABSTRACT

Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Animals , Humans , Mice , Janus Kinase 2/metabolism , Mutation , Myeloproliferative Disorders/pathology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL