Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.348
1.
Int Heart J ; 65(3): 517-527, 2024.
Article En | MEDLINE | ID: mdl-38825496

Myocardial infarction/reperfusion (I/R) injury significantly impacts the health of older individuals. We confirmed that the level of lncRNA Peg13 was downregulated in I/R injury. However, the detailed function of Peg13 in myocardial I/R injury has not yet been explored.To detect the function of Peg13, in vivo model of I/R injury was constructed. RT-qPCR was employed to investigate RNA levels, and Western blotting was performed to assess levels of endoplasmic reticulum stress and apoptosis-associated proteins. EdU staining was confirmed to assess the cell proliferation.I/R therapy dramatically produced myocardial injury, increased the infarct area, and decreased the amount of Peg13 in myocardial tissues of mice. In addition, hypoxia/reoxygenation (H/R) notably induced the apoptosis and promoted the endoplasmic reticulum (ER) stress of HL-1 cells, while overexpression of Peg13 reversed these phenomena. Additionally, Peg13 may increase the level of Sirt1 through binding to miR-34a. Upregulation of Peg13 reversed H/R-induced ER stress via regulation of miR-34a/Sirt1 axis.LncRNA Peg13 reduces ER stress in myocardial infarction/reperfusion injury through mediation of miR-34a/Sirt1 axis. Hence, our research might shed new lights on developing new strategies for the treatment of myocardial I/R injury.


Endoplasmic Reticulum Stress , MicroRNAs , Myocardial Reperfusion Injury , RNA, Long Noncoding , Sirtuin 1 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Mice , Male , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Apoptosis/genetics , Disease Models, Animal , Mice, Inbred C57BL
2.
PLoS One ; 19(6): e0304761, 2024.
Article En | MEDLINE | ID: mdl-38843265

Type 2 diabetes predisposes patients to heart disease, which is the primary cause of death across the globe. Type 2 diabetes often accompanies obesity and is defined by insulin resistance and abnormal glucose handling. Insulin resistance impairs glucose uptake and results in hyperglycemia, which damages tissues such as kidneys, liver, and heart. 2-oxoglutarate (2-OG)- and iron-dependent oxygenases (2-OGDOs), a family of enzymes regulating various aspects of cellular physiology, have been studied for their role in obesity and diet-induced insulin resistance. However, nothing is known of the 2-OGDO family member 2-oxoglutarate and iron-dependent prolyl hydroxylase domain containing protein 1 (OGFOD1) in this setting. OGFOD1 deletion leads to protection in cardiac ischemia-reperfusion injury and cardiac hypertrophy, which are two cardiac events that can lead to heart failure. Considering the remarkable correlation between heart disease and diabetes, the cardioprotection observed in OGFOD1-knockout mice led us to challenge these knockouts with high-fat diet. Wildtype mice fed a high-fat diet developed diet-induced obesity, insulin resistance, and glucose intolerance, but OGFOD1 knockout mice fed this same diet were resistant to diet-induced obesity and insulin resistance. These results support OGFOD1 down-regulation as a strategy for preventing obesity and insulin handling defects.


Diet, High-Fat , Insulin Resistance , Mice, Knockout , Obesity , Animals , Obesity/metabolism , Obesity/genetics , Mice , Diet, High-Fat/adverse effects , Male , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/genetics , Mice, Inbred C57BL , Gene Deletion , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics
3.
Scand Cardiovasc J ; 58(1): 2347290, 2024 Dec.
Article En | MEDLINE | ID: mdl-38733316

Objectives. The aim of this study was to investigate the expression of long non-coding RNA (lncRNA) brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in patients with acute myocardial infarction (AMI) and its effect on ischemia/reperfusion (I/R)-induced oxidative stress and apoptosis of cardiomyocytes. Methods. Serum BRE-AS1 levels in patients with AMI was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic and prognostic values of BRE-AS1 were evaluated. H9c2 cells were treated with hypoxia/reoxygenation to establish an in vitro myocardial infarction cell model. The levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined by commercial kits. Cell counting kit-8 (CCK-8) and flow cytometry were used to evaluate the cell viability and cell apoptosis. Results. The expression of BRE-AS1 in serum of patients with AMI is upregulated, which shows the clinical diagnostic value for AMI. In the I/R injury cell model, the knockout of BRE-AS1 can significantly alleviate the increase in TNF-α, IL-1ß, and IL-6 levels, inhibit the production of LDH and MDA, increase the activities of SOD and GSH-Px, promote the cell viability and suppress cell apoptosis. Conclusions. Abnormally elevated BRE-AS1 has a high diagnostic value for AMI as well as a prognostic value for major adverse cardiovascular events (MACEs). The elevation of BRE-AS1 promoted oxidative stress injury and cell apoptosis in vitro.


Apoptosis , Inflammation Mediators , Myocardial Infarction , Myocytes, Cardiac , Oxidative Stress , RNA, Long Noncoding , RNA, Long Noncoding/blood , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/diagnosis , Male , Middle Aged , Female , Inflammation Mediators/metabolism , Inflammation Mediators/blood , Cell Line , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/diagnosis , Myocardial Reperfusion Injury/genetics , Rats , Cytokines/metabolism , Cytokines/blood , Signal Transduction , Case-Control Studies , Aged , Up-Regulation
4.
Cell Mol Biol Lett ; 29(1): 72, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745296

BACKGROUND: Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS: To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS: The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS: Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.


Dynamins , Mitochondrial Dynamics , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mitochondrial Dynamics/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Dynamins/metabolism , Dynamins/genetics , Mice , Phosphorylation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Mice, Knockout , Male , Mice, Inbred C57BL
5.
Cell Commun Signal ; 22(1): 252, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698453

BACKGROUND: Ischemic postconditioning (IPostC) has been reported as a promising method for protecting against myocardial ischemia-reperfusion (MI/R) injury. Our previous study found that the infarct-limiting effect of IPostC is abolished in the heart of diabetes whose cardiac expression of DJ-1 (also called PARK7, Parkinsonism associated deglycase) is reduced. However, the role and in particular the underlying mechanism of DJ-1 in the loss of sensitivity to IPostC-induced cardioprotection in diabetic hearts remains unclear. METHODS: Streptozotocin-induced type 1 diabetic rats were subjected to MI/R injury by occluding the left anterior descending artery (LAD) and followed by reperfusion. IPostC was induced by three cycles of 10s of reperfusion and ischemia at the onset of reperfusion. AAV9-CMV-DJ-1, AAV9-CMV-C106S-DJ-1 or AAV9-DJ-1 siRNA were injected via tail vein to either over-express or knock-down DJ-1 three weeks before inducing MI/R. RESULTS: Diabetic rats subjected to MI/R exhibited larger infarct area, more severe oxidative injury concomitant with significantly reduced cardiac DJ-1 expression and increased PTEN expression as compared to non-diabetic rats. AAV9-mediated cardiac DJ-1 overexpression, but not the cardiac overexpression of DJ-1 mutant C106S, restored IPostC-induced cardioprotection and this effect was accompanied by increased cytoplasmic DJ-1 translocation toward nuclear and mitochondrial, reduced PTEN expression, and increased Nrf-2/HO-1 transcription. Our further study showed that AAV9-mediated targeted DJ-1 gene knockdown aggravated MI/R injury in diabetic hearts, and this exacerbation of MI/R injury was partially reversed by IPostC in the presence of PTEN inhibition or Nrf-2 activation. CONCLUSIONS: These findings suggest that DJ-1 preserves the cardioprotective effect of IPostC against MI/R injury in diabetic rats through nuclear and mitochondrial DJ-1 translocation and that inhibition of cardiac PTEN and activation of Nrf-2/HO-1 may represent the major downstream mechanisms whereby DJ-1 preserves the cardioprotective effect of IPostC in diabetes.


Diabetes Mellitus, Experimental , Ischemic Postconditioning , Myocardial Reperfusion Injury , PTEN Phosphohydrolase , Protein Deglycase DJ-1 , Rats, Sprague-Dawley , Animals , Protein Deglycase DJ-1/metabolism , Protein Deglycase DJ-1/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Diabetes Mellitus, Experimental/metabolism , Male , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Protein Transport , Streptozocin , Myocardial Infarction/metabolism , Myocardial Infarction/pathology
6.
J Transl Med ; 22(1): 499, 2024 May 25.
Article En | MEDLINE | ID: mdl-38796415

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS: Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS: LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION: WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.


Apoptosis , MicroRNAs , Mitochondrial Dynamics , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Mice , Apoptosis/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Line , Male , Mice, Inbred C57BL , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Reactive Oxygen Species/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Base Sequence , Methylation , Membrane Potential, Mitochondrial
7.
BMC Cardiovasc Disord ; 24(1): 236, 2024 May 05.
Article En | MEDLINE | ID: mdl-38705985

BACKGROUND: This study was designed to investigate the mechanism by which miR-30a-5p mediates cardiomyocyte apoptosis after acute myocardial infarction (AMI) induced by hypoxia/reoxygenation (H/R). METHODS: Differentially expressed miRNAs were analyzed by RNA high-throughput sequencing in acute myocardial infarction (ST-elevation myocardial infarction) patients versus healthy individuals (controls). The H/R model was used to assess the regulatory mechanism of miRNAs in AMI. Lentivirus-associated vectors were used to overexpress or knock down miR-30a-5p in cellular models. The pathological mechanisms of miR-30a-5p regulating the development of acute myocardial infarction were serially explored by qPCR, bioinformatics, target gene prediction, dual luciferase, enzyme-linked immunosorbent assays (ELISAs) and Western blotting. RESULTS: The results showed that the expression of miR-30a-5p was significantly increased in AMI patients and H9C2 cells. Hypoxia decreased cardiomyocyte survival over time, and reoxygenation further reduced cell survival. Bax and Phosphatase and tensin homolog (PTEN)were suppressed, while Bcl-2 was upregulated. Additionally, miR-30a-5p specifically targeted the PTEN gene. According to the GO and KEGG analyses, miR-30a-5p may participate in apoptosis by interacting with PTEN. The miR-30a-5p mimic decreased the expression of apoptosis-related proteins and the levels of the proinflammatory markers IL-1ß, IL-6, and TNF-α by activating the PTEN/PI3K/Akt signaling pathway. Conversely, anti-miR-30a-5p treatment attenuated these effects. Additionally, silencing PTEN and anti-miR-30a-5p had opposite effects on H/R-induced cell apoptosis. CONCLUSIONS: miR-30a-5p plays a crucial role in cardiomyocyte apoptosis after hypoxia-induced acute myocardial infarction. Our findings provide translational evidence that miR-30a-5p is a novel potential therapeutic target for AMI.


Apoptosis , Cell Hypoxia , MicroRNAs , Myocytes, Cardiac , PTEN Phosphohydrolase , Signal Transduction , Animals , Female , Humans , Male , Middle Aged , Rats , Case-Control Studies , Cell Line , Gene Expression Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
8.
BMC Cardiovasc Disord ; 24(1): 280, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811893

BACKGROUND: Myocardial ischemia-reperfusion injury (I/RI) is a major cause of perioperative cardiac-related adverse events and death. Studies have shown that sevoflurane postconditioning (SpostC), which attenuates I/R injury and exerts cardioprotective effects, regulates mitochondrial dynamic balance via HIF-1α, but the exact mechanism is unknown. This study investigates whether the PI3K/AKT pathway in SpostC regulates mitochondrial dynamic balance by mediating HIF-1α, thereby exerting myocardial protective effects. METHODS: The H9C2 cardiomyocytes were cultured to establish the hypoxia-reoxygenation (H/R) model and randomly divided into 4 groups: Control group, H/R group, sevoflurane postconditioning (H/R + SpostC) group and PI3K/AKT blocker (H/R + SpostC + LY) group. Cell survival rate was determined by CCK-8; Apoptosis rate was determined by flow cytometry; mitochondrial membrane potential was evaluated by Mito Tracker™ Red; mRNA expression levels of AKT, HIF-1α, Opa1and Drp1 were detected by quantitative real-time polymerase chain reaction (qRT-PCR); Western Blot assay was used to detect the protein expression levels of AKT, phosphorylated AKT (p-AKT), HIF-1α, Opa1 and Drp1. RESULTS: Compared with the H/R group, the survival rate of cardiomyocytes in the H/R + SpostC group increased, the apoptosis rate decreased and the mitochondrial membrane potential increased. qRT-PCR showed that the mRNA expression of HIF-1α and Opa1 were higher in the H/R + SpostC group compared with the H/R group, whereas the transcription level of Drp1 was lower in the H/R + SpostC group. In the H/R + SpostC + LY group, the mRNA expression of HIF-1α was lower than the H/R + SpostC group. There was no difference in the expression of Opa1 mRNA between the H/R group and the H/R + SpostC + LY group. WB assay results showed that compared with the H/R group, the protein expression levels of HIF-1α, Opa1, P-AKT were increased and Drp1 protein expression levels were decreased in the H/R + SpostC group. HIF-1α, P-AKT protein expression levels were decreased in the H/R + SpostC + LY group compared to the H/R + SpostC group. CONCLUSION: SpostC mediates HIF-1α-regulated mitochondrial fission and fusion-related protein expression to maintain mitochondrial dynamic balance by activating the PI3K/AKT pathway and increasing AKT phosphorylation, thereby attenuating myocardial I/R injury.


Apoptosis , Hypoxia-Inducible Factor 1, alpha Subunit , Membrane Potential, Mitochondrial , Mitochondria, Heart , Mitochondrial Dynamics , Myocardial Reperfusion Injury , Myocytes, Cardiac , Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt , Sevoflurane , Signal Transduction , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Proto-Oncogene Proteins c-akt/metabolism , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/enzymology , Sevoflurane/pharmacology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/enzymology , Mitochondrial Dynamics/drug effects , Cell Line , Rats , Apoptosis/drug effects , Phosphatidylinositol 3-Kinase/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Membrane Potential, Mitochondrial/drug effects , Cell Hypoxia , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Cytoprotection , Ischemic Postconditioning , Phosphorylation
9.
J Cardiovasc Pharmacol ; 83(6): 602-611, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38579307

ABSTRACT: N -n-butyl haloperidol iodide (F 2 ), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F 2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F 2 depends on Nrf2 using a mouse heart I/R model. F 2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 minutes before reperfusion. Systemic administration of 0.4 mg/kg F 2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F 2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F 2 -induced activation of Nrf2 is silent information regulator of transcription 1 (SIRT1)-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F 2 -upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F 2 against myocardial I/R injury and may provide new insights for the treatment of ischemic heart disease.


Haloperidol , Mice, Inbred C57BL , Myocardial Reperfusion Injury , NF-E2-Related Factor 2 , Signal Transduction , Sirtuin 1 , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Signal Transduction/drug effects , Haloperidol/pharmacology , Haloperidol/analogs & derivatives , Male , Mice, Knockout , Disease Models, Animal , Mice , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/enzymology , Antioxidants/pharmacology , Myocardium/metabolism , Myocardium/pathology
10.
Zhongguo Zhong Yao Za Zhi ; 49(3): 798-808, 2024 Feb.
Article Zh | MEDLINE | ID: mdl-38621884

This study employed network pharmacology to investigate the effect of Guizhi Gancao Decoction(GGD) on myocardial ischemia-reperfusion injury(MI/RI) in rats and decipher the underlying mechanism. Firstly, the chemical components and targets of GGD against MI/RI were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), SwissTargetPrediction, and available articles. STRING and Cytoscape 3.7.2 were used to establish the protein-protein interaction(PPI) network for the common targets, and then Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out for the core targets. The "drug-active component-target-pathway" network was built. Furthermore, molecular docking between key active components and targets was conducted in AutoDock Vina. Finally, the rat model of MI/RI was established, and the myocardial infarction area was measured. Hematoxylin-eosin(HE) staining and transmission electron microscopy(TEM) were employed to detect cardiomyocyte pathology and ultrastructural changes. Western blot was employed to determine the expression of related proteins in the myocardial tissue. A total of 75 chemical components of GGD were screened out, corresponding to 318 targets. The PPI network revealed 46 core targets such as tumor protein p53(TP53), serine/threonine kinase 1(AKT1), signal transducer and activator of transcription 3(STAT3), non-receptor tyrosine kinase(SRC), mitogen-activated protein kinase 1(MAPK1), MAPK3, and tumor necrosis factor(TNF). According to GO and KEGG enrichment analyses, the core targets mainly affected the cell proliferation and migration, signal transduction, apoptosis, and transcription, involving advanced glycation end products-receptor(AGE-RAGE), MAPK and other signaling pathways in cancers and diabetes complications. The molecular docking results showed that the core components of GGD, such as licochalcone A,(+)-catechin, and cinnamaldehyde, had strong binding activities with the core target proteins, such as MAPK1 and MAPK3. The results of animal experiments showed that compared with the model group, GGD significantly increase superoxide dismutase, decreased malondialdehyde, lactate dehydrogenase, and creatine kinase-MB, and reduced the area of myocardial infarction. HE staining and TEM results showed that GGD pretreatment restored the structure of cardiomyocytes and alleviated the pathological changes and ultrastructural damage of mitochondria in the model group. In addition, GGD significantly down-regulated the phosphorylation of c-Jun N-terminal kinase and p38 and up-regulate that of extracellular regulated kinases 1/2 in the myocardial tissue. The results suggested that GGD may exert the anti-MI/RI effect by regulating the MAPK signaling pathway via the synergistic effects of Cinnamomi Ramulus and Glycyrrhizae Radix et Rhizoma.


Drugs, Chinese Herbal , Glycyrrhiza , Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Rats , Network Pharmacology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Molecular Docking Simulation , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , Drugs, Chinese Herbal/pharmacology
11.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621984

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Myocardial Infarction , Myocardial Reperfusion Injury , Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Reactive Oxygen Species , Rats, Sprague-Dawley , Caspase 3/metabolism , Signal Transduction , Myocardial Infarction/drug therapy , Myocardial Infarction/genetics , RNA, Messenger , Apoptosis
12.
J Biochem Mol Toxicol ; 38(4): e23710, 2024 Apr.
Article En | MEDLINE | ID: mdl-38605440

Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.


AlkB Homolog 5, RNA Demethylase , MicroRNAs , Myocardial Reperfusion Injury , Pyroptosis , Animals , Rats , Adenine , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism , Demethylation , MicroRNAs/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism
13.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650141

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Activating Transcription Factor 3 , Autophagy , Early Growth Response Protein 1 , Inflammation , Myocardial Reperfusion Injury , Myocytes, Cardiac , Tumor Necrosis Factor-alpha , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Autophagy/genetics , Early Growth Response Protein 1/metabolism , Early Growth Response Protein 1/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Rats , Cell Line , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Signal Transduction , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
14.
J Cardiothorac Surg ; 19(1): 265, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664788

BACKGROUND: Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS: Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS: H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION: METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.


Adenosine , Adenosine/analogs & derivatives , Ferroptosis , Methyltransferases , Myocardial Reperfusion Injury , Myocytes, Cardiac , Ferroptosis/physiology , Ferroptosis/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Adenosine/metabolism , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
15.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Article En | MEDLINE | ID: mdl-38666340

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Aldehyde Dehydrogenase, Mitochondrial , Extracellular Traps , Leukotriene C4 , Mice, Knockout , Myocardial Reperfusion Injury , Protein-Arginine Deiminase Type 4 , Animals , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Extracellular Traps/metabolism , Humans , Mice , Protein-Arginine Deiminase Type 4/metabolism , Leukotriene C4/metabolism , Male , Disease Models, Animal , Neutrophils/metabolism , Leukotriene Antagonists/pharmacology , Leukotriene Antagonists/therapeutic use , Female , ST Elevation Myocardial Infarction/metabolism , Middle Aged , Benzamides , Benzodioxoles
16.
Redox Biol ; 72: 103145, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583415

Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.


Ferroptosis , Myocardial Reperfusion Injury , Myocytes, Cardiac , Tumor Suppressor Protein p53 , Animals , Humans , Male , Mice , Acetyltransferases/metabolism , Acetyltransferases/genetics , Apoptosis , Disease Models, Animal , Feedback, Physiological , Ferroptosis/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics
17.
J Vasc Res ; 61(3): 109-121, 2024.
Article En | MEDLINE | ID: mdl-38615660

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.


Disease Models, Animal , Ferroptosis , Mice, Inbred C57BL , Mice, Knockout , Myocardial Reperfusion Injury , Myocytes, Cardiac , Uncoupling Protein 2 , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Uncoupling Protein 2/metabolism , Uncoupling Protein 2/genetics , Uncoupling Protein 2/deficiency , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mice
18.
Front Immunol ; 15: 1335333, 2024.
Article En | MEDLINE | ID: mdl-38449872

Background and objective: Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods: Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results: In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion: In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.


Myocardial Ischemia , Myocardial Reperfusion Injury , Humans , Animals , Mice , Myocardial Reperfusion Injury/genetics , Genes, Reporter , Macrophages , Lipids , Membrane Glycoproteins , Receptors, Immunologic
19.
Int Heart J ; 65(2): 279-291, 2024.
Article En | MEDLINE | ID: mdl-38556336

Myocardial ischemia/reperfusion (I/R) decreases cardiac function and efficiency. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) have been linked to the cellular processes of myocardial I/R injury. The present investigation elucidated the function of lncRNA colon cancer-associated transcript 2 (CCAT2) in myocardial I/R injury and the related mechanisms.AC16 cardiomyocytes were exposed to hypoxia (16 hours) /reoxygenation (6 hours) (H/R) to mimic myocardial I/R models in vitro. CCAT2 and microRNA (miR) -539-3p expressions in AC16 cardiomyocytes were measured using real-time quantitative polymerase chain reaction. B-cell-specific Moloney murine leukemia virus insertion region 1 (BMI1) protein levels in AC16 cardiomyocytes were determined by western blotting. Cell viability, lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) levels, mitochondrial membrane potential, and apoptosis were detected using Counting Kit-8, LDH Assay Kit, dihydroethidium assay, 5,5',6,6'-tetrachloro1,1',3,3'-tetramethylbenzimidazolylcarbocyanine iodide staining, flow cytometry, and western blotting, respectively. The interactions between the molecules were confirmed using the dual-luciferase gene reporter. The wingless/integrated/beta-catenin (Wnt/ß-catenin) pathway under the H/R condition was detected by western blotting.CCAT2 and BMI1 mRNA expressions were reduced in H/R-exposed AC16 cardiomyocytes. CCAT2 overexpression exerted protective effects against H/R-induced cardiomyocyte injury, as demonstrated by increased cell viability and mitochondrial membrane potential and decreased LDH leakage, ROS levels, and apoptosis. In addition, CCAT2 positively regulated BMI1 expression by binding to miR-539-3p. CCAT2 knockdown or miR-539-3p overexpression restrained the protective effects of BMI1 against H/R-induced cardiomyocyte injury. In addition, miR-539-3p overexpression reversed the protective effects of CCAT2. Furthermore, CCAT2 activated the Wnt/ß-catenin pathway under the H/R condition via the miR-539-3p/BMI1 axis.Overall, this investigation showed the protective effects of the CCAT2/miR-539-3p/BMI1/Wnt/ß-catenin regulatory axis against cardiomyocyte injury induced by H/R.


Colonic Neoplasms , Coronary Artery Disease , MicroRNAs , Myocardial Ischemia , Myocardial Reperfusion Injury , RNA, Long Noncoding , Animals , Humans , Mice , Apoptosis/physiology , beta Catenin/metabolism , Colonic Neoplasms/metabolism , Coronary Artery Disease/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Polycomb Repressive Complex 1/genetics , Reactive Oxygen Species/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
20.
Basic Res Cardiol ; 119(3): 481-503, 2024 Jun.
Article En | MEDLINE | ID: mdl-38517482

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.


Mitochondria, Heart , Myocardial Reperfusion Injury , Phosphoproteins , Animals , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/drug effects , Male , Phosphoproteins/metabolism , Phosphoproteins/genetics , Cholesterol/metabolism , Rats , Receptors, GABA/metabolism , Receptors, GABA/genetics , Rats, Wistar , Disease Models, Animal , Benzodiazepinones , Carrier Proteins , Receptors, GABA-A
...