Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.458
Filter
1.
J Nanobiotechnology ; 22(1): 385, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951822

ABSTRACT

BACKGROUND: Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS: Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS: These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.


Subject(s)
Extracellular Vesicles , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Extracellular Vesicles/metabolism , Mice , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Ferroptosis/drug effects , Disease Models, Animal
2.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951872

ABSTRACT

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Subject(s)
Exosomes , MicroRNAs , Myocardial Reperfusion Injury , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Exosomes/metabolism , NF-kappa B/metabolism , Rats , Male , Milk/chemistry , Myocardium/metabolism , Cardiotonic Agents/pharmacology , Myocytes, Cardiac/metabolism
3.
Clin Transl Med ; 14(7): e1749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951127

ABSTRACT

During myocardial ischaemia‒reperfusion injury (MIRI), the accumulation of damaged mitochondria could pose serious threats to the heart. The migrasomes, newly discovered mitocytosis-mediating organelles, selectively remove damaged mitochondria to provide mitochondrial quality control. Here, we utilised low-intensity pulsed ultrasound (LIPUS) on MIRI mice model and demonstrated that LIPUS reduced the infarcted area and improved cardiac dysfunction. Additionally, we found that LIPUS alleviated MIRI-induced mitochondrial dysfunction. We provided new evidence that LIPUS mechanical stimulation facilitated damaged mitochondrial excretion via migrasome-dependent mitocytosis. Inhibition the formation of migrasomes abolished the protective effect of LIPUS on MIRI. Mechanistically, LIPUS induced the formation of migrasomes by evoking the RhoA/Myosin II/F-actin pathway. Meanwhile, F-actin activated YAP nuclear translocation to transcriptionally activate the mitochondrial motor protein KIF5B and Drp1, which are indispensable for LIPUS-induced mitocytosis. These results revealed that LIPUS activates mitocytosis, a migrasome-dependent mitochondrial quality control mechanism, to protect against MIRI, underlining LIPUS as a safe and potentially non-invasive treatment for MIRI.


Subject(s)
Disease Models, Animal , Myocardial Reperfusion Injury , Animals , Mice , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/therapy , Ultrasonic Waves , Male , Mice, Inbred C57BL , Mitochondria/metabolism
4.
Sci Rep ; 14(1): 15246, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956068

ABSTRACT

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Subject(s)
14-3-3 Proteins , Ferroptosis , Myocardial Reperfusion Injury , PPAR alpha , Ferroptosis/drug effects , Animals , PPAR alpha/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , 14-3-3 Proteins/metabolism , Mice , Male , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Mice, Inbred C57BL , Rats , Disease Models, Animal
5.
PeerJ ; 12: e17333, 2024.
Article in English | MEDLINE | ID: mdl-38948204

ABSTRACT

Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.


Subject(s)
Myocardial Reperfusion Injury , Myocytes, Cardiac , Receptors, Opioid, kappa , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Receptors, Opioid, kappa/metabolism , Humans , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Dynamics/physiology , Calcium/metabolism
6.
Cardiovasc Diabetol ; 23(1): 236, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970123

ABSTRACT

BACKGROUND: Owing to its unique location and multifaceted metabolic functions, epicardial adipose tissue (EAT) is gradually emerging as a new metabolic target for coronary artery disease risk stratification. Microvascular obstruction (MVO) has been recognized as an independent risk factor for unfavorable prognosis in acute myocardial infarction patients. However, the concrete role of EAT in the pathogenesis of MVO formation in individuals with ST-segment elevation myocardial infarction (STEMI) remains unclear. The objective of the study is to evaluate the correlation between EAT accumulation and MVO formation measured by cardiac magnetic resonance (CMR) in STEMI patients and clarify the underlying mechanisms involved in this relationship. METHODS: Firstly, we utilized CMR technique to explore the association of EAT distribution and quantity with MVO formation in patients with STEMI. Then we utilized a mouse model with EAT depletion to explore how EAT affected MVO formation under the circumstances of myocardial ischemia/reperfusion (I/R) injury. We further investigated the immunomodulatory effect of EAT on macrophages through co-culture experiments. Finally, we searched for new therapeutic strategies targeting EAT to prevent MVO formation. RESULTS: The increase of left atrioventricular EAT mass index was independently associated with MVO formation. We also found that increased circulating levels of DPP4 and high DPP4 activity seemed to be associated with EAT increase. EAT accumulation acted as a pro-inflammatory mediator boosting the transition of macrophages towards inflammatory phenotype in myocardial I/R injury through secreting inflammatory EVs. Furthermore, our study declared the potential therapeutic effects of GLP-1 receptor agonist and GLP-1/GLP-2 receptor dual agonist for MVO prevention were at least partially ascribed to its impact on EAT modulation. CONCLUSIONS: Our work for the first time demonstrated that excessive accumulation of EAT promoted MVO formation by promoting the polarization state of cardiac macrophages towards an inflammatory phenotype. Furthermore, this study identified a very promising therapeutic strategy, GLP-1/GLP-2 receptor dual agonist, targeting EAT for MVO prevention following myocardial I/R injury.


Subject(s)
Adipose Tissue , Disease Models, Animal , Glucagon-Like Peptide-1 Receptor , Macrophages , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Pericardium , ST Elevation Myocardial Infarction , Animals , Pericardium/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Male , Macrophages/metabolism , Macrophages/pathology , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , ST Elevation Myocardial Infarction/metabolism , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/diagnostic imaging , Adipose Tissue/metabolism , Adipose Tissue/pathology , Humans , Female , Middle Aged , Phenotype , Dipeptidyl Peptidase 4/metabolism , Aged , Coculture Techniques , Adiposity , Coronary Circulation , Signal Transduction , Microcirculation , Coronary Vessels/metabolism , Coronary Vessels/pathology , Coronary Vessels/diagnostic imaging , Incretins/pharmacology , Microvessels/metabolism , Microvessels/pathology , Cells, Cultured , Mice , Epicardial Adipose Tissue
7.
Mol Med ; 30(1): 98, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943069

ABSTRACT

BACKGROUND: L-theanine is a unique non-protein amino acid in tea that is widely used as a safe food additive. We investigated the cardioprotective effects and mechanisms of L-theanine in myocardial ischemia-reperfusion injury (MIRI). METHODS: The cardioprotective effects and mechanisms of L-theanine and the role of Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling were investigated in MIRI mice using measures of cardiac function, oxidative stress, and apoptosis. RESULTS: Administration of L-theanine (10 mg/kg, once daily) suppressed the MIRI-induced increase in infarct size and serum creatine kinase and lactate dehydrogenase levels, as well as MIRI-induced cardiac apoptosis, as evidenced by an increase in Bcl-2 expression and a decrease in Bax/caspase-3 expression. Administration of L-theanine also decreased the levels of parameters reflecting oxidative stress, such as dihydroethidium, malondialdehyde, and nitric oxide, and increased the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD) in ischemic heart tissue. Further analysis showed that L-theanine administration suppressed the MIRI-induced decrease of phospho-JAK2 and phospho-STAT3 in ischemic heart tissue. Inhibition of JAK2 by AG490 (5 mg/kg, once daily) abolished the cardioprotective effect of L-theanine, suggesting that the JAK2/STAT3 signaling pathway may play an essential role in mediating the anti-I/R effect of L-theanine. CONCLUSIONS: L-theanine administration suppresses cellular apoptosis and oxidative stress in part via the JAK2/STAT3 signaling pathway, thereby attenuating MIRI-induced cardiac injury. L-theanine could be developed as a potential drug to alleviate cardiac damage in MIRI.


Subject(s)
Apoptosis , Glutamates , Janus Kinase 2 , Myocardial Reperfusion Injury , Oxidative Stress , STAT3 Transcription Factor , Signal Transduction , Animals , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Oxidative Stress/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/etiology , Apoptosis/drug effects , Glutamates/pharmacology , Signal Transduction/drug effects , Male , Mice , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use
8.
Mol Med Rep ; 30(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38904206

ABSTRACT

Myocardial ischemia/reperfusion injury (MIRI) is a significant challenge in the management of myocardial ischemic disease. Extensive evidence suggests that the macrophage­mediated inflammatory response may play a vital role in MIRI. Mesenchymal stem cells and, in particular, exosomes derived from these cells, may be key mediators of myocardial injury and repair. However, whether exosomes protect the heart by regulating the polarization of macrophages and the exact mechanisms involved are poorly understood. The present study aimed to determine whether exosomes secreted by bone marrow mesenchymal stem cells (BMSC­Exo) harboring miR­25­3p can alter the phenotype of macrophages by affecting the JAK2/STAT3 signaling pathway, which reduces the inflammatory response and protects against MIRI. An in vivo MIRI model was established in rats by ligating the anterior descending region of the left coronary artery for 30 min followed by reperfusion for 120 min, and BMSC­Exo carrying miR­25­3p (BMSC­Exo­25­3p) were administered through tail vein injection. A hypoxia­reoxygenation model of H9C2 cells was established, and the cells were cocultured with BMSC­Exo­25­3p in vitro. The results of the present study demonstrated that BMSC­Exo or BMSC­Exo­25­3p could be taken up by cardiomyocytes in vivo and H9C2 cells in vitro. BMSC­Exo­25­3p demonstrated powerful cardioprotective effects by decreasing the cardiac infarct size, reducing the incidence of malignant arrhythmias and attenuating myocardial enzyme activity, as indicated by lactate dehydrogenase and creatine kinase levels. It induced M1­like macrophage polarization after myocardial ischemia/reperfusion (I/R), as evidenced by the increase in iNOS expression through immunofluorescence staining and upregulation of proinflammatory cytokines through RT­qPCR, such as interleukin­1ß (IL­1ß) and interleukin­6 (IL­6). As hypothesized, BMSC­Exo­25­3p inhibited M1­like macrophage polarization and proinflammatory cytokine expression while promoting M2­like macrophage polarization. Mechanistically, the JAK2/STAT3 signaling pathway was activated after I/R in vivo and in LPS­stimulated macrophages in vitro, and BMSC­Exo­25­3p pretreatment inhibited this activation. The results of the present study indicate that the attenuation of MIRI by BMSC­Exo­25­3p may be related to JAK2/STAT3 signaling pathway inactivation and subsequent inhibition of M1­like macrophage polarization.


Subject(s)
Exosomes , Macrophages , Mesenchymal Stem Cells , MicroRNAs , Myocardial Reperfusion Injury , STAT3 Transcription Factor , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/prevention & control , Rats , Macrophages/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Signal Transduction , Rats, Sprague-Dawley , Disease Models, Animal , Myocytes, Cardiac/metabolism , Cell Line
9.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867293

ABSTRACT

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Subject(s)
Disease Models, Animal , Macrophages , Mice, Inbred C57BL , Myocardial Reperfusion Injury , Protein Kinase C beta , Signal Transduction , Animals , Protein Kinase C beta/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics , Macrophages/metabolism , Macrophages/enzymology , Male , Interleukin-10/metabolism , Interleukin-10/genetics , Mice , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Cells, Cultured , Phenotype , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Macrophage Activation , Mitogen-Activated Protein Kinase 1/metabolism , Ventricular Function, Left , Phosphorylation
10.
J Am Heart Assoc ; 13(13): e034805, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38934866

ABSTRACT

BACKGROUND: The regenerative capacity of the adult mammalian hearts is limited. Numerous studies have explored mechanisms of adult cardiomyocyte cell-cycle withdrawal. This translational study evaluated the effects and underlying mechanism of rhCHK1 (recombinant human checkpoint kinase 1) on the survival and proliferation of cardiomyocyte and myocardial repair after ischemia/reperfusion injury in swine. METHODS AND RESULTS: Intramyocardial injection of rhCHK1 protein (1 mg/kg) encapsulated in hydrogel stimulated cardiomyocyte proliferation and reduced cardiac inflammation response at 3 days after ischemia/reperfusion injury, improved cardiac function and attenuated ventricular remodeling, and reduced the infarct area at 28 days after ischemia/reperfusion injury. Mechanistically, multiomics sequencing analysis demonstrated enrichment of glycolysis and mTOR (mammalian target of rapamycin) pathways after rhCHK1 treatment. Co-Immunoprecipitation (Co-IP) experiments and protein docking prediction showed that CHK1 (checkpoint kinase 1) directly bound to and activated the Serine 37 (S37) and Tyrosine 105 (Y105) sites of PKM2 (pyruvate kinase isoform M2) to promote metabolic reprogramming. We further constructed plasmids that knocked out different CHK1 and PKM2 amino acid domains and transfected them into Human Embryonic Kidney 293T (HEK293T) cells for CO-IP experiments. Results showed that the 1-265 domain of CHK1 directly binds to the 157-400 amino acids of PKM2. Furthermore, hiPSC-CM (human iPS cell-derived cardiomyocyte) in vitro and in vivo experiments both demonstrated that CHK1 stimulated cardiomyocytes renewal and cardiac repair by activating PKM2 C-domain-mediated cardiac metabolic reprogramming. CONCLUSIONS: This study demonstrates that the 1-265 amino acid domain of CHK1 binds to the 157-400 domain of PKM2 and activates PKM2-mediated metabolic reprogramming to promote cardiomyocyte proliferation and myocardial repair after ischemia/reperfusion injury in adult pigs.


Subject(s)
Cell Proliferation , Checkpoint Kinase 1 , Disease Models, Animal , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Humans , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , HEK293 Cells , Swine , Cellular Reprogramming , Thyroid Hormone-Binding Proteins , Regeneration , Protein Binding , Sus scrofa , Ventricular Remodeling/physiology , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Energy Metabolism/drug effects , Thyroid Hormones/metabolism , Metabolic Reprogramming
12.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878685

ABSTRACT

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Subject(s)
Cardiolipins , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Animals , Cardiolipins/metabolism , Phospholipases A2, Secretory/metabolism
13.
Sci Rep ; 14(1): 13851, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38879701

ABSTRACT

Dapagliflozin (DAPA) demonstrates promise in the management of diabetic mellitus (DM) and cardiomyopathy. Trimethylamine N-oxide (TMAO) is synthesized by the gut microbiota through the metabolic conversion of choline and phosphatidylcholine. Ferroptosis may offer novel therapeutic avenues for the management of diabetes and myocardial ischemia-reperfusion injury (IRI). However, the precise mechanism underlying ferroptosis in cardiomyocytes and the specific role of TMAO generated by gut microbiota in the therapeutic approach for DM and myocardial IRI utilizing DAPA need to be further explored. Nine male SD rats with specific pathogen-free (SPF) status were randomly divided equally into the normal group, the DM + IRI (DIR) group, and the DAPA group. The diversity of the gut microbiota was analyzed using 16S rRNA gene sequencing. Additionally, the Wekell technique was employed to measure the levels of TMAO in the three groups. Application of network pharmacology to search for intersection targets of DAPA, DIR, and ferroptosis, and RT-PCR experimental verification. Ultimately, the overlapping targets that were acquired were subjected to molecular docking analysis with TMAO. The changes of Bacteroidetes and Firmicutes in the gut microbiota of DIR rats were most significantly affected by DAPA. Escherichia-Shigella and Prevotella_9 within the phylum Bacteroidetes could be identified as the primary effects of DAPA on DIR. Compared with the normal group, the TMAO content in the DIR group was significantly increased, while the TMAO content in the DAPA group was decreased compared to the DIR group. For the network pharmacology analysis, DAPA and DIR generated 43 intersecting target genes, and then further intersected with ferroptosis-related genes, resulting in 11 overlapping target genes. The mRNA expression of ALB, HMOX1, PPARG, CBS, LCN2, and PPARA decreased in the DIR group through reverse transcription polymerase chain reaction (RT-PCR) validation, while the opposite trend was observed in the DAPA group. The docking score between TMAO and DPP4 was - 5.44, and the MM-GBSA result of - 22.02 kcal/mol. It epitomizes the finest docking performance among all the target genes with the lowest score. DAPA could reduce the levels of metabolite TMAO produced by gut microbiota, thereby regulating related target genes to decrease ferroptosis in DIR cardiomyocytes.


Subject(s)
Benzhydryl Compounds , Ferroptosis , Gastrointestinal Microbiome , Glucosides , Methylamines , Myocardial Reperfusion Injury , Rats, Sprague-Dawley , Animals , Ferroptosis/drug effects , Gastrointestinal Microbiome/drug effects , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/microbiology , Benzhydryl Compounds/pharmacology , Methylamines/metabolism , Rats , Glucosides/pharmacology , Glucosides/metabolism , Molecular Docking Simulation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Experimental/drug therapy
14.
PLoS One ; 19(6): e0304761, 2024.
Article in English | MEDLINE | ID: mdl-38843265

ABSTRACT

Type 2 diabetes predisposes patients to heart disease, which is the primary cause of death across the globe. Type 2 diabetes often accompanies obesity and is defined by insulin resistance and abnormal glucose handling. Insulin resistance impairs glucose uptake and results in hyperglycemia, which damages tissues such as kidneys, liver, and heart. 2-oxoglutarate (2-OG)- and iron-dependent oxygenases (2-OGDOs), a family of enzymes regulating various aspects of cellular physiology, have been studied for their role in obesity and diet-induced insulin resistance. However, nothing is known of the 2-OGDO family member 2-oxoglutarate and iron-dependent prolyl hydroxylase domain containing protein 1 (OGFOD1) in this setting. OGFOD1 deletion leads to protection in cardiac ischemia-reperfusion injury and cardiac hypertrophy, which are two cardiac events that can lead to heart failure. Considering the remarkable correlation between heart disease and diabetes, the cardioprotection observed in OGFOD1-knockout mice led us to challenge these knockouts with high-fat diet. Wildtype mice fed a high-fat diet developed diet-induced obesity, insulin resistance, and glucose intolerance, but OGFOD1 knockout mice fed this same diet were resistant to diet-induced obesity and insulin resistance. These results support OGFOD1 down-regulation as a strategy for preventing obesity and insulin handling defects.


Subject(s)
Diet, High-Fat , Insulin Resistance , Mice, Knockout , Obesity , Animals , Obesity/metabolism , Obesity/genetics , Mice , Diet, High-Fat/adverse effects , Male , Prolyl Hydroxylases/metabolism , Prolyl Hydroxylases/genetics , Glucose Intolerance/metabolism , Glucose Intolerance/genetics , Mice, Inbred C57BL , Gene Deletion , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/genetics
15.
J Physiol Investig ; 67(3): 129-138, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38902960

ABSTRACT

Ischemia-reperfusion (IR) injury remains a pivotal contributor to myocardial damage following acute coronary events and revascularization procedures. Phosphoinositide 3-kinase (PI3K), a key mediator of cell survival signaling, plays a central role in regulating inflammatory responses and cell death mechanisms. Trans-chalcone (Tch), a natural compound known for its anti-inflammatory activities, has shown promise in various disease models. The aim of the current study was to investigate the potential protective effects of Tch against myocardial injury induced by ischemia and reperfusion challenges by targeting the PI3K-inflammasome interaction. Experimental models utilizing male rats subjected to an in vivo model of IR injury and myocardial infarction were employed. Administration of Tch (100 µg/kg, intraperitoneally) significantly reduced myocardial injury, as indicated by limited infarct size and decreased levels of the myocardial enzyme troponin. Mechanistically, Tch upregulated PI3K expression, thereby inhibiting the activity of the NOD-like receptor protein 3 inflammasome followed by the activation of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18. Moreover, it mitigated oxidative stress and suppressed vascular-intercellular adhesion molecules, contributing to its cardioprotective effects. The PI3K/Akt pathway inhibitor LY294002 considerably attenuated the beneficial effects of Tch. These findings highlight the therapeutic potential of Tch in ameliorating myocardial injury associated with IR insults through its modulation of the PI3K/Akt-inflammasome axis. The multifaceted mechanisms underlying its protective effects signify Tch as a promising candidate for further exploration in developing targeted therapies aimed at mitigating ischemic heart injury and improving clinical outcomes in cardiovascular diseases characterized by IR injury.


Subject(s)
Myocardial Reperfusion Injury , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Animals , Male , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/pathology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Phosphatidylinositol 3-Kinases/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Chalcone/pharmacology , Chalcone/analogs & derivatives , Chalcone/therapeutic use , Signal Transduction/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
16.
Sci Rep ; 14(1): 14350, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906975

ABSTRACT

Cardiac ischemic preconditioning (Pre) reduces cardiac ischemia-reperfusion injury (IRI) by stimulating opioid receptors. Chronic use of opioids can alter the signaling pathways. We investigated the effects of chronic methadone use on IRI and Pre. The experiments were performed on isolated hearts of male Wistar rats in four groups: IRI, Methadone + IRI (M-IRI), Pre + IRI (Pre-IRI), Methadone + Pre + IRI (M-Pre-IRI). The infarct size (IS) in the Pre-IRI group was smaller than the IRI group (26.8% vs. 47.8%, P < 0.05). In the M-IRI and M-Pre-IRI groups, the infarct size was similar to the IRI group. Akt (Ak strain transforming) phosphorylation in the Pre-IRI, M-IRI, and M-Pre-IRI groups was significantly higher than in the IRI group (0.56 ± 0.15, 0.63 ± 0.20, and 0.93 ± 0.18 vs 0.28 ± 0.17 respectively). STAT3 (signal transducer and activator of transcription 3) phosphorylation in the Pre-IRI and M-Pre-IRI groups (1.38 ± 0.14 and 1.46 ± 0.33) was significantly higher than the IRI and M-IRI groups (0.99 ± 0.1 and 0.98 ± 0.2). Thus, chronic use of methadone not only has no protective effect against IRI but also destroys the protective effects of ischemic preconditioning. This may be due to the hyperactivation of Akt and changes in signaling pathways.


Subject(s)
Ischemic Preconditioning, Myocardial , Methadone , Myocardial Reperfusion Injury , Proto-Oncogene Proteins c-akt , Rats, Wistar , STAT3 Transcription Factor , Animals , Methadone/pharmacology , STAT3 Transcription Factor/metabolism , Male , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation/drug effects , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Ischemic Preconditioning, Myocardial/methods , Signal Transduction/drug effects , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology
17.
Sci Rep ; 14(1): 12949, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839839

ABSTRACT

Growth/differentiation factor-15 (GDF15) is considered an unfavourable prognostic biomarker for cardiovascular disease in clinical data, while experimental studies suggest it has cardioprotective potential. This study focuses on the direct cardiac effects of GDF15 during ischemia-reperfusion injury in Wistar male rats, employing concentrations relevant to patients at high cardiovascular risk. Initially, we examined circulating levels and heart tissue expression of GDF15 in rats subjected to ischemia-reperfusion and sham operations in vivo. We then evaluated the cardiac effects of GDF15 both in vivo and ex vivo, administering recombinant GDF15 either before 30 min of ischemia (preconditioning) or at the onset of reperfusion (postconditioning). We compared infarct size and cardiac contractile recovery between control and rGDF15-treated rats. Contrary to our expectations, ischemia-reperfusion did not increase GDF15 plasma levels compared to sham-operated rats. However, cardiac protein and mRNA expression increased in the infarcted zone of the ischemic heart after 24 h of reperfusion. Notably, preconditioning with rGDF15 had a cardioprotective effect, reducing infarct size both in vivo (65 ± 5% in control vs. 42 ± 6% in rGDF15 groups) and ex vivo (60 ± 4% in control vs. 45 ± 4% in rGDF15 groups), while enhancing cardiac contractile recovery ex vivo. However, postconditioning with rGDF15 did not alter infarct size or the recovery of contractile parameters in vivo or ex vivo. These novel findings reveal that the short-term exogenous administration of rGDF15 before ischemia, at physiologically relevant levels, protects the heart against ischemia-reperfusion injury in both in vivo and ex vivo settings. The ex vivo results indicate that rGDF15 operates independently of the inflammatory, endocrine and nervous systems, suggesting direct and potent cardioprotective properties against ischemia-reperfusion injury.


Subject(s)
Growth Differentiation Factor 15 , Myocardial Infarction , Rats, Wistar , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Animals , Male , Myocardial Infarction/metabolism , Rats , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Cardiotonic Agents/pharmacology , Cardiotonic Agents/administration & dosage , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Ischemic Preconditioning, Myocardial/methods
18.
Int Immunopharmacol ; 136: 112370, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823174

ABSTRACT

Reperfusion after myocardial ischemia would aggravate myocardial structural and functional damage, known as myocardial ischemia-reperfusion (MI/R) injury. Cinnamamide derivatives have been reported to exert cardioprotective effects, and we have previously reported that compound 7 played a role in cardioprotection against MI/R via anti-inflammatory effect. However, exact mechanism underlying such beneficial action of compound 7 is still unclear. The protective effect of compound 7 was determined in H9c2 cells under H2O2 stimulation with or without nigerin (NLRP3 activator). Electrocardiogram, echocardiography, myocardial infarction size, histopathology and serum biochemical assay were performed in MI/R rats. Metabolomics in vivo and mRNA or protein levels of NLRP3, ASC, cleaved caspase-1 and its downstream IL-18 and IL-1ß were detected both in vitro and in vivo. Compound 7 significantly ameliorate H2O2-induced cardiomyocyte damage, which was supported by in vivo data determined by improved left ventricular systolic function and histopathological changes, reduced myocardial infarction area and cellular apoptosis in heart tissue. Cardiac differential metabolites demonstrated that compound 7 indeed altered the cardiac reprogramming of inflammation-related metabolites, which was evidenced by down-regulated cardiac inflammation by compound 7. Additionally, compound 7 alleviated myocardial injury by inhibiting the NLRP3 pathway rather than other members of the inflammasome both in vitro and in vivo, which was further evidenced by CETSA assay. Whereas, nigerin blocked the inhibitory activity of compound 7 against NLRP3. Cinnamamide derivative compound 7 ameliorated MI/R injury by inhibiting inflammation via NLRP3.


Subject(s)
Anti-Inflammatory Agents , Myocardial Reperfusion Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cell Line , Cinnamates/pharmacology , Cinnamates/therapeutic use , Rats, Sprague-Dawley , Hydrogen Peroxide/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Apoptosis/drug effects , Inflammasomes/metabolism , Disease Models, Animal
19.
Int Heart J ; 65(3): 517-527, 2024.
Article in English | MEDLINE | ID: mdl-38825496

ABSTRACT

Myocardial infarction/reperfusion (I/R) injury significantly impacts the health of older individuals. We confirmed that the level of lncRNA Peg13 was downregulated in I/R injury. However, the detailed function of Peg13 in myocardial I/R injury has not yet been explored.To detect the function of Peg13, in vivo model of I/R injury was constructed. RT-qPCR was employed to investigate RNA levels, and Western blotting was performed to assess levels of endoplasmic reticulum stress and apoptosis-associated proteins. EdU staining was confirmed to assess the cell proliferation.I/R therapy dramatically produced myocardial injury, increased the infarct area, and decreased the amount of Peg13 in myocardial tissues of mice. In addition, hypoxia/reoxygenation (H/R) notably induced the apoptosis and promoted the endoplasmic reticulum (ER) stress of HL-1 cells, while overexpression of Peg13 reversed these phenomena. Additionally, Peg13 may increase the level of Sirt1 through binding to miR-34a. Upregulation of Peg13 reversed H/R-induced ER stress via regulation of miR-34a/Sirt1 axis.LncRNA Peg13 reduces ER stress in myocardial infarction/reperfusion injury through mediation of miR-34a/Sirt1 axis. Hence, our research might shed new lights on developing new strategies for the treatment of myocardial I/R injury.


Subject(s)
Endoplasmic Reticulum Stress , MicroRNAs , Myocardial Reperfusion Injury , RNA, Long Noncoding , Sirtuin 1 , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/genetics , Mice , Male , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Apoptosis/genetics , Disease Models, Animal , Mice, Inbred C57BL
20.
Clin Exp Pharmacol Physiol ; 51(8): e13904, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923060

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia-reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.


Subject(s)
Apoptosis , Autophagy , Myocardial Reperfusion Injury , Nerve Tissue Proteins , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Animals , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis/drug effects , Nerve Tissue Proteins/metabolism , Male , Autophagy/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Oxidative Stress/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...