Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161.438
Filter
1.
Sci Rep ; 14(1): 15344, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961220

ABSTRACT

Decreased myocardial capillary density has been reported as an important histopathological feature associated with various heart disorders. Quantitative assessment of cardiac capillarization typically involves double immunostaining of cardiomyocytes (CMs) and capillaries in myocardial slices. In contrast, single immunostaining of basement membrane protein is a straightforward approach to simultaneously label CMs and capillaries, presenting fewer challenges in background staining. However, subsequent image analysis always requires expertise and laborious manual work to identify and segment CMs/capillaries. Here, we developed an image analysis tool, AutoQC, for automatic identification and segmentation of CMs and capillaries in immunofluorescence images of basement membrane. Commonly used capillarization-related measurements can be derived from segmentation results. By leveraging the power of a pre-trained segmentation model (Segment Anything Model, SAM) via prompt engineering, the training of AutoQC required only a small dataset with bounding box annotations instead of pixel-wise annotations. AutoQC outperformed SAM (without prompt engineering) and YOLOv8-Seg, a state-of-the-art instance segmentation model, in both instance segmentation and capillarization assessment. Thus, AutoQC, featuring a weakly supervised algorithm, enables automatic segmentation and high-throughput, high-accuracy capillarization assessment in basement-membrane-immunostained myocardial slices. This approach reduces the training workload and eliminates the need for manual image analysis once AutoQC is trained.


Subject(s)
Basement Membrane , Image Processing, Computer-Assisted , Myocardium , Myocytes, Cardiac , Basement Membrane/metabolism , Animals , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Myocardium/pathology , Image Processing, Computer-Assisted/methods , Capillaries/metabolism , Algorithms , Mice , Coronary Vessels/metabolism , Coronary Vessels/pathology
2.
Clin Cardiol ; 47(7): e24307, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953367

ABSTRACT

BACKGROUND: We aim to provide a comprehensive review of the current state of knowledge of myocardial viability assessment in patients undergoing coronary artery bypass grafting (CABG), with a focus on the clinical markers of viability for each imaging modality. We also compare mortality between patients with viable myocardium and those without viability who undergo CABG. METHODS: A systematic database search with meta-analysis was conducted of comparative original articles (both observations and randomized controlled studies) of patients undergoing CABG with either viable or nonviable myocardium, in EMBASE, MEDLINE, Cochrane database, and Google Scholar, from inception to 2022. Imaging modalities included were dobutamine stress echocardiography (DSE), cardiac magnetic resonance (CMR), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). RESULTS: A total of 17 studies incorporating a total of 2317 patients were included. Across all imaging modalities, the relative risk of death post-CABG was reduced in patients with versus without viability (random-effects model: odds ratio: 0.42; 95% confidence interval: 0.29-0.61; p < 0.001). Imaging for myocardial viability has significant clinical implications as it can affect the accuracy of the diagnosis, guide treatment decisions, and predict patient outcomes. Generally, based on local availability and expertise, either SPECT or DSE should be considered as the first step in evaluating viability, while PET or CMR would provide further evaluation of transmurality, perfusion metabolism, and extent of scar tissue. CONCLUSION: The assessment of myocardial viability is an essential component of preoperative evaluation in patients with ischemic heart disease undergoing surgical revascularization. Careful patient selection and individualized assessment of viability remain paramount.


Subject(s)
Coronary Artery Bypass , Myocardial Ischemia , Ventricular Function, Left , Humans , Cardiomyopathies/physiopathology , Cardiomyopathies/surgery , Cardiomyopathies/diagnosis , Cardiomyopathies/etiology , Coronary Artery Bypass/adverse effects , Coronary Artery Disease/surgery , Coronary Artery Disease/physiopathology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/complications , Echocardiography, Stress/methods , Myocardial Ischemia/physiopathology , Myocardial Ischemia/surgery , Myocardial Ischemia/diagnosis , Myocardial Ischemia/complications , Myocardium/pathology , Tissue Survival , Tomography, Emission-Computed, Single-Photon , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left/physiology
3.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
4.
J Cell Mol Med ; 28(13): e18493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38963241

ABSTRACT

Interleukin-5 (IL-5) has been reported to be involved in cardiovascular diseases, such as atherosclerosis and cardiac injury. This study aimed to investigate the effects of IL-5 on cardiac remodelling. Mice were infused with angiotensin II (Ang II), and the expression and source of cardiac IL-5 were analysed. The results showed that cardiac IL-5 expression was time- and dose-dependently decreased after Ang II infusion, and was mainly derived from cardiac macrophages. Additionally, IL-5-knockout (IL-5-/-) mice were used to observe the effects of IL-5 knockout on Ang II-induced cardiac remodelling. We found knockout of IL-5 significantly increased the expression of cardiac hypertrophy markers, elevated myocardial cell cross-sectional areas and worsened cardiac dysfunction in Ang II-infused mice. IL-5 deletion also promoted M2 macrophage differentiation and exacerbated cardiac fibrosis. Furthermore, the effects of IL-5 deletion on cardiac remodelling was detected after the STAT3 pathway was inhibited by S31-201. The effects of IL-5 on cardiac remodelling and M2 macrophage differentiation were reversed by S31-201. Finally, the effects of IL-5 on macrophage differentiation and macrophage-related cardiac hypertrophy and fibrosis were analysed in vitro. IL-5 knockout significantly increased the Ang II-induced mRNA expression of cardiac hypertrophy markers in myocardial cells that were co-cultured with macrophages, and this effect was reversed by S31-201. Similar trends in the mRNA levels of fibrosis markers were observed when cardiac fibroblasts and macrophages were co-cultured. In conclusions, IL-5 deficiency promote the differentiation of M2 macrophages by activating the STAT3 pathway, thereby exacerbating cardiac remodelling in Ang II-infused mice. IL-5 may be a potential target for the clinical prevention of cardiac remodelling.


Subject(s)
Angiotensin II , Cardiomegaly , Fibrosis , Interleukin-5 , Macrophages , Mice, Knockout , STAT3 Transcription Factor , Signal Transduction , Ventricular Remodeling , Animals , Angiotensin II/pharmacology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Ventricular Remodeling/drug effects , Mice , Macrophages/metabolism , Macrophages/drug effects , Interleukin-5/metabolism , Interleukin-5/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Cardiomegaly/chemically induced , Male , Mice, Inbred C57BL , Cell Differentiation , Myocardium/metabolism , Myocardium/pathology
6.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38986079

ABSTRACT

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Subject(s)
Amylases , Lung , Pancreas , Pancreatitis , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Animals , Male , Pancreatitis/prevention & control , Pancreatitis/chemically induced , Pancreatitis/pathology , Pancreatitis/drug therapy , Pancreas/drug effects , Pancreas/pathology , Pancreas/metabolism , Amylases/blood , Acute Disease , Lung/drug effects , Lung/pathology , Lung/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/blood , Certolizumab Pegol/pharmacology , Malondialdehyde/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Interleukin-1beta/blood , Interleukin-1beta/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Myocardium/pathology , Myocardium/metabolism , Transforming Growth Factor beta/metabolism , Rats , Disease Models, Animal , Oxidative Stress/drug effects
7.
Vet Microbiol ; 295: 110154, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959808

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the costliest diseases to pork producers worldwide. We tested samples from the pregnant gilt model (PGM) to better understand the fetal response to in-utero PRRS virus (PRRSV) infection. Our goal was to identify critical tissues and genes associated with fetal resilience or susceptibility. Pregnant gilts (N=22) were infected with PRRSV on day 86 of gestation. At 21 days post maternal infection, the gilts and fetuses were euthanized, and fetal tissues collected. Fetuses were characterized for PRRS viral load in fetal serum and thymus, and preservation status (viable or meconium stained: VIA or MEC). Fetuses (N=10 per group) were compared: uninfected (UNIF; <1 log/µL PRRSV RNA), resilient (HV_VIA, >5 log virus/µL but viable), and susceptible (HV_MEC, >5 log virus/µL with MEC). Gene expression in fetal heart, kidney, and liver was investigated using NanoString transcriptomics. Gene categories investigated were hypothesized to be involved in fetal response to PRRSV infection: renin- angiotensin-aldosterone, inflammatory, transporter and metabolic systems. Following PRRSV infection, CCL5 increased expression in heart and kidney, and ACE2 decreased expression in kidney, each associated with fetal PRRS susceptibility. Liver revealed the most significant differential gene expression: CXCL10 decreased and IL10 increased indicative of immune suppression. Increased liver gene expression indicated potential associations with fetal PRRS susceptibility on several systems including blood pressure regulation (AGTR1), energy metabolism (SLC16A1 and SLC16A7), tissue specific responses (KL) and growth modulation (TGFB1). Overall, analyses of non-lymphoid tissues provided clues to mechanisms of fetal compromise following maternal PRRSV infection.


Subject(s)
Disease Resistance , Fetus , Porcine Reproductive and Respiratory Syndrome , Transcriptome , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Disease Resistance/genetics , Disease Resistance/immunology , Pregnancy , Animals , Swine , Female , Fetus/immunology , Fetus/virology , Gene Expression Regulation/immunology , Myocardium/immunology , Liver/immunology , Disease Susceptibility/immunology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/veterinary , Kidney/immunology
8.
Theranostics ; 14(9): 3486-3508, 2024.
Article in English | MEDLINE | ID: mdl-38948064

ABSTRACT

Rationale: Device implantation frequently triggers cardiac remodeling and fibrosis, with monocyte-driven inflammatory responses precipitating arrhythmias. This study investigates the role of m6A modification enzymes METTL3 and METTL14 in these responses and explores a novel therapeutic strategy targeting these modifications to mitigate cardiac remodeling and fibrosis. Methods: Peripheral blood mononuclear cells (PBMCs) were collected from patients with ventricular septal defects (VSD) who developed conduction blocks post-occluder implantation. The expression of METTL3 and METTL14 in PBMCs was measured. METTL3 and METTL14 deficiencies were induced to evaluate their effect on angiotensin II (Ang II)-induced myocardial inflammation and fibrosis. m6A modifications were analyzed using methylated RNA immunoprecipitation followed by quantitative PCR. NF-κB pathway activity and levels of monocyte migration and fibrogenesis markers (CXCR2 and TGF-ß1) were assessed. An erythrocyte microvesicle-based nanomedicine delivery system was developed to target activated monocytes, utilizing the METTL3 inhibitor STM2457. Cardiac function was evaluated via echocardiography. Results: Significant upregulation of METTL3 and METTL14 was observed in PBMCs from patients with VSD occluder implantation-associated persistent conduction block. Deficiencies in METTL3 and METTL14 significantly reduced Ang II-induced myocardial inflammation and fibrosis by decreasing m6A modification on MyD88 and TGF-ß1 mRNAs. This disruption reduced NF-κB pathway activation, lowered CXCR2 and TGF-ß1 levels, attenuated monocyte migration and fibrogenesis, and alleviated cardiac remodeling. The erythrocyte microvesicle-based nanomedicine delivery system effectively targeted inflamed cardiac tissue, reducing inflammation and fibrosis and improving cardiac function. Conclusion: Inhibiting METTL3 and METTL14 in monocytes disrupts the NF-κB feedback loop, decreases monocyte migration and fibrogenesis, and improves cardiac function. Targeting m6A modifications of monocytes with STM2457, delivered via erythrocyte microvesicles, reduces inflammation and fibrosis, offering a promising therapeutic strategy for cardiac remodeling associated with device implantation.


Subject(s)
Fibrosis , Methyltransferases , Monocytes , NF-kappa B , Humans , Methyltransferases/metabolism , Methyltransferases/genetics , Monocytes/metabolism , Male , Animals , NF-kappa B/metabolism , Erythrocytes/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Female , Methylation , Mice , Transforming Growth Factor beta1/metabolism , Cell-Derived Microparticles/metabolism , Leukocytes, Mononuclear/metabolism , Angiotensin II/metabolism , Receptors, Interleukin-8B/metabolism , Receptors, Interleukin-8B/genetics , Ventricular Remodeling , Myocardium/metabolism , Myocardium/pathology , Nanomedicine/methods
10.
Nat Commun ; 15(1): 4632, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951500

ABSTRACT

ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.


Subject(s)
Heart Defects, Congenital , Heart , Mice, Knockout , Neural Crest , Repressor Proteins , Animals , Neural Crest/metabolism , Neural Crest/embryology , Mice , Heart/embryology , Repressor Proteins/metabolism , Repressor Proteins/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Gene Expression Regulation, Developmental , Chromatin/metabolism , Signal Transduction , Myocardium/metabolism , Female
11.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951640

ABSTRACT

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Subject(s)
Cell Membrane , Integrin beta3 , Mice, Knockout , Regeneration , Animals , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Cell Membrane/metabolism , Myocytes, Cardiac/metabolism , Male , Plasmalogens/metabolism , Signal Transduction , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Heart Injuries/metabolism , Heart Injuries/pathology , Heart Injuries/genetics , Cell Proliferation , Membrane Proteins/metabolism , Membrane Proteins/genetics
12.
J Nanobiotechnology ; 22(1): 385, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951822

ABSTRACT

BACKGROUND: Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS: Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS: These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.


Subject(s)
Extracellular Vesicles , Mice, Inbred C57BL , Mitochondrial Proton-Translocating ATPases , Myocardial Reperfusion Injury , Myocytes, Cardiac , Animals , Extracellular Vesicles/metabolism , Mice , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Male , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Ferroptosis/drug effects , Disease Models, Animal
13.
J Nanobiotechnology ; 22(1): 382, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951872

ABSTRACT

Reperfusion therapy is critical for saving heart muscle after myocardial infarction, but the process of restoring blood flow can itself exacerbate injury to the myocardium. This phenomenon is known as myocardial ischemia-reperfusion injury (MIRI), which includes oxidative stress, inflammation, and further cell death. microRNA-146a (miR-146a) is known to play a significant role in regulating the immune response and inflammation, and has been studied for its potential impact on the improvement of heart function after myocardial injury. However, the delivery of miR-146a to the heart in a specific and efficient manner remains a challenge as extracellular RNAs are unstable and rapidly degraded. Milk exosomes (MEs) have been proposed as ideal delivery platform for miRNA-based therapy as they can protect miRNAs from RNase degradation. In this study, the effects of miR-146a containing MEs (MEs-miR-146a) on improvement of cardiac function were examined in a rat model of MIRI. To enhance the targeting delivery of MEs-miR-146a to the site of myocardial injury, the ischemic myocardium-targeted peptide IMTP was modified onto the surfaces, and whether the modified MEs-miR-146a could exert a better therapeutic role was examined by echocardiography, myocardial injury indicators and the levels of inflammatory factors. Furthermore, the expressions of miR-146a mediated NF-κB signaling pathway-related proteins were detected by western blotting and qRT-PCR to further elucidate its mechanisms. MiR-146 mimics were successfully loaded into the MEs by electroporation at a square wave 1000 V voltage and 0.1 ms pulse duration. MEs-miR-146a can be up-taken by cardiomyocytes and protected the cells from oxygen glucose deprivation/reperfusion induced damage in vitro. Oral administration of MEs-miR-146a decreased myocardial tissue apoptosis and the expression of inflammatory factors and improved cardiac function after MIRI. The miR-146a level in myocardium tissues was significantly increased after the administration IMTP modified MEs-miR-146a, which was higher than that of the MEs-miR-146a group. In addition, intravenous injection of IMTP modified MEs-miR-146a enhanced the targeting to heart, improved cardiac function, reduced myocardial tissue apoptosis and suppressed inflammation after MIRI, which was more effective than the MEs-miR-146a treatment. Moreover, IMTP modified MEs-miR-146a reduced the protein levels of IRAK1, TRAF6 and p-p65. Therefore, IMTP modified MEs-miR-146a exerted their anti-inflammatory effect by inhibiting the IRAK1/TRAF6/NF-κB signaling pathway. Taken together, our findings suggested miR-146a containing MEs may be a promising strategy for the treatment of MIRI with better outcome after modification with ischemic myocardium-targeted peptide, which was expected to be applied in clinical practice in future.


Subject(s)
Exosomes , MicroRNAs , Myocardial Reperfusion Injury , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Myocardial Reperfusion Injury/metabolism , Exosomes/metabolism , NF-kappa B/metabolism , Rats , Male , Milk/chemistry , Myocardium/metabolism , Cardiotonic Agents/pharmacology , Myocytes, Cardiac/metabolism
14.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951895

ABSTRACT

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Subject(s)
Diabetic Cardiomyopathies , RNA, Circular , RNA, Long Noncoding , Humans , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/metabolism , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Signal Transduction , Myocardium/pathology , Myocardium/metabolism
15.
Nat Commun ; 15(1): 5565, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956062

ABSTRACT

Long-term treatment of myocardial infarction is challenging despite medical advances. Tissue engineering shows promise for MI repair, but implantation complexity and uncertain outcomes pose obstacles. microRNAs regulate genes involved in apoptosis, angiogenesis, and myocardial contraction, making them valuable for long-term repair. In this study, we find downregulated miR-199a-5p expression in MI. Intramyocardial injection of miR-199a-5p into the infarcted region of male rats revealed its dual protective effects on the heart. Specifically, miR-199a-5p targets AGTR1, diminishing early oxidative damage post-myocardial infarction, and MARK4, which influences long-term myocardial contractility and enhances cardiac function. To deliver miR-199a-5p efficiently and specifically to ischemic myocardial tissue, we use CSTSMLKAC peptide to construct P-MSN/miR199a-5p nanoparticles. Intravenous administration of these nanoparticles reduces myocardial injury and protects cardiac function. Our findings demonstrate the effectiveness of P-MSN/miR199a-5p nanoparticles in repairing MI through enhanced contraction and anti-apoptosis. miR199a-5p holds significant therapeutic potential for long-term repair of myocardial infarction.


Subject(s)
MicroRNAs , Myocardial Infarction , Nanoparticles , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/administration & dosage , Animals , Myocardial Infarction/genetics , Male , Rats , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Rats, Sprague-Dawley , Apoptosis/drug effects , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Myocardial Contraction/drug effects , Administration, Intravenous , Myocardial Ischemia/genetics , Myocardial Ischemia/therapy , Myocardial Ischemia/metabolism
16.
Sci Rep ; 14(1): 15133, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956194

ABSTRACT

The goal of this study was to evaluate the intensity of autophagy and ubiquitin-dependent proteolysis processes occurring in myocardium of left ventricle (LV) in subsequent stages of pulmonary arterial hypertension (PAH) to determine mechanisms responsible for LV mass loss in a monocrotaline-induced PAH rat model. LV myocardium samples collected from 32 Wistar rats were analyzed in an early PAH group (n = 8), controls time-paired (n = 8), an end-stage PAH group (n = 8), and their controls (n = 8). Samples were subjected to histological analyses with immunofluorescence staining, autophagy assessment by western blotting, and evaluation of ubiquitin-dependent proteolysis in the LV by immunoprecipitation of ubiquitinated proteins. Echocardiographic, hemodynamic, and heart morphometric parameters were assessed regularly throughout the experiment. Considerable morphological and hemodynamic remodeling of the LV was observed over the course of PAH. The end-stage PAH was associated with significantly impaired LV systolic function and a decrease in LV mass. The LC3B-II expression in the LV was significantly higher in the end-stage PAH group compared to the early PAH group (p = 0.040). The measured LC3B-II/LC3B-I ratios in the end-stage PAH group were significantly elevated compared to the controls (p = 0.039). Immunofluorescence staining showed a significant increase in the abundance of LC3 puncta in the end-stage PAH group compared to the matched controls. There were no statistically significant differences in the levels of expression of all ubiquitinated proteins when comparing both PAH groups and matched controls. Autophagy may be considered as the mechanism behind the LV mass loss at the end stage of PAH.


Subject(s)
Autophagy , Heart Ventricles , Proteolysis , Pulmonary Arterial Hypertension , Rats, Wistar , Ubiquitin , Animals , Ubiquitin/metabolism , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Rats , Male , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Disease Models, Animal , Myocardium/metabolism , Myocardium/pathology , Echocardiography , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Ventricular Remodeling
17.
Cells ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38994928

ABSTRACT

Activation of the CXCL12/CXCR4/ACKR3 axis is known to aid myocardial repair through ischemia-triggered hypoxia-inducible factor-1α (HIF-1α). To enhance the upregulation of HIF-1α, we administered roxadustat, a novel prolyl hydroxylase inhibitor (PHI) clinically approved by the European Medicines Agency 2021 for the treatment of renal anemia, with the purpose of improving LV function and attenuating ischemic cardiomyopathy. METHODS: We evaluated roxadustat's impact on HIF-1 stimulation, cardiac remodeling, and function after MI. Therefore, we analyzed nuclear HIF-1 expression, the mRNA and protein expression of key HIF-1 target genes (RT-PCR, Western blot), inflammatory cell infiltration (immunohistochemistry), and apoptosis (TUNEL staining) 7 days after MI. Additionally, we performed echocardiography in male and female C57BL/6 mice 28 days post-MI. RESULTS: We found a substantial increase in nuclear HIF-1, associated with an upregulation of HIF-1α target genes like CXCL12/CXCR4/ACKR3 at the mRNA and protein levels. Roxadustat increased the proportion of myocardial reparative M2 CD206+ cells, suggesting beneficial alterations in immune cell migration and a trend towards reduced apoptosis. Echocardiography showed that roxadustat treatment significantly preserved ejection fraction and attenuated subsequent ventricular dilatation, thereby reducing adverse remodeling. CONCLUSIONS: Our findings suggest that roxadustat is a promising clinically approved treatment option to preserve myocardial function by attenuating adverse remodeling.


Subject(s)
Glycine , Hypoxia-Inducible Factor 1, alpha Subunit , Isoquinolines , Mice, Inbred C57BL , Myocardial Infarction , Ventricular Remodeling , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Ventricular Remodeling/drug effects , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/therapeutic use , Male , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Apoptosis/drug effects , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Myocardium/pathology , Myocardium/metabolism
18.
Cell Metab ; 36(7): 1456-1481, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38959861

ABSTRACT

The heart is the most metabolically active organ in the human body, and cardiac metabolism has been studied for decades. However, the bulk of studies have focused on animal models. The objective of this review is to summarize specifically what is known about cardiac metabolism in humans. Techniques available to study human cardiac metabolism are first discussed, followed by a review of human cardiac metabolism in health and in heart failure. Mechanistic insights, where available, are reviewed, and the evidence for the contribution of metabolic insufficiency to heart failure, as well as past and current attempts at metabolism-based therapies, is also discussed.


Subject(s)
Heart Failure , Myocardium , Humans , Myocardium/metabolism , Heart Failure/metabolism , Animals , Heart , Energy Metabolism
19.
Georgian Med News ; (349): 54-59, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38963202

ABSTRACT

Doxorubicin is the common chemotherapeutic agent that has been harnessed for the treatment of various types of malignancy including the treatment of soft tissue and osteosarcoma and cancers of the vital organs like breast, ovary, bladder, and thyroid. It is also used to treat leukaemia and lymphoma, however, this is an obstacle because of their prominent side effects including cardiotoxicity and lung fibrosis, we do aim to determine the role of CoQ10 as an antioxidant on the impeding the deleterious impacts of doxorubicin on tissue degenerative effects. To do so, 27 rats were subdivided into 3 groups of 9 each; CoQ10 exposed group, Doxorubicin exposed group, and CoQ10 plus Doxorubicin group. At the end of the study, the animals were sacrificed and lungs with hearts were harvested, and slides were prepared for examination under a microscope. The results indicated that doxorubicin induced abnormal cellular structure resulting in damaging cellular structures of the lung and heart while CoQ10 impeded these damaging effects and nearly restoring normal tissue structure. As a result, CoQ10 will maintain normal tissue of the lung and heart.


Subject(s)
Doxorubicin , Lung , Ubiquinone , Animals , Doxorubicin/adverse effects , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Rats , Lung/drug effects , Lung/pathology , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/toxicity , Myocardium/pathology , Male , Antioxidants/pharmacology , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Heart/drug effects
20.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949027

ABSTRACT

Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.


Subject(s)
Sex Characteristics , Ventricular Remodeling , Humans , Female , Male , Animals , Heart Diseases/pathology , Heart Diseases/metabolism , Heart Diseases/physiopathology , Heart Diseases/genetics , Gonadal Steroid Hormones/metabolism , Heart/physiopathology , Heart/physiology , Myocardium/pathology , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...