Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.392
1.
Circ Res ; 134(12): 1703-1717, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843287

Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.


Fibroblasts , Homeostasis , Myocardium , Humans , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/immunology , Myocardium/pathology , Myocardium/immunology , Myocardium/metabolism , Inflammation/metabolism , Inflammation/pathology , Inflammation/immunology , Myocarditis/immunology , Myocarditis/pathology , Myocarditis/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cell Communication
2.
Circ Res ; 134(12): 1824-1840, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843291

Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.


Myocytes, Cardiac , Humans , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , Energy Metabolism , Cardiomyopathies/metabolism , Cardiomyopathies/immunology , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology
3.
Circ Res ; 134(12): 1808-1823, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843289

Mounting experimental and clinical evidence has revealed that adaptive immune mechanisms targeting myocardial antigens are triggered by different forms of cardiac injury and impact disease progression. B and T lymphocytes recognize specific antigens via unique adaptive immune receptors generated through a somatic rearrangement process that generates a potential repertoire of 1019 unique receptors. While the adaptive immune receptor repertoire diversity provides the basis for immunologic specificity, making sense of it can be a challenging task. In the present review, we discuss key aspects underlying the generation of TCRs (T cell receptors) and emerging tools for their study in the context of myocardial diseases. Moreover, we outline how exploring TCR repertoires could lead to a deeper understanding of myocardial pathophysiological principles and potentially serve as diagnostic tools.


Cardiomyopathies , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Animals , Cardiomyopathies/immunology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Adaptive Immunity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology
4.
Circ Res ; 134(12): 1752-1766, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38843295

Heart failure (HF) is characterized by a progressive decline in cardiac function and represents one of the largest health burdens worldwide. Clinically, 2 major types of HF are distinguished based on the left ventricular ejection fraction (EF): HF with reduced EF and HF with preserved EF. While both types share several risk factors and features of adverse cardiac remodeling, unique hallmarks beyond ejection fraction that distinguish these etiologies also exist. These differences may explain the fact that approved therapies for HF with reduced EF are largely ineffective in patients suffering from HF with preserved EF. Improving our understanding of the distinct cellular and molecular mechanisms is crucial for the development of better treatment strategies. This article reviews the knowledge of the immunologic mechanisms underlying HF with reduced and preserved EF and discusses how the different immune profiles elicited may identify attractive therapeutic targets for these conditions. We review the literature on the reported mechanisms of adverse cardiac remodeling in HF with reduced and preserved EF, as well as the immune mechanisms involved. We discuss how the knowledge gained from preclinical models of the complex syndrome of HF as well as from clinical data obtained from patients may translate to a better understanding of HF and result in specific treatments for these conditions in humans.


Heart Failure , Stroke Volume , Ventricular Remodeling , Humans , Heart Failure/physiopathology , Heart Failure/immunology , Animals , Myocarditis/physiopathology , Myocarditis/immunology , Ventricular Function, Left , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology
6.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700022

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Disease Models, Animal , Infliximab , Ventricular Remodeling , Infliximab/therapeutic use , Infliximab/pharmacology , Animals , Humans , Male , Middle Aged , Ventricular Remodeling/drug effects , Female , ST Elevation Myocardial Infarction/drug therapy , ST Elevation Myocardial Infarction/immunology , Ventricular Function, Left/drug effects , Swine , Aged , Tumor Necrosis Factor-alpha/metabolism , Stroke Volume/drug effects , Coronary Thrombosis/prevention & control , Coronary Thrombosis/drug therapy , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Troponin I/blood , Troponin I/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism
7.
Front Immunol ; 15: 1327372, 2024.
Article En | MEDLINE | ID: mdl-38736889

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Arrhythmogenic Right Ventricular Dysplasia , B-Lymphocytes , Cardiomyopathy, Dilated , Myocardium , Humans , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Myocardium/metabolism , Myocardium/immunology , Myocardium/pathology , Male , Female , Cell Communication/immunology , Gene Expression Profiling , Middle Aged , Adult , Transcriptome , Gene Expression Regulation
8.
Elife ; 122024 May 22.
Article En | MEDLINE | ID: mdl-38775664

Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.


Macrophages , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Macrophages/immunology , Mice , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Myocardial Ischemia/immunology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Infarction/immunology , Male , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/pathology , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/immunology , Disease Models, Animal
9.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750502

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Diabetic Cardiomyopathies , Macrophages , Oxidative Stress , Signal Transduction , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Animals , Oxidative Stress/drug effects , Fibrosis , Anti-Inflammatory Agents/therapeutic use , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Insulin Resistance , Inflammation Mediators/metabolism , Molecular Targeted Therapy
11.
Cell Signal ; 119: 111169, 2024 Jul.
Article En | MEDLINE | ID: mdl-38599440

Cardiac resident macrophages (CRMs) are essential in maintaining the balance of the immune homeostasis in the heart. One of the main factors in the progression of cardiovascular diseases, such as myocarditis, myocardial infarction(MI), and heart failure(HF), is the imbalance in the regulatory mechanisms of CRMs. Recent studies have reported novel heterogeneity and spatiotemporal complexity of CRMs, and their role in maintaining cardiac immune homeostasis and treating cardiovascular diseases. In this review, we focus on the functions of CRMs, including immune surveillance, immune phagocytosis, and immune metabolism, and explore the impact of CRM's homeostasis imbalance on cardiac injury and cardiac repair. We also discuss the therapeutic approaches linked to CRMs. The immunomodulatory strategies targeting CRMs may be a therapeutic approach for the treatment of cardiovascular disease.


Homeostasis , Macrophages , Humans , Macrophages/immunology , Macrophages/metabolism , Animals , Myocardium/immunology , Myocardium/metabolism , Myocardium/pathology , Phagocytosis , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism
12.
Cardiovasc Res ; 120(7): 681-698, 2024 May 29.
Article En | MEDLINE | ID: mdl-38630620

Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.


Cardiovascular Diseases , Mast Cells , Humans , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/pathology , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/genetics , Signal Transduction , Phenotype , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Cardiovascular Agents/therapeutic use , Cardiovascular Agents/pharmacology , Cell Plasticity/drug effects , Inflammation Mediators/metabolism
13.
J Clin Invest ; 134(10)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564300

Nuclear factor κ-B (NFκB) is activated in iPSC-cardiac myocytes from patients with arrhythmogenic cardiomyopathy (ACM) under basal conditions, and inhibition of NFκB signaling prevents disease in Dsg2mut/mut mice, a robust mouse model of ACM. Here, we used genetic approaches and single-cell RNA-Seq to define the contributions of immune signaling in cardiac myocytes and macrophages in the natural progression of ACM using Dsg2mut/mut mice. We found that NFκB signaling in cardiac myocytes drives myocardial injury, contractile dysfunction, and arrhythmias in Dsg2mut/mut mice. NFκB signaling in cardiac myocytes mobilizes macrophages expressing C-C motif chemokine receptor-2 (CCR2+ cells) to affected areas within the heart, where they mediate myocardial injury and arrhythmias. Contractile dysfunction in Dsg2mut/mut mice is caused both by loss of heart muscle and negative inotropic effects of inflammation in viable muscle. Single nucleus RNA-Seq and cellular indexing of transcriptomes and epitomes (CITE-Seq) studies revealed marked proinflammatory changes in gene expression and the cellular landscape in hearts of Dsg2mut/mut mice involving cardiac myocytes, fibroblasts, and CCR2+ macrophages. Changes in gene expression in cardiac myocytes and fibroblasts in Dsg2mut/mut mice were dependent on CCR2+ macrophage recruitment to the heart. These results highlight complex mechanisms of immune injury and regulatory crosstalk between cardiac myocytes, inflammatory cells, and fibroblasts in the pathogenesis of ACM.


Desmoglein 2 , Disease Models, Animal , Macrophages , NF-kappa B , Receptors, CCR2 , Signal Transduction , Animals , Mice , Macrophages/metabolism , Macrophages/pathology , Macrophages/immunology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Desmoglein 2/genetics , Desmoglein 2/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/immunology , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Arrhythmogenic Right Ventricular Dysplasia/pathology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology
14.
Cardiovasc Pathol ; 71: 107635, 2024.
Article En | MEDLINE | ID: mdl-38508436

Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.


Fibrosis , Myocardium , Precision Medicine , Humans , Myocardium/pathology , Myocardium/immunology , Animals , Heart Failure/pathology , Signal Transduction , Fibroblasts/pathology , Fibroblasts/metabolism
15.
Basic Res Cardiol ; 119(3): 453-479, 2024 Jun.
Article En | MEDLINE | ID: mdl-38491291

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.


Disease Models, Animal , Myocardial Infarction , Myocardium , T-Lymphocytes, Regulatory , Animals , Myocardial Infarction/immunology , Myocardial Infarction/pathology , T-Lymphocytes, Regulatory/immunology , Myocardium/pathology , Myocardium/immunology , Sus scrofa , Swine , Lymphocyte Activation , Male , Transcriptome , Female , Time Factors
16.
Cardiovasc Res ; 120(6): 567-580, 2024 May 07.
Article En | MEDLINE | ID: mdl-38395029

Hypertension is a major cause of cardiovascular diseases such as myocardial infarction and stroke. Cardiovascular fibrosis occurs with hypertension and contributes to vascular resistance, aortic stiffness, and cardiac hypertrophy. However, the molecular mechanisms leading to fibroblast activation in hypertension remain largely unknown. There are two types of fibrosis: replacement fibrosis and reactive fibrosis. Replacement fibrosis occurs in response to the loss of viable tissue to form a scar. Reactive fibrosis occurs in response to an increase in mechanical and neurohormonal stress. Although both types of fibrosis are considered adaptive processes, they become maladaptive when the tissue loss is too large, or the stress persists. Myofibroblasts represent a subpopulation of activated fibroblasts that have gained contractile function to promote wound healing. Therefore, myofibroblasts are a critical cell type that promotes replacement fibrosis. Although myofibroblasts were recognized as the fibroblasts participating in reactive fibrosis, recent experimental evidence indicated there are distinct fibroblast populations in cardiovascular reactive fibrosis. Accordingly, we will discuss the updated definition of fibroblast subpopulations, the regulatory mechanisms, and their potential roles in cardiovascular pathophysiology utilizing new knowledge from various lineage tracing and single-cell RNA sequencing studies. Among the fibroblast subpopulations, we will highlight the novel roles of matrifibrocytes and immune fibrocytes in cardiovascular fibrosis including experimental models of hypertension, pressure overload, myocardial infarction, atherosclerosis, aortic aneurysm, and nephrosclerosis. Exploration into the molecular mechanisms involved in the differentiation and activation of those fibroblast subpopulations may lead to novel treatments for end-organ damage associated with hypertension and other cardiovascular diseases.


Fibrosis , Hypertension , Myofibroblasts , Humans , Myofibroblasts/pathology , Myofibroblasts/metabolism , Animals , Hypertension/physiopathology , Hypertension/metabolism , Hypertension/pathology , Hypertension/immunology , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Blood Pressure , Signal Transduction , Cardiovascular Diseases/pathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/immunology , Phenotype
17.
Cardiovasc Pathol ; 70: 107624, 2024.
Article En | MEDLINE | ID: mdl-38412903

This study aimed to assess the frequency and association between transthyretin-derived (ATTR) amyloidosis and sarcoidosis in a large autopsy cohort including many cases of sudden cardiac death (SCD). We identified 73 sporadic ATTR amyloidosis cases and 11 sarcoidosis cases, among which we found two cases with concomitant ATTR amyloidosis and sarcoidosis (2.4% of all cases; 2.7% within the sporadic ATTR group). The first case involved a 92-year-old man who experienced SCD. In this patient's heart, we observed ATTR deposition and noncaseating epithelioid granulomas consistent with sarcoidosis. Focally, ATTR deposits and granulomas co-localized, with histiocyte phagocytosis of transthyretin-immunoreactive fragments. However, in most lesions, they were distributed independently. The second case was that of an 86-year-old woman who also experienced SCD. In this patient, we detected ATTR deposition in the heart and lung, while noncaseating epithelioid granulomas were only observed in the lung, liver, kidney, and thyroid. Furthermore, no co-localization of the two lesions was observed. Based on these findings, we concluded that the coexistence of ATTR amyloidosis and sarcoidosis was likely coincidental. Nevertheless, despite the rarity of the combination of these two diseases, it should be recognized as a potential cause of SCD, especially among elderly people.


Amyloid Neuropathies, Familial , Granuloma , Sarcoidosis , Humans , Aged, 80 and over , Female , Male , Granuloma/pathology , Granuloma/metabolism , Sarcoidosis/pathology , Sarcoidosis/metabolism , Sarcoidosis/complications , Amyloid Neuropathies, Familial/pathology , Amyloid Neuropathies, Familial/metabolism , Amyloid Neuropathies, Familial/complications , Aged , Autopsy , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Middle Aged , Prealbumin/analysis , Prealbumin/metabolism , Cardiomyopathies/pathology , Cardiomyopathies/metabolism , Cardiomyopathies/etiology , Cardiomyopathies/immunology
18.
Nature ; 619(7971): 801-810, 2023 Jul.
Article En | MEDLINE | ID: mdl-37438528

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Cellular Microenvironment , Heart , Multiomics , Myocardium , Humans , Cell Communication , Fibroblasts/cytology , Glutamic Acid/metabolism , Heart/anatomy & histology , Heart/innervation , Ion Channels/metabolism , Myocardium/cytology , Myocardium/immunology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Neuroglia/cytology , Pericardium/cytology , Pericardium/immunology , Plasma Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Sinoatrial Node/anatomy & histology , Sinoatrial Node/cytology , Sinoatrial Node/physiology , Heart Conduction System/anatomy & histology , Heart Conduction System/cytology , Heart Conduction System/metabolism
19.
Int. j. cardiovasc. sci. (Impr.) ; 35(3): 410-418, May-June 2022. graf
Article En | LILACS | ID: biblio-1375650

Abstract An acute respiratory syndrome caused by SARS-CoV2 was declared a pandemic by the World Health Organization. Current data in the world and in Brazil show that approximately 40% of patients who died have some type of cardiac comorbidity. There are also robust reports showing an increase in IL-6 / IL-1B / TNF-alpha and the presence of lymphopenia in patients with COVID-19. Our team and others have shown that increased cytokines are the link between arrhythmias/Left ventricular dysfunction and the immune system in different diseases. In addition, it has been well demonstrated that lymphopenia can not only be a good marker, but also a factor that causes heart failure. Thus, the present review focused on the role of the immune system upon the cardiac alterations observed in the SARS-CoV2 infection. Additionally, it was well described that SARS-CoV-2 is able to infect cardiac cells. Therefore, here it will be reviewed in deep.


Arrhythmias, Cardiac/complications , SARS-CoV-2/pathogenicity , COVID-19/complications , Heart Failure/etiology , Myocardium/immunology , Arrhythmias, Cardiac/physiopathology , Cytokines , Cytokines/immunology , Coronavirus/pathogenicity , Ventricular Dysfunction, Left/physiopathology , Myocytes, Cardiac/pathology , Severe Acute Respiratory Syndrome , Heart Failure/complications , Lymphopenia/complications
20.
Science ; 376(6589): eabl5282, 2022 04 08.
Article En | MEDLINE | ID: mdl-35389803

Adoptive cell therapy using engineered T cell receptors (TCRs) is a promising approach for targeting cancer antigens, but tumor-reactive TCRs are often weakly responsive to their target ligands, peptide-major histocompatibility complexes (pMHCs). Affinity-matured TCRs can enhance the efficacy of TCR-T cell therapy but can also cross-react with off-target antigens, resulting in organ immunopathology. We developed an alternative strategy to isolate TCR mutants that exhibited high activation signals coupled with low-affinity pMHC binding through the acquisition of catch bonds. Engineered analogs of a tumor antigen MAGE-A3-specific TCR maintained physiological affinities while exhibiting enhanced target killing potency and undetectable cross-reactivity, compared with a high-affinity clinically tested TCR that exhibited lethal cross-reactivity with a cardiac antigen. Catch bond engineering is a biophysically based strategy to tune high-sensitivity TCRs for T cell therapy with reduced potential for adverse cross-reactivity.


Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , T-Lymphocytes , Antigens, Neoplasm , Cross Reactions , Major Histocompatibility Complex , Myocardium/immunology , Peptides , T-Lymphocytes/metabolism
...