Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.914
Filter
1.
Nat Commun ; 15(1): 6480, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090108

ABSTRACT

Regulatory T cells (Tregs) are key immune regulators that have shown promise in enhancing cardiac repair post-MI, although the mechanisms remain elusive. Here, we show that rapidly increasing Treg number in the circulation post-MI via systemic administration of exogenous Tregs improves cardiac function in male mice, by limiting cardiomyocyte death and reducing fibrosis. Mechanistically, exogenous Tregs quickly home to the infarcted heart and adopt an injury-specific transcriptome that mediates repair by modulating monocytes/macrophages. Specially, Tregs lead to a reduction in pro-inflammatory Ly6CHi CCR2+ monocytes/macrophages accompanied by a rapid shift of macrophages towards a pro-repair phenotype. Additionally, exogenous Treg-derived factors, including nidogen-1 and IL-10, along with a decrease in cardiac CD8+ T cell number, mediate the reduction of the pro-inflammatory monocyte/macrophage subset in the heart. Supporting the pivotal role of IL-10, exogenous Tregs knocked out for IL-10 lose their pro-repair capabilities. Together, this study highlights the beneficial use of a Treg-based therapeutic approach for cardiac repair with important mechanistic insights that could facilitate the development of novel immunotherapies for MI.


Subject(s)
Interleukin-10 , Macrophages , Mice, Inbred C57BL , Myocardial Infarction , T-Lymphocytes, Regulatory , Animals , Myocardial Infarction/immunology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , T-Lymphocytes, Regulatory/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Interleukin-10/metabolism , Interleukin-10/genetics , Phenotype , Myocardium/pathology , Myocardium/immunology , Myocardium/metabolism , Monocytes/immunology , Monocytes/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , Fibrosis , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Mice, Knockout
2.
Front Immunol ; 15: 1398990, 2024.
Article in English | MEDLINE | ID: mdl-39086489

ABSTRACT

Background: More and more evidence supports the association between myocardial infarction (MI) and osteoarthritis (OA). The purpose of this study is to explore the shared biomarkers and pathogenesis of MI complicated with OA by systems biology. Methods: Gene expression profiles of MI and OA were downloaded from the Gene Expression Omnibus (GEO) database. The Weighted Gene Co-Expression Network Analysis (WGCNA) and differentially expressed genes (DEGs) analysis were used to identify the common DEGs. The shared genes related to diseases were screened by three public databases, and the protein-protein interaction (PPI) network was built. GO and KEGG enrichment analyses were performed on the two parts of the genes respectively. The hub genes were intersected and verified by Least absolute shrinkage and selection operator (LASSO) analysis, receiver operating characteristic (ROC) curves, and single-cell RNA sequencing analysis. Finally, the hub genes differentially expressed in primary cardiomyocytes and chondrocytes were verified by RT-qPCR. The immune cell infiltration analysis, subtypes analysis, and transcription factors (TFs) prediction were carried out. Results: In this study, 23 common DEGs were obtained by WGCNA and DEGs analysis. In addition, 199 common genes were acquired from three public databases by PPI. Inflammation and immunity may be the common pathogenic mechanisms, and the MAPK signaling pathway may play a key role in both disorders. DUSP1, FOS, and THBS1 were identified as shared biomarkers, which is entirely consistent with the results of single-cell RNA sequencing analysis, and furher confirmed by RT-qPCR. Immune infiltration analysis illustrated that many types of immune cells were closely associated with MI and OA. Two potential subtypes were identified in both datasets. Furthermore, FOXC1 may be the crucial TF, and the relationship of TFs-hub genes-immune cells was visualized by the Sankey diagram, which could help discover the pathogenesis between MI and OA. Conclusion: In summary, this study first revealed 3 (DUSP1, FOS, and THBS1) novel shared biomarkers and signaling pathways underlying both MI and OA. Additionally, immune cells and key TFs related to 3 hub genes were examined to further clarify the regulation mechanism. Our study provides new insights into shared molecular mechanisms between MI and OA.


Subject(s)
Biomarkers , Gene Expression Profiling , Gene Regulatory Networks , Myocardial Infarction , Osteoarthritis , Protein Interaction Maps , Systems Biology , Myocardial Infarction/genetics , Myocardial Infarction/immunology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Humans , Databases, Genetic , Transcriptome , Chondrocytes/metabolism , Chondrocytes/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Computational Biology/methods
3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000584

ABSTRACT

Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Inflammation , Oxidative Stress , Doxorubicin/adverse effects , Oxidative Stress/drug effects , Humans , Cardiotoxicity/etiology , Cardiotoxicity/metabolism , Animals , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Antibiotics, Antineoplastic/adverse effects , Antibiotics, Antineoplastic/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
4.
Methods Mol Biol ; 2805: 89-100, 2024.
Article in English | MEDLINE | ID: mdl-39008175

ABSTRACT

Engineered heart tissues (EHTs) have been shown to be a valuable platform for disease investigation and therapeutic testing by increasing human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturity and better recreating the native cardiac environment. The protocol detailed in this chapter describes the generation of miniaturized EHTs (mEHTs) incorporating hiPSC-CMs and human stromal cells in a fibrin hydrogel. This platform utilizes an array of silicone posts designed to fit in a standard 96-well tissue culture plate. Stromal cells and hiPSC-CMs are cast in a fibrin matrix suspended between two silicone posts, forming an mEHT that produces synchronous muscle contractions. The platform presented here has the potential to be used for high throughput characterization and screening of disease phenotypes and novel therapeutics through measurements of the myocardial function, including contractile force and calcium handling, and its compatibility with immunostaining.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Hydrogels/chemistry , Cell Differentiation , Fibrin/metabolism , Cells, Cultured , Cell Culture Techniques/methods , Stromal Cells/cytology , Tissue Culture Techniques/methods , Tissue Culture Techniques/instrumentation
5.
Int J Med Sci ; 21(9): 1718-1729, 2024.
Article in English | MEDLINE | ID: mdl-39006833

ABSTRACT

Isoproterenol (ISO) administration is a well-established model for inducing myocardial injury, replicating key features of human myocardial infarction (MI). The ensuing inflammatory response plays a pivotal role in the progression of adverse cardiac remodeling, characterized by myocardial dysfunction, fibrosis, and hypertrophy. The Mst1/Hippo signaling pathway, a critical regulator of cellular processes, has emerged as a potential therapeutic target in cardiovascular diseases. This study investigates the role of Mst1 in ISO-induced myocardial injury and explores its underlying mechanisms. Our findings demonstrate that Mst1 ablation in cardiomyocytes attenuates ISO-induced cardiac dysfunction, preserving cardiomyocyte viability and function. Mechanistically, Mst1 deletion inhibits cardiomyocyte apoptosis, oxidative stress, and calcium overload, key contributors to myocardial injury. Furthermore, Mst1 ablation mitigates endoplasmic reticulum (ER) stress and mitochondrial fission, both of which are implicated in ISO-mediated cardiac damage. Additionally, Mst1 plays a crucial role in modulating the inflammatory response following ISO treatment, as its deletion suppresses pro-inflammatory cytokine expression and neutrophil infiltration. To further investigate the molecular mechanisms underlying ISO-induced myocardial injury, we conducted a bioinformatics analysis using the GSE207581 dataset. GO and KEGG pathway enrichment analyses revealed significant enrichment of genes associated with DNA damage response, DNA repair, protein ubiquitination, chromatin organization, autophagy, cell cycle, mTOR signaling, FoxO signaling, ubiquitin-mediated proteolysis, and nucleocytoplasmic transport. These findings underscore the significance of Mst1 in ISO-induced myocardial injury and highlight its potential as a therapeutic target for mitigating adverse cardiac remodeling. Further investigation into the intricate mechanisms of Mst1 signaling may pave the way for novel therapeutic interventions for myocardial infarction and heart failure.


Subject(s)
Hippo Signaling Pathway , Isoproterenol , Myocardial Infarction , Myocytes, Cardiac , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Isoproterenol/adverse effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Signal Transduction/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Humans , Myocardial Infarction/pathology , Myocardial Infarction/chemically induced , Myocardial Infarction/metabolism , Myocardial Infarction/genetics , Ventricular Remodeling/drug effects , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Apoptosis/genetics , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Disease Models, Animal , Proto-Oncogene Proteins , Hepatocyte Growth Factor
6.
Int J Med Sci ; 21(9): 1629-1639, 2024.
Article in English | MEDLINE | ID: mdl-39006843

ABSTRACT

The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.


Subject(s)
Cardiomyopathies , Doxorubicin , Ferroptosis , Mice, Knockout , Myocytes, Cardiac , Phospholipid Hydroperoxide Glutathione Peroxidase , Sorting Nexins , Ferroptosis/drug effects , Ferroptosis/genetics , Animals , Doxorubicin/adverse effects , Doxorubicin/toxicity , Cardiomyopathies/chemically induced , Cardiomyopathies/pathology , Cardiomyopathies/genetics , Sorting Nexins/genetics , Sorting Nexins/metabolism , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Humans , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects
7.
J Gen Physiol ; 156(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38990175

ABSTRACT

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output. Rad is a Ras-related, monomeric protein that binds to L-type calcium channel ß subunits (CaVß) to promote inhibition of ICa,L. In addition to CaVß interaction conferred by the Rad core motif, the highly conserved Rad C-terminus can direct membrane association in vitro and inhibition of ICa,L in immortalized cell lines. In this work, we test the hypothesis that in cardiomyocytes the polybasic C-terminus of Rad confers t-tubular localization, and that membrane targeting is required for Rad-dependent ICa,L regulation. We introduced a 3xFlag epitope to the N-terminus of the endogenous mouse Rrad gene to facilitate analysis of subcellular localization. Full-length 3xFlag-Rad (Flag-Rad) mice were compared with a second transgenic mouse model, in which the extended polybasic C-termini of 3xFlag-Rad was truncated at alanine 277 (Flag-RadΔCT). Ventricular cardiomyocytes were isolated for anti-Flag-Rad immunocytochemistry and ex vivo electrophysiology. Full-length Flag-Rad showed a repeating t-tubular pattern whereas Flag-RadΔCT failed to display membrane association. ICa,L in Flag-RadΔCT cardiomyocytes showed a hyperpolarized activation midpoint and an increase in maximal conductance. Additionally, current decay was faster in Flag-RadΔCT cells. Myocardial ICa,L in a Rad C-terminal deletion model phenocopies ICa,L modulated in response to ß-AR stimulation. Mechanistically, the polybasic Rad C-terminus confers CaV1.2 regulation via membrane association. Interfering with Rad membrane association constitutes a specific target for boosting heart function as a treatment for heart failure with reduced ejection fraction.


Subject(s)
Calcium Channels, L-Type , Myocytes, Cardiac , Animals , Calcium Channels, L-Type/metabolism , Calcium Channels, L-Type/genetics , Mice , Myocytes, Cardiac/metabolism , Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Mice, Transgenic , ras Proteins
8.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000117

ABSTRACT

Diabetic cardiomyopathy (DCM) is a major determinant of mortality in diabetic populations, and the potential strategies are insufficient. Canagliflozin has emerged as a potential cardioprotective agent in diabetes, yet its underlying molecular mechanisms remain unclear. We employed a high-glucose challenge (60 mM for 48 h) in vitro to rat cardiomyocytes (H9C2), with or without canagliflozin treatment (20 µM). In vivo, male C57BL/6J mice were subjected to streptozotocin and a high-fat diet to induce diabetes, followed by canagliflozin administration (10, 30 mg·kg-1·d-1) for 12 weeks. Proteomics and echocardiography were used to assess the heart. Histopathological alterations were assessed by the use of Oil Red O and Masson's trichrome staining. Additionally, mitochondrial morphology and mitophagy were analyzed through biochemical and imaging techniques. A proteomic analysis highlighted alterations in mitochondrial and autophagy-related proteins after the treatment with canagliflozin. Diabetic conditions impaired mitochondrial respiration and ATP production, alongside decreasing the related expression of the PINK1-Parkin pathway. High-glucose conditions also reduced PGC-1α-TFAM signaling, which is responsible for mitochondrial biogenesis. Canagliflozin significantly alleviated cardiac dysfunction and improved mitochondrial function both in vitro and in vivo. Specifically, canagliflozin suppressed mitochondrial oxidative stress, enhancing ATP levels and sustaining mitochondrial respiratory capacity. It activated PINK1-Parkin-dependent mitophagy and improved mitochondrial function via increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Notably, PINK1 knockdown negated the beneficial effects of canagliflozin on mitochondrial integrity, underscoring the critical role of PINK1 in mediating these protective effects. Canagliflozin fosters PINK1-Parkin mitophagy and mitochondrial function, highlighting its potential as an effective treatment for DCM.


Subject(s)
Canagliflozin , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice, Inbred C57BL , Mitophagy , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Mitophagy/drug effects , Male , Mice , Protein Kinases/metabolism , Protein Kinases/genetics , Rats , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line , Signal Transduction/drug effects , Diet, High-Fat/adverse effects
9.
Front Immunol ; 15: 1404384, 2024.
Article in English | MEDLINE | ID: mdl-38953035

ABSTRACT

Introduction: Schistosomiasis (SM) is a parasitic disease caused by Schistosoma mansoni. SM causes chronic inflammation induced by parasitic eggs, with collagen/fibrosis deposition in the granuloma process in the liver, spleen, central nervous system, kidneys, and lungs. Pulmonary arterial hypertension (PAH) is a clinical manifestation characterized by high pressure in the pulmonary circulation and right ventricular overload. This study investigated the production of functional autoantibodies (fAABs) against the second loop of the G-protein-coupled receptor (GPCR) in the presence of hepatic and PAH forms of human SM. Methods: Uninfected and infected individuals presenting acute and chronic manifestations (e.g., hepatointestinal, hepato-splenic without PAH, and hepato-splenic with PAH) of SM were clinically evaluated and their blood was collected to identify fAABs/GPCRs capable of recognizing endothelin 1, angiotensin II, and a-1 adrenergic receptor. Human serum was analyzed in rat cardiomyocytes cultured in the presence of the receptor antagonists urapidil, losartan, and BQ123. Results: The fAABs/GPCRs from chronic hepatic and PAH SM individuals, but not from acute SM individuals, recognized the three receptors. In the presence of the antagonists, there was a reduction in beating rate changes in cultured cardiomyocytes. In addition, binding sites on the extracellular domain functionality of fAABs were identified, and IgG1 and/or IgG3 antibodies were found to be related to fAABs. Conclusion: Our data suggest that fAABs against GPCR play an essential role in vascular activity in chronic SM (hepatic and PAH) and might be involved in the development of hypertensive forms of SM.


Subject(s)
Autoantibodies , Receptors, G-Protein-Coupled , Autoantibodies/immunology , Autoantibodies/blood , Humans , Animals , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Rats , Male , Female , Adult , Hypertension, Pulmonary/immunology , Hypertension, Pulmonary/etiology , Middle Aged , Myocytes, Cardiac/immunology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Schistosomiasis mansoni/immunology , Schistosoma mansoni/immunology , Schistosomiasis/immunology
10.
Theranostics ; 14(9): 3719-3738, 2024.
Article in English | MEDLINE | ID: mdl-38948070

ABSTRACT

Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.


Subject(s)
Autophagy , Cardiotoxicity , Doxorubicin , Endoplasmic Reticulum , Membrane Proteins , Mitochondrial Proteins , Myocytes, Cardiac , Animals , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Mice , Autophagy/drug effects , Cardiotoxicity/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Mitophagy/drug effects , Male , Autophagosomes/metabolism , Autophagosomes/drug effects , Mice, Inbred C57BL , Disease Models, Animal
11.
PeerJ ; 12: e17333, 2024.
Article in English | MEDLINE | ID: mdl-38948204

ABSTRACT

Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.


Subject(s)
Myocardial Reperfusion Injury , Myocytes, Cardiac , Receptors, Opioid, kappa , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Receptors, Opioid, kappa/metabolism , Humans , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondrial Dynamics/physiology , Calcium/metabolism
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 630-634, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948270

ABSTRACT

Objective: To investigate the effect of Sanshentongmai (SSTM) mixture on the regulation of oxidative damage to rat cardiomyocytes (H9C2) through microRNA-146a and its mechanism. Methods: H9C2 were cultured in vitro, H2O2 was used as an oxidant to create an oxidative damage model in H9C2 cells. SSTM intervention was administered to the H9C2 cells. Then, the changes in H2O2-induced oxidative damage in H9C2 cells and the expression of microRNA-146a were observed to explore the protective effect of SSTM on H9C2 and its mechanism. H9C2 cells cultured i n vitro were divided into 3 groups, including a control group, a model group of H2O2-induced oxidative damage (referred to hereafter as the model group), and a group given H2O2 modeling plus SSTM intervention at 500 µg/L for 72 h (referred to hereafter as the treatment group). The cell viability was measured by CCK8 assay. In addition, the levels of N-terminal pro-brain natriuretic peptide (Nt-proBNP), nitric oxide (NO), high-sensitivity C-reactive protein (Hs-CRP), and angiotensin were determined by enzyme-linked immunosorbent assay (ELISA). The expression level of microRNA-146a was determined by real-time PCR (RT-PCR). Result: H9C2 cells were pretreated with SSTM at mass concentrations ranging from 200 to 1500 µg/L. Then, CCK8 assay was performed to measure cell viability and the findings showed that the improvement in cell proliferation reached its peak when the mass concentration of SSTM was 500 µg/L, which was subsequently used as the intervention concentration. ELISA was performed to measure the indicators related to heart failure, including Nt-proBNP, NO, Hs-CRP, and angiotensin Ⅱ. Compared with those of the control group, the expressions of Nt-proBNP and angiotensin Ⅱ in the treatment group were up-regulated (P<0.05), while the expression of NO was down-regulated (P<0.05). There was no significant difference in the expression of Hs-CRP between the treatment group and the control group. These findings indicate that SSTM could effectively ameliorate oxidative damage in H9C2 rat cardiomyocytes. Finally, according to the RT-PCR findings for the expression of microRNA-146a in each group, H2O2 treatment at 15 µmol/L could significantly reduce the expression of microRNA-146a, and the expression of microRNA-146a in the treatment group was nearly doubled compared with that in the model group. There was no significant difference between the treatment group and the control group. Conclusion: SSTM can significantly resist the H2O2-induced oxidative damage of H9C2 cells and may play a myocardial protective role by upregulating microRNA-146a.


Subject(s)
Drugs, Chinese Herbal , Hydrogen Peroxide , MicroRNAs , Myocytes, Cardiac , Oxidative Stress , Up-Regulation , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/cytology , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Rats , Oxidative Stress/drug effects , Hydrogen Peroxide/toxicity , Drugs, Chinese Herbal/pharmacology , Up-Regulation/drug effects , Cell Survival/drug effects , Cell Line , Drug Combinations
13.
Pharmacogenomics J ; 24(4): 21, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951505

ABSTRACT

There is a known genetic susceptibility to anthracycline-induced cardiac dysfunction in childhood cancer survivors, but this has not been adequately shown in adolescent and young adult (AYA) patients. Our aim was to determine if the previously identified variants associated with cardiac dysfunction in childhood cancer patients affect AYA cancer patients similarly. Forty-five variants were selected for analysis in 253 AYAs previously treated with anthracyclines. We identified four variants that were associated with cardiac dysfunction: SLC10A2:rs7319981 (p = 0.017), SLC22A17:rs4982753 (p = 0.019), HAS3:rs2232228 (p = 0.023), and RARG:rs2229774 (p = 0.050). HAS3:rs2232228 and SLC10A2:rs7319981 displayed significant effects in our AYA cancer survivor population that were in the opposite direction than that reported in childhood cancer survivors. Genetic variants in the host genes were further analyzed for additional associations with cardiotoxicity in AYA cancer survivors. The host genes were then evaluated in a panel of induced pluripotent stem cell-derived cardiomyocytes to assess changes in levels of expression when treated with doxorubicin. Significant upregulation of HAS3 and SLC22A17 expression was observed (p < 0.05), with non-significant anthracycline-responsivity observed for RARG. Our study demonstrates that there is a genetic influence on cardiac dysfunction in AYA cancer patients, but there may be a difference in the role of genetics between childhood and AYA cancer survivors.


Subject(s)
Anthracyclines , Cancer Survivors , Cardiotoxicity , Genetic Predisposition to Disease , Humans , Adolescent , Anthracyclines/adverse effects , Young Adult , Male , Female , Cardiotoxicity/genetics , Adult , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Polymorphism, Single Nucleotide/genetics , Neoplasms/drug therapy , Neoplasms/genetics , Heart Diseases/chemically induced , Heart Diseases/genetics , Antibiotics, Antineoplastic/adverse effects , Risk Factors
14.
J Clin Invest ; 134(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949021

ABSTRACT

Mechanical stress from cardiomyocyte contraction causes misfolded sarcomeric protein replacement. Sarcomeric maintenance utilizes localized pools of mRNAs and translation machinery, yet the importance of localized translation remains unclear. In this issue of the JCI, Haddad et al. identify the Z-line as a critical site for localized translation of sarcomeric proteins, mediated by ribosomal protein SA (RPSA). RPSA localized ribosomes at Z-lines and was trafficked via microtubules. Cardiomyocyte-specific loss of RPSA in mice resulted in mislocalized protein translation and caused structural dilation from myocyte atrophy. These findings demonstrate the necessity of RPSA-dependent spatially localized translation for sarcomere maintenance and cardiac structure and function.


Subject(s)
Myocytes, Cardiac , Protein Biosynthesis , Ribosomal Proteins , Sarcomeres , Sarcomeres/metabolism , Sarcomeres/pathology , Animals , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Mice , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ribosomes/metabolism , Ribosomes/genetics , Humans , Microtubules/metabolism
15.
Vascul Pharmacol ; 155: 107324, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38985581

ABSTRACT

Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake.


Subject(s)
Cardiotoxicity , Doxorubicin , Energy Metabolism , Fatty Acids , Glucose , Oxidation-Reduction , Animals , Doxorubicin/toxicity , Glucose/metabolism , Fatty Acids/metabolism , Energy Metabolism/drug effects , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Glycolysis/drug effects , Autophagy/drug effects , Male , Signal Transduction/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Citric Acid Cycle/drug effects , Mice, Inbred C57BL , Heart Diseases/chemically induced , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/prevention & control , Heart Diseases/physiopathology , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice, Knockout , Disease Models, Animal , Reactive Oxygen Species/metabolism , Glucose Transporter Type 4/metabolism , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL