Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.336
Filter
1.
PLoS One ; 19(7): e0303472, 2024.
Article in English | MEDLINE | ID: mdl-38990864

ABSTRACT

Plasmid transfection in cells is widely employed to express exogenous proteins, offering valuable mechanistic insight into their function(s). However, plasmid transfection efficiency in primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs) is restricted with lipid-based transfection reagents such as Lipofectamine. The STING pathway, activated by foreign DNA in the cytosol, prevents foreign gene expression and induces DNA degradation. To address this, we explored the potential of STING inhibitors on the impact of plasmid expression in primary ECs and SMCs. Primary human aortic endothelial cells (HAECs) were transfected with a bicistronic plasmid expressing cytochrome b5 reductase 4 (CYB5R4) and enhanced green fluorescent protein (EGFP) using Lipofectamine 3000. Two STING inhibitors, MRT67307 and BX795, were added during transfection and overnight post-transfection. As a result, MRT67307 significantly enhanced CYB5R4 and EGFP expression, even 24 hours after its removal. In comparison, MRT67307 pretreatment did not affect transfection, suggesting the inhibitor's effect was readily reversible. The phosphorylation of endothelial nitric oxide synthase (eNOS) at Serine 1177 (S1177) by vascular endothelial growth factor is essential for endothelial proliferation, migration, and survival. Using the same protocol, we transfected wild-type and phosphorylation-incapable mutant (S1177A) eNOS in HAECs. Both forms of eNOS localized on the plasma membrane, but only the wild-type eNOS was phosphorylated by vascular endothelial growth factor treatment, indicating normal functionality of overexpressed proteins. MRT67307 and BX795 also improved plasmid expression in human and rat aortic SMCs. In conclusion, this study presents a modification enabling efficient plasmid transfection in primary vascular ECs and SMCs, offering a favorable approach to studying protein function(s) in these cell types, with potential implications for other primary cell types that are challenging to transfect.


Subject(s)
Endothelial Cells , Membrane Proteins , Plasmids , Transfection , Humans , Plasmids/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endothelial Cells/metabolism , Endothelial Cells/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Animals , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Cells, Cultured , Phosphorylation , Rats , Gene Expression , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3356-3364, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041099

ABSTRACT

This study aims to examine the effect of salidroside(SAL) on the phenotypic switching of human aortic smooth muscle cells(HASMC) induced by the platelet-derived growth factor-BB(PDGF-BB) and investigate the pharmacological mechanism. Firstly, the safe concentration of SAL was screened by the lactate dehydrogenase release assay. HASMC were divided into control, model, and SAL groups, and the cells in other groups except the control group were treated with PDGF-BB for the modeling of phenotypic switching. Cell proliferation and migration were detected by the cell-counting kit(CCK-8) assay and Transwell assay, respectively. The cytoskeletal structure was observed by F-actin staining with fluorescently labeled phalloidine. The protein levels of proliferating cell nuclear antigen(PCNA), migration-related protein matrix metalloprotein 9(MMP-9), fibronectin, α-smooth muscle actin(α-SMA), and osteopontin(OPN) were determined by Western blot. To further investigate the pharmacological mechanism of SAL, this study determined the expression of protein kinase B(Akt) and mammalian target of rapamycin(mTOR), as well as the upstream proteins phosphatase and tensin homologue(PTEN) and platelet-derived growth factor receptor ß(PDGFR-ß) and the downstream protein hypoxia-inducible factor-1α(HIF-1α) of the Akt/mTOR signaling pathway. The results showed that the HASMCs in the model group presented significantly increased proliferation and migration, the switching from a contractile phenotype to a secretory phenotype, and cytoskeletal disarrangement. Compared with the model group, SAL weakened the proliferation and migration of HASMC, promoted the expression of α-SMA(a contractile phenotype marker), inhibited the expression of OPN(a secretory phenotype marker), and repaired the cytoskeletal disarrangement. Furthermore, compared with the control group, the modeling up-regulated the levels of phosphorylated Akt and mTOR and the relative expression of PTEN, HIF-1α, and PDGFR-ß. Compared with the model group, SAL down-regulated the protein levels of phosphorylated Akt and mTOR, PTEN, PDGFR-ß, and HIF-1α. In conclusion, SAL exerts a protective effect on the HASMCs exposed to PDGF-BB by regulating the PDGFR-ß/Akt/mTOR/HIF-1α signaling pathway.


Subject(s)
Cell Movement , Cell Proliferation , Glucosides , Myocytes, Smooth Muscle , Phenols , Cell Proliferation/drug effects , Glucosides/pharmacology , Cell Movement/drug effects , Phenols/pharmacology , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction/drug effects , Phenotype , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cells, Cultured , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Becaplermin/pharmacology , Aorta/drug effects , Aorta/cytology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteopontin/metabolism , Osteopontin/genetics
3.
J Mech Behav Biomed Mater ; 157: 106639, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970943

ABSTRACT

An intricate reciprocal relationship exists between adherent synthetic cells and their extracellular matrix (ECM). These cells deposit, organize, and degrade the ECM, which in turn influences cell phenotype via responses that include sensitivity to changes in the mechanical state that arises from changes in external loading. Collagen-based tissue equivalents are commonly used as simple but revealing model systems to study cell-matrix interactions. Nevertheless, few quantitative studies report changes in the forces that the cells establish and maintain in such gels under dynamic loading. Moreover, most prior studies have been limited to uniaxial experiments despite many soft tissues, including arteries, experiencing multiaxial loading in vivo. To begin to close this gap, we use a custom biaxial bioreactor to subject collagen gels seeded with primary aortic smooth muscle cells to different biaxial loading conditions. These conditions include cyclic loading with different amplitudes as well as different mechanical constraints at the boundaries of a cruciform sample. Irrespective of loading amplitude and boundary condition, similar mean steady-state biaxial forces emerged across all tests. Additionally, stiffness-force relationships assessed via intermittent equibiaxial force-extension tests showed remarkable similarity for ranges of forces to which the cells adapted during periods of cyclic loading. Taken together, these findings are consistent with a load-mediated homeostatic response by vascular smooth muscle cells.


Subject(s)
Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Animals , Biomechanical Phenomena , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Tissue Engineering , Stress, Mechanical , Mechanical Phenomena , Collagen/metabolism , Bioreactors , Weight-Bearing , Extracellular Matrix/metabolism , Rats , Materials Testing , Aorta/cytology
4.
Tissue Eng Regen Med ; 21(5): 723-735, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834902

ABSTRACT

BACKGROUND: A drug-eluting stent (DES) is a highly beneficial medical device used to widen or unblock narrowed blood vessels. However, the drugs released by the implantation of DES may hinder the re-endothelialization process, increasing the risk of late thrombosis. We have developed a tacrolimus-eluting stent (TES) that as acts as a potent antiproliferative and immunosuppressive agent, enhancing endothelial regeneration. In addition, we assessed the safety and efficacy of TES through both in vitro and in vivo tests. METHODS: Tacrolimus and Poly(lactic-co-glycolic acid) (PLGA) were applied to the metal stent using electrospinning equipment. The surface morphology of the stent was examined before and after coating using a scanning electron microscope (SEM) and energy dispersive X-rays (EDX). The drug release test was conducted through high-performance liquid chromatography (HPLC). Cell proliferation and migration assays were performed using smooth muscle cells (SMC). The stent was then inserted into the porcine coronary artery and monitored for a duration of 4 weeks. RESULTS: SEM analysis confirmed that the coating surface was uniform. Furthermore, EDX analysis showed that the surface was coated with both polymer and drug components. The HPCL analysis of TCL at a wavelength of 215 nm revealed that the drug was continuously released over a period of 4 weeks. Smooth muscle cell migration was significantly decreased in the tacrolimus group (54.1% ± 11.90%) compared to the non-treated group (90.1% ± 4.86%). In animal experiments, the stenosis rate was significantly reduced in the TES group (29.6% ± 7.93%) compared to the bare metal stent group (41.3% ± 10.18%). Additionally, the fibrin score was found to be lower in the TES group compared to the group treated with a sirolimus-eluting stent (SES). CONCLUSION: Similar to SES, TES reduces neointimal proliferation in a porcine coronary artery model, specifically decreasing the fibrins score. Therefore, tacrolimus could be considered a promising drug for reducing restenosis and thrombosis.


Subject(s)
Cell Proliferation , Coronary Vessels , Drug-Eluting Stents , Tacrolimus , Animals , Tacrolimus/pharmacology , Coronary Vessels/drug effects , Swine , Cell Proliferation/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Cell Movement/drug effects
5.
Biomolecules ; 14(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38927112

ABSTRACT

De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.


Subject(s)
Aptamers, Nucleotide , Cell Differentiation , Cell Proliferation , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Nucleolin , Phosphoproteins , RNA-Binding Proteins , Animals , RNA-Binding Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Aptamers, Nucleotide/pharmacology , Cell Proliferation/drug effects , Phosphoproteins/metabolism , Cell Differentiation/drug effects , Humans , Rats , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Mice , Cells, Cultured , Oligodeoxyribonucleotides/pharmacology , Male , Rats, Sprague-Dawley , Mice, Inbred C57BL
6.
Tissue Eng Part C Methods ; 30(7): 279-288, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943281

ABSTRACT

The synthesis and assembly of mature, organized elastic fibers remains a limitation to the clinical use of many engineered tissue replacements. There is a critical need for a more in-depth understanding of elastogenesis regulation for the advancement of methods to induce and guide production of elastic matrix structures in engineered tissues that meet the structural and functional requirements of native tissue. The dramatic increase in elastic fibers through normal pregnancy has led us to explore the potential role of mechanical stretch in combination with pregnancy levels of the steroid hormones 17ß-estradiol and progesterone on elastic fiber production by human uterine myometrial smooth muscle cells in a three-dimensional (3D) culture model. Opposed to a single strain regimen, we sought to better understand how the amplitude and frequency parameters of cyclic strain influence elastic fiber production in these myometrial tissue constructs (MTC). Mechanical stretch was applied to MTC at a range of strain amplitudes (5%, 10%, and 15% at 0.5 Hz frequency) and frequencies (0.1 Hz, 0.5 Hz, 1 Hz, and constant 0 Hz at 10% amplitude), with and without pregnancy-level hormones, for 6 days. MTC were assessed for cell proliferation, matrix elastin protein content, and expression of the main elastic fiber genes, tropoelastin (ELN) and fibrillin-1 (FBN1). Significant increases in elastin protein and ELN and FBN1 mRNA were produced from samples subjected to a 0.5 Hz, 10% strain regimen, as well as samples stretched at higher amplitude (15%, 0.5 Hz) and higher frequency (1 Hz, 10%); however, no significant effects because of third-trimester mimetic hormone treatment were determined. These results establish that a minimum level of strain is required to stimulate the synthesis of elastic fiber components in our culture model and show this response can be similarly enhanced by increasing either the amplitude or frequency parameter of applied strain. Further, our results demonstrate strain alone is sufficient to stimulate elastic fiber production and suggest hormones may not be a significant factor in regulating elastin synthesis. This 3D culture model will provide a useful tool to further investigate mechanisms underlying pregnancy-induced de novo elastic fiber synthesis and assembly by uterine smooth muscle cells.


Subject(s)
Elastin , Myometrium , Stress, Mechanical , Humans , Female , Elastin/metabolism , Elastin/biosynthesis , Myometrium/metabolism , Myometrium/cytology , Cells, Cultured , Pregnancy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Tropoelastin/metabolism , Cell Culture Techniques, Three Dimensional/methods , Fibrillin-1/metabolism , Fibrillins/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Tissue Engineering/methods , Estradiol/biosynthesis , Estradiol/pharmacology , Estradiol/metabolism , Models, Biological , Adipokines
7.
Exp Cell Res ; 440(2): 114136, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38909881

ABSTRACT

Considering the importance of alternative methodologies to animal experimentation, we propose an organoid-based biological model for in vitro blood vessel generation, achieved through co-culturing endothelial and vascular smooth muscle cells (VSMCs). Initially, the organoids underwent comprehensive characterization, revealing VSMCs (α-SMA + cells) at the periphery and endothelial cells (CD31+ cells) at the core. Additionally, ephrin B2 and ephrin B4, genes implicated in arterial and venous formation respectively, were used to validate the obtained organoid. Moreover, the data indicates exclusive HIF-1α expression in VSMCs, identified through various methodologies. Subsequently, we tested the hypothesis that the generated blood vessels have the capacity to modulate the osteogenic phenotype, demonstrating the ability of HIF-1α to promote osteogenic signals, primarily by influencing Runx2 expression. Overall, this study underscores that the methodology employed to create blood vessel organoids establishes an experimental framework capable of producing a 3D culture model of both venous and arterial endothelial tissues. This model effectively guides morphogenesis from mesenchymal stem cells through paracrine signaling, ultimately leading to an osteogenic acquisition phenotype, with the dynamic involvement of HIF-1α.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Organoids , Osteogenesis , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Osteogenesis/genetics , Organoids/metabolism , Organoids/cytology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Cells, Cultured , Blood Vessels/metabolism , Blood Vessels/cytology , Blood Vessels/growth & development , Coculture Techniques/methods , Cell Differentiation , Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology
8.
Biomater Adv ; 162: 213926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38917650

ABSTRACT

Tissue engineering of small-diameter vessels remains challenging due to the inadequate ability to promote endothelialization and infiltration of smooth muscle cells (SMCs). Ideal vascular graft is expected to provide the ability to support endothelial monolayer formation and SMCs infiltration. To achieve this, vascular scaffolds with both orientation and dimension hierarchies were prepared, including hierarchically random vascular scaffold (RVS) and aligned vascular scaffold (AVS), by utilizing degradable poly(ε-caprolactone)-co-poly(ethylene glycol) (PCE) and the blend of PCE/gelatin (PCEG) as raw materials. In addition to the orientation hierarchy, dimension hierarchy with small pores in the inner layer and large pores in the outer layer was also constructed in both RVS and AVS to further investigate the promotion of vascular reconstruction by hierarchical structures in vascular scaffolds. The results show that the AVS with an orientation hierarchy that consists with the natural vascular structure had better mechanical properties and promotion effect on the proliferation of vascular cells than RVS, and also exhibited excellent contact guidance effects on cells. While the dimension hierarchy in both RVS and AVS was favorable to the rapid infiltration of SMCs in a short culture time in vitro. Besides, the results of subcutaneous implantation further demonstrate that AVS achieved a fully infiltrated outer layer with wavy elastic fibers-mimic strips formation by day 14, ascribing to hierarchies of aligned orientation and porous dimension. The results further indicate that the scaffolds with both orientation and dimension hierarchical structures have great potential in the application of promoting the vascular reconstruction.


Subject(s)
Blood Vessel Prosthesis , Myocytes, Smooth Muscle , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Myocytes, Smooth Muscle/cytology , Polyesters/chemistry , Humans , Gelatin/chemistry , Biocompatible Materials/chemistry , Polyethylene Glycols/chemistry , Cell Proliferation , Porosity , Human Umbilical Vein Endothelial Cells
9.
Biochem Biophys Res Commun ; 725: 150248, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38870847

ABSTRACT

The excessive migration and proliferation of vascular smooth muscle cells (VSMCs) plays a vital role in vascular intimal hyperplasia. CIRBP is involved in the proliferation of various cancer cells. This study was aimed to explore the role of CIRBP in the proliferation and migration of VSMCs. Adenovirus was used to interfere with cold-inducible RNA-binding protein (CIRBP) expression, while lentivirus was used to overexpress Ras homolog enriched in brain (Rheb). Western blotting and qRT-PCR were used to evaluate the expression of CIRBP, Rheb, and mechanistic target of rapamycin complex 1 (mTORC1) activity. The cell proliferation was determined by Ki67 immunofluorescence staining and CCK-8 assay. The wound healing assay was performed to assess cell migration. Additionally, immunohistochemistry was conducted to explore the role of CIRBP in intimal hyperplasia after vascular injury. We found that silencing CIRBP inhibited the proliferation and migration of VSMCs, decreased the expression of Rheb and mTORC1 activity. Restoration of mTORC1 activity via insulin or overexpression of Rheb via lentiviral transfection both attenuated the inhibitory effects of silencing CIRBP on the proliferation and migration of VSMCs. Moreover, Rheb overexpression abolished the inhibitory effect of silencing CIRBP on mTORC1 activity in VSMCs. CIRBP was upregulated in the injured carotid artery. Silencing CIRBP ameliorated intimal hyperplasia after vascular injury. In the summary, silencing CIRBP attenuates mTORC1 activity via reducing Rheb expression, thereby supressing the proliferation and migration of VSMCs and intimal hyperplasia after vascular injury.


Subject(s)
Cell Movement , Cell Proliferation , Mechanistic Target of Rapamycin Complex 1 , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , RNA-Binding Proteins , Ras Homolog Enriched in Brain Protein , Mechanistic Target of Rapamycin Complex 1/metabolism , Ras Homolog Enriched in Brain Protein/metabolism , Ras Homolog Enriched in Brain Protein/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Animals , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/cytology , Cells, Cultured , Signal Transduction , Male , Rats , Rats, Sprague-Dawley , Humans
10.
Int J Biol Macromol ; 272(Pt 2): 132747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821301

ABSTRACT

Degradable magnesium alloy stents are considered to be ideal candidates to replace the traditional non-degradable stents for the treatment of cardiovascular diseases. However, bare magnesium alloy stents usually degrade too fast and show poor hemocompatibility and cytocompatibility, which seriously affects their clinical use. In this study, surface modification based on the MgF2 layer, polydopamine (PDA) coating, fucoidan and CAG peptides was performed on the Mg-Zn-Y-Nd (ZE21B) magnesium alloy with the purpose of improving its corrosion resistance, hemocompatibility and cytocompatibility for vascular stent application. After modification, the ZE21B alloy showed better corrosion resistance. Moreover, the lower hemolysis rate, platelet adhesion and activation, and fibrinogen adsorption and denaturation proved the improved hemocompatibility of modified ZE21B alloy in in vitro blood experiments. Furthermore, the co-immobilization of fucoidan and CAG peptides significantly promoted the adhesion, proliferation, migration and NO release of endothelial cells (ECs) on the modified ZE21B alloy, and meanwhile the modification with fucoidan and CAG peptides inhibited the adhesion and proliferation of smooth muscle cells (SMCs) and suppressed the expression of proinflammatory factors in the macrophages (MAs). The surface modification obviously enhanced the corrosion resistance, hemocompatibility and cytocompatibility of ZE21B alloy, and provided an effective strategy for the development of degradable vascular stents.


Subject(s)
Alloys , Cell Adhesion , Magnesium , Materials Testing , Peptides , Polysaccharides , Alloys/chemistry , Alloys/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Humans , Peptides/chemistry , Peptides/pharmacology , Magnesium/chemistry , Cell Adhesion/drug effects , Animals , Cell Proliferation/drug effects , Hemolysis/drug effects , Corrosion , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Platelet Adhesiveness/drug effects , Mice , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Surface Properties , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Aquatic Organisms/chemistry , Indoles , Polymers
11.
Biomaterials ; 309: 122600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38718614

ABSTRACT

Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.


Subject(s)
Gelatin , Hydrogels , Ischemia , Neovascularization, Physiologic , Polyurethanes , Printing, Three-Dimensional , Animals , Gelatin/chemistry , Polyurethanes/chemistry , Hydrogels/chemistry , Ischemia/therapy , Neovascularization, Physiologic/drug effects , Mice , Humans , Myocytes, Smooth Muscle/cytology , Cross-Linking Reagents/chemistry , Human Umbilical Vein Endothelial Cells , Hindlimb/blood supply , Hindlimb/pathology , Male , Tissue Engineering/methods , Bioprinting/methods
12.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810467

ABSTRACT

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Subject(s)
Cell Adhesion , Cell Proliferation , Nanofibers , Polyesters , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Cell Proliferation/drug effects , Humans , Cell Adhesion/drug effects , Animals , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Elastin/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Mice , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/cytology
13.
Artif Organs ; 48(8): 839-848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38660762

ABSTRACT

BACKGROUND: Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS: Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS: TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS: TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.


Subject(s)
Cell Movement , Cell Proliferation , Cell Survival , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Tissue Scaffolds , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Animals , Cell Proliferation/drug effects , Cell Movement/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Tissue Scaffolds/chemistry , Cattle , Cells, Cultured , Tissue Engineering/methods , Cell Culture Techniques, Three Dimensional/methods
14.
Adv Healthc Mater ; 13(18): e2304254, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593989

ABSTRACT

In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.


Subject(s)
Hydrogels , Myocytes, Smooth Muscle , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Animals , Mechanotransduction, Cellular/physiology , Swine , Extracellular Matrix/metabolism , Cells, Cultured
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 321-327, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686413

ABSTRACT

Previous studies have shown that growth arrest, dedifferentiation, and loss of original function occur in cells after multiple generations of culture, which are attributed to the lack of stress stimulation. To investigate the effects of multi-modal biomimetic stress (MMBS) on the biological function of human bladder smooth muscle cells (HBSMCs), a MMBS culture system was established to simulate the stress environment suffered by the bladder, and HBSMCs were loaded with different biomimetic stress for 24 h. Then, cell growth, proliferation and functional differentiation were detected. The results showed that MMBS promoted the growth and proliferation of HBSMCs, and 80 cm H 2O pressure with 4% stretch stress were the most effective in promoting the growth and proliferation of HBSMCs and the expression level of α-smooth muscle actin and smooth muscle protein 22-α. These results suggest that the MMBS culture system will be beneficial in regulating the growth and functional differentiation of HBSMCs in the construction of tissue engineered bladder.


Subject(s)
Actins , Cell Differentiation , Cell Proliferation , Myocytes, Smooth Muscle , Stress, Mechanical , Tissue Engineering , Urinary Bladder , Urinary Bladder/cytology , Urinary Bladder/physiology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Humans , Tissue Engineering/methods , Actins/metabolism , Biomimetics , Muscle Proteins/metabolism , Cells, Cultured
16.
Int J Biol Macromol ; 269(Pt 1): 131849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670202

ABSTRACT

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU). Then, the NPU core-shell structured nanofiber grafts with requisite mechanical properties and biopeptide release for inflammation manipulation are fabricated by electrospinning and lyophilization. Finally, the surface of tubular NPU nanofiber grafts is coated with heparin/gelatin and crosslinked with glutaraldehyde to obtain small-caliber artificial blood vessels (ABVs) with the ability of vascular revascularization. We demonstrate that artificial blood vessel grafts promote the growth of endothelial cells but inhibit the growth of smooth muscle cells by the continuous release of NO; vascular grafts can regulate inflammatory balance for vascular tissue remodel without excessive collagen deposition through the release of biological peptides. Vascular grafts prevent thrombus and vascular stenosis to obtain long-term patency. Hence, our work paves a new way to develop small-caliber artificial blood vessel grafts that can maintain long-term patency in vivo and remodel vascular tissue successfully.


Subject(s)
Blood Vessel Prosthesis , Gelatin , Heparin , Polyurethanes , Polyurethanes/chemistry , Gelatin/chemistry , Heparin/chemistry , Heparin/pharmacology , Humans , Nanofibers/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nitric Oxide/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism
17.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677153

ABSTRACT

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Subject(s)
Coated Materials, Biocompatible , Stents , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Coronary Vessels/drug effects , Platelet Adhesiveness/drug effects , Anticoagulants/pharmacology , Anticoagulants/chemistry , Surface Properties , Cell Proliferation/drug effects , Stainless Steel/chemistry , Blood Platelets/drug effects , Blood Platelets/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Animals , Levodopa/chemistry , Levodopa/pharmacology
18.
Methods Mol Biol ; 2803: 49-58, 2024.
Article in English | MEDLINE | ID: mdl-38676884

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe vascular disease characterized by persistent precapillary pulmonary hypertension, leading to right heart failure and death. Despite intense research in the last decades, PAH remains an incurable disease with high morbidity and mortality. New directions and therapies to improve understanding and treatment of PAH are desperately needed. The pathological mechanisms leading to this fatal disorder remain mostly undetermined, although structural remodeling of the pulmonary vessels is known to be an early feature of PAH. Pulmonary vascular remodeling includes proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). The use of in vitro approaches is useful to delineate the mechanisms involved in the pathogenesis of PAH and to identify new therapeutic strategies for PAH. In this chapter, we describe protocols for culturing and assessing proliferation and migration of human PASMCs and PAECs.


Subject(s)
Cell Movement , Cell Proliferation , Endothelial Cells , Myocytes, Smooth Muscle , Pulmonary Artery , Humans , Pulmonary Artery/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Muscle, Smooth, Vascular/cytology
19.
Adv Healthc Mater ; 13(18): e2303664, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38471185

ABSTRACT

Advanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart-on-Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user-friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs), endothelial (ECs)- and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self-organized miniaturized micro-EHTs (µEHTs) with a CM-EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier-like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.


Subject(s)
Lab-On-A-Chip Devices , Myocytes, Cardiac , Tissue Engineering , Humans , Tissue Engineering/methods , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Myocytes, Cardiac/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/metabolism
20.
Dev Cell ; 59(9): 1159-1174.e5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38537630

ABSTRACT

Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.


Subject(s)
Cell Differentiation , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Signal Transduction , Lymphatic Vessels/metabolism , Lymphatic Vessels/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Intestines/cytology , Muscle, Smooth/metabolism , Muscle, Smooth/cytology , Stem Cells/cytology , Stem Cells/metabolism , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL