Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 558
1.
Food Res Int ; 187: 114361, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763645

This work investigated the cryoprotective effect of trehalose (TH) and sodium pyrophosphate (SPP) alone and in combination on myofibrillar protein (MP) oxidation and structural changes in silver carp surimi during 90 days of frozen storage (-20 °C). TH combined with SPP was significantly more effective than single TH or SPP in preventing MP oxidation (P < 0.05), showing a higher SH content (6.05 nmol/mg protein), and a lower carbonyl (4.24 nmol/mg protein) and dityrosine content (1280 A.U.). SDS-PAGE results indicated that TH combined with SPP did not differ significantly from TH and SPP in inhibiting protein degradation but was more effective in inhibiting protein crosslinking. Moreover, all cryoprotectants could stabilise the secondary and tertiary structures and inhibit unfolded and aggregation of MP, with the combination of TH and SPP being the best. It's worth noting that TH combined with SPP had a synergistic effect on inhibiting the decrease in α-helix content and gel-forming ability, and the increase in surface hydrophobicity. Overall, TH combined with SPP could significantly inhibited MP oxidation and structural changes in surimi during frozen storage and improve the gel-forming ability, which was significantly better than single TH or SPP.


Carps , Cryoprotective Agents , Diphosphates , Food Storage , Freezing , Muscle Proteins , Oxidation-Reduction , Trehalose , Animals , Trehalose/chemistry , Food Storage/methods , Diphosphates/chemistry , Muscle Proteins/chemistry , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Fish Proteins/chemistry , Food Preservation/methods , Fish Products/analysis , Myofibrils/chemistry
2.
Food Res Int ; 187: 114413, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763665

In this study, the highly loaded myofibrillar protein (MP)-luteolin (Lut) complexes were noncovalently constructed by using green high-pressure homogenization technology (HPH) and high-pressure micro-fluidization technology (HPM), aiming to optimize the encapsulation efficiency of flavonoids in the protein-based vehicle without relying on the organic solvent (i.e. DMSO, ethanol, etc.). The loading efficiency of Lut into MPs could reach 100 % with a concentration of 120 µmol/g protein by using HPH (103 MPa, 2 passes) without ethanol adoption. The in vitro gastrointestinal digestion behavior and antioxidant activity of the complexes were then compared with those of ethanol-assisted groups. During gastrointestinal digestion, the MP digestibility of complexes, reaching more than 70.56 % after thermal treatment, was higher than that of sole protein. The release profile of Lut encapsulated in ethanol-containing and ethanol-free samples both well fitted with the Hixson-Crowell release kinetic model (R2 = 0.92 and 0.94, respectively), and the total phenol content decreased by ≥ 40.02 % and ≥ 62.62 %, respectively. The in vitro antioxidant activity (DPPH, ABTS, and Fe2+) of the digestive products was significantly improved by 23.89 %, 159.69 %, 351.12 % (ethanol groups) and 13.43 %, 125.48 %, 213.95 % (non-ethanol groups). The 3 mg/mL freeze-dried digesta significantly alleviated lipid accumulation and oxidative stress in HepG2 cells. The triglycerides and malondialdehyde contents decreased by at least 57.62 % and 67.74 % after digesta treatment. This study provides an easily approached and environment-friendly strategy to construct a highly loaded protein-flavonoid conjugate, which showed great potential in the formulation of healthier meat products.


Antioxidants , Biological Availability , Digestion , Humans , Antioxidants/chemistry , Myofibrils/chemistry , Myofibrils/metabolism , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Gastrointestinal Tract/metabolism , Animals
3.
J Texture Stud ; 55(3): e12835, 2024 Jun.
Article En | MEDLINE | ID: mdl-38778604

Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.


Chickens , Sterilization , Animals , Sterilization/methods , Hot Temperature , Meat Products/analysis , Food Handling/methods , Proteolysis , Meat/analysis , Actins , Myofibrils/chemistry , Muscle Proteins
4.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article En | MEDLINE | ID: mdl-38697415

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
5.
Food Chem ; 451: 139502, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38701732

In this study, the correlation between protein phosphorylation and deterioration in the quality of tilapia during storage in ice was examined by assessing changes in texture, water-holding capacity (WHC), and biochemical characteristics of myofibrillar protein throughout 7 days of storage. The hardness significantly decreased from 471.50 to 252.17 g, whereas cooking and drip losses significantly increased from 26.5% to 32.6% and 2.9% to 9.1%, respectively (P < 0.05). Myofibril fragmentation increased, while myofibrillar protein sulfhydryl content and Ca2+-ATPase activity decreased from 119.33 to 89.29 µmol/g prot and 0.85 to 0.46 µmolPi/mg prot/h, respectively (P < 0.05). Correlation analysis revealed that the myofibrillar protein phosphorylation level was positively correlated with hardness and Ca2+-ATPase activity but negatively correlated with WHC. Myofibrillar protein phosphorylation affects muscle contraction by influencing the dissociation of actomyosin, thereby regulating hardness and WHC. This study provides novel insights for the establishment of quality control strategies for tilapia storage based on protein phosphorylation.


Fish Proteins , Food Storage , Ice , Muscle Proteins , Myofibrils , Tilapia , Animals , Phosphorylation , Tilapia/metabolism , Muscle Proteins/metabolism , Muscle Proteins/chemistry , Fish Proteins/chemistry , Fish Proteins/metabolism , Ice/analysis , Myofibrils/chemistry , Myofibrils/metabolism , Seafood/analysis
6.
Meat Sci ; 213: 109507, 2024 Jul.
Article En | MEDLINE | ID: mdl-38583336

The impact of various field strength (2, 3, 4 kV/cm) and treatment time (60s and 90s) combinations on NaCl content and diffusion coefficient of beef were evaluated in the current study. Weight change, water content, water holding capacity, and texture of beef after brining were also explored. The results demonstrated pulsed electric field (PEF) pre-treatment significantly increased NaCl uptake when the brining time was 150 min (P < 0.05). The maximum NaCl content increased by 19.50% and the diffusion coefficient increased by 58.50%. Relatively mild PEF (60s) could improve beef qualities, but longer treatment time (90s) was detrimental to these qualities. Meanwhile, more complete myofibrillar structure and lower lipid oxidation extent were observed in the samples treated by PEF, contributing to the higher a* values. In conclusion, short processing time (60s) and high field strength (4 kV/cm) treatment is a potential strategy for meat brining acceleration and quality improvement in practical industrial production.


Food Handling , Red Meat , Sodium Chloride , Animals , Cattle , Red Meat/analysis , Food Handling/methods , Sodium Chloride/chemistry , Electricity , Diffusion , Water , Myofibrils/chemistry , Muscle, Skeletal/chemistry , Food Quality
7.
Int J Biol Macromol ; 268(Pt 1): 131699, 2024 May.
Article En | MEDLINE | ID: mdl-38642689

Starch and peanut oil (PO) were widely used to improve the gel properties of surimi, however, the impact mechanism of addition forms on the denaturation and aggregation behavior of myofibrillar protein (MP) is not clear. Therefore, the effect of starch, PO, starch/PO mixture, and starch-based emulsion on the physicochemical and gel properties of MP was investigated. The results showed that amylose could accelerate the aggregation of MP, while amylopectin was conducive to the improvement of gel properties. The addition of PO, starch/PO mixture, or starch-based emulsion increased the turbidity, solubility, sulfhydryl content of MP, and improved the gel strength, whiteness, and texture of MP gel. However, compared with starch/PO mixture group, the gel strength of MP with waxy, normal and high amylose corn starch-based emulsion increased by 22.68 %, 10.27 %, and 32.89 %, respectively. The MP containing emulsion had higher storage modulus than MP with starch/PO mixture under the same amylose content. CLSM results indicated that the oil droplets aggregated in PO or starch/PO mixture group, while emulsified oil droplets filled the protein gel network more homogeneously. Therefore, the addition of starch and PO in the form of emulsion could effectively play the filling role to improve the gel properties of MP.


Amylose , Emulsions , Gels , Peanut Oil , Starch , Amylose/chemistry , Amylose/analysis , Peanut Oil/chemistry , Starch/chemistry , Gels/chemistry , Emulsions/chemistry , Muscle Proteins/chemistry , Chemical Phenomena , Solubility , Myofibrils/chemistry
8.
Food Chem ; 450: 139300, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38640525

The present study aimed to investigate the impact of Flammulina velutipes polysaccharide (FVSP) on the rheological properties and structural alterations of myofibrillar protein (MP) and oxidized MP (OMP), utilizing techniques such as rhehometer, fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In the unoxidized system, the addition of 5.00% FVSP significantly improved (p < 0.05) the storage and loss moduli of the composite gel and promoted the α-helix to ß-sheet transformation. These effects enhanced the protein's gel strength and water-holding capacity (WHC). In the oxidation system, 5.00% FVSP had significant effects (p < 0.05) on repair and improvement of the oxidized MP. These effects inhibited the cross-linking aggregation and degradation of the protein. In addition, the addition of FVSP significantly improved the gel properties of MPs after oxidation (p < 0.05), hindered fracture of the protein gel network structure. In summary, polysaccharides have a substantial effect on the functional characteristics of MP, and FVSP could potentially be applied in meat products.


Flammulina , Muscle Proteins , Oxidation-Reduction , Polysaccharides , Flammulina/chemistry , Polysaccharides/chemistry , Animals , Muscle Proteins/chemistry , Swine , Gels/chemistry , Meat Products/analysis , Rheology , Myofibrils/chemistry
9.
Food Chem ; 451: 139403, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38653104

In this study, the impact of three unsaturated fatty acids (Oleic acid: OA, Eicosapentaenoic acid: EPA, Docosahexaenoic acid: DHA) on the oxidation and structure of rainbow trout myofibrillar protein (MP) was explored. The findings revealed a notable increase in carbonyl content (P < 0.05) and a significant decrease in total sulfhydryl content (P < 0.05) of MP with the concentration increase of the three unsaturated fatty acids. Endogenous fluorescence spectroscopy and surface hydrophobicity analyses showed that unsaturated fatty acids can cause unfolding and exposure of hydrophobic groups in MP. In addition, SDS-PAGE showed that disulfide bonds were associated with MP cross-linking and aggregate size induced by unsaturated fatty acids. Overall, three unsaturated fatty acid treatments facilitated the oxidation of myofibrillar proteins, and the extent of protein oxidation was closely associated with the concentration of unsaturated fatty acids.


Fatty Acids, Unsaturated , Fish Proteins , Muscle Proteins , Oncorhynchus mykiss , Oxidation-Reduction , Animals , Oncorhynchus mykiss/metabolism , Fatty Acids, Unsaturated/chemistry , Fish Proteins/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Hydrophobic and Hydrophilic Interactions
10.
Food Chem ; 451: 139456, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38670022

Frozen surimi quality generally correlates with oxidation, but impacts of protein oxidation on salt-dissolved myofibrillar protein (MP) sol in surimi remain unclear. Hence, physicochemical and gelling properties of MP sol with different oxidation degrees were investigated subjected to freeze-thaw cycles. Results showed that mild oxidation (≤1 mmol/L) improved unfrozen MP gel quality with lowest cooking loss (3.29 %) and highest hardness (829.76 N). Whereas, oxidized sol suffering freeze-thawing degenerated severely, showing reduction of 23.85 % of salt soluble protein contents with H2O2 concentrations of 10 mmol/L. Shearing before heating influenced gelling properties of freeze-thawed sol, depending on oxidation levels. Oxidized gel with shearing displayed disorganized network structures, whereas gel without shearing displayed relatively complete appearances without holes under high oxidation condition (10 mmol/L). Overall, freeze-thaw process aggravated denaturation extents of MP sol subjected to oxidation, further causing high water loss and yellow color of heat-induced gel, especially to gel with shearing.


Fish Products , Freezing , Gels , Muscle Proteins , Oxidation-Reduction , Animals , Gels/chemistry , Fish Products/analysis , Muscle Proteins/chemistry , Swine , Protein Aggregates , Myofibrils/chemistry , Fish Proteins/chemistry , Cooking , Food Handling
11.
Food Chem ; 451: 139455, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38678659

Interactions among flavor compounds from spices (FCS) and myofibrillar proteins (MP) were investigated. Fluorescence and Fourier transform infrared spectroscopy showed that hydrogen bonding and hydrophobic interactions were the main binding forces between FCS and MP. The FCS increased the particle size and SH content of MP and caused a reduction of zeta potential from -5.23 to -6.50 mV. Furthermore, FCS could modify the binding ability of MP and aldehydes. Eugenol reduced the ability of MP to bond with aldehydes by 22.70-47.87 %. Molecular dynamics simulations demonstrated that eugenol may combat nonanal to attain binding site of amino acid residue (PHE165) and induce protein conformational changes. Electrostatic interactions and van der Waals forces within myosin-nonanal may be disrupted by these alterations, which could reduce stability of complex and cause release of nonanal. This study could provide new insights into regulating the ability of proteins to release and hold flavors.


Aldehydes , Flavoring Agents , Muscle Proteins , Spices , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Spices/analysis , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Animals , Aldehydes/chemistry , Aldehydes/metabolism , Protein Binding , Myofibrils/chemistry , Myofibrils/metabolism , Molecular Dynamics Simulation , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Protein Conformation
12.
Int J Biol Macromol ; 267(Pt 1): 131418, 2024 May.
Article En | MEDLINE | ID: mdl-38582465

In this work, the effects of low-frequency alternating magnetic fields (LF-AMF) on the physicochemical, conformational, and functional characteristics of myofibrillar protein (MP) after iterative freeze-thaw (FT) cycles were explored. With the increasing LF-AMF treatment time, the solubility, active sulfhydryl groups, surface hydrophobicity, emulsifiability, and emulsion stability of MP after five FT cycles evidently elevated and then declined, and the peak value was obtained at 3 h. Conversely, the moderate LF-AMF treatment time can significantly reduce the average particle size, carbonyl content, and endogenous fluorescence intensity of MP. The rheology results showed that various LF-AMF treatment times would elevate the G' value of MP after iterative FT cycles. The FTIR spectroscopy results suggested that LF-AMF influenced the secondary structure of MP after multiple FT cycles, resulting in a depression in α-helix content and an increment in ß-folding proportion. Moreover, LF-AMF treatment induced the gradually lighter and wider myosin heavy chain bands of MP, implying that LF-AMF accelerated the degradation of macromolecular aggregates. Therefore, the LF-AMF treatment efficaciously ameliorates the structural and functional deterioration of MP after iterative FT cycles and could be used as a potential quality-improving technology in the frozen meat industry.


Freezing , Magnetic Fields , Muscle Proteins , Rheology , Muscle Proteins/chemistry , Myofibrils/chemistry , Solubility , Animals , Chemical Phenomena , Protein Conformation , Hydrophobic and Hydrophilic Interactions
13.
Food Chem ; 449: 139203, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38599105

This study examined the interaction between myofibrillar proteins (MPs) and the numbing substance hydroxy-α-sanshool (α-SOH) in a thermal environment, and provided an explanation of the numbness perception mechanism through muti-spectroscopic and molecular dynamics simulation methodology. Results showed that addition of α-SOH could reduce the particle size and molecular weight of MPs, accompanied by changes in the tertiary and secondary structure, causing the α-helix of MPs transitioned to ß-sheet and ß-turn due to the reorganization of hydrogen bonds. After a moderate heating (60 or 70 °C), MPs could form the stable complexes with α-SOH that were associated with attachment sites and protein wrapping. The thermal process might convert a portion of α-SOH' into hydroxy-ß-sanshool' (ß-SOH'). When docking with the sensory receptor TRPV1, the RMSD, RMSF and binding free energy all showed that ß-SOH' demonstrated a low affinity, thereby reducing the numbing perception. These findings can provide a theoretical foundation for the advanced processing of numbing meat products.


Hot Temperature , Animals , Molecular Docking Simulation , Muscle Proteins/chemistry , Molecular Dynamics Simulation , Myofibrils/chemistry , Humans , Meat Products/analysis , Protein Binding , Swine , Hypesthesia , TRPV Cation Channels/chemistry , TRPV Cation Channels/metabolism , Hydrogen Bonding
14.
Food Chem ; 448: 139070, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38555690

Herein, an EGCG-Histidine complex is prepared, characterized, and further used to improve gel properties of myofibrillar proteins (MP). Results of FTIR, XRD, UV-Vis spectroscopy showed that histidine is covalently bound to EGCG by Michael addition or Schiff base reaction to form EGCG-Histidine complex, and antioxidant activity of EGCG-Histidine complex is significantly increased compared to EGCG or histidine alone (P < 0.05). The addition of EGCG-Histidine complex results in cooking loss of gel decreasing from 66.7 ± 0.23 % to 40.3 ± 2.02 %, and improves rheological properties of MP, and enhances gel strength from 0.10 ± 0.01 N to 0.22 ± 0.03 N, indicating positive effect of EGCG-Histidine complex on MP gel formation, above results is supported by results of SEM, CD spectroscopy, SDS-PAGE, and tryptophan fluorescence. These results indicated that EGCG-Histidine complex can be used as a functional ingredient to improve gel quality of meat products.


Catechin , Catechin/analogs & derivatives , Gels , Histidine , Muscle Proteins , Animals , Histidine/chemistry , Catechin/chemistry , Swine , Muscle Proteins/chemistry , Gels/chemistry , Myofibrils/chemistry , Rheology , Meat Products/analysis , Antioxidants/chemistry
15.
Int J Biol Macromol ; 260(Pt 2): 129532, 2024 Mar.
Article En | MEDLINE | ID: mdl-38246447

The pH buffering capacity is an important functionality of muscle proteins, and muscle foods are susceptible to being oxidized during storage and processing. In order to study the effect of oxidation on the pH buffering capacity of myofibrillar proteins, myofibrils extracted from snakehead fish (Channa argus) were oxidized with H2O2. Results showed that increased oxidation led to loss of free sulfhydryl groups, formation of carbonyl groups, increased surface hydrophobicity, and aggregation of myofibrillar proteins. In addition, there was a significant reduction in the content of histidine in oxidized myofibrillar proteins. The pH buffering capacity of myofibrillar proteins significantly decreased from 3.14 ± 0.03 mM H+/(mL × ΔpH) down to 2.55 ± 0.03 mM H+/(mL × ΔpH) after oxidation with 50 mM H2O2. Both oxidized myofibrillar proteins and histidine showed a high pH buffering capacity at pH near 5.8, which is the histidine pKa value. Here, we hypothesize that oxidation-induced changes in the pH buffering capacity of myofibrillar proteins were driven by oxidative modification of histidine and structural changes of myofibrillar proteins. The significance of this study to food industry may be the awareness that protein oxidation may affect pH through changes in buffering capacity. And the use of antioxidants, especially those targeting at histidine will be promising in addressing this issue.


Histidine , Hydrogen Peroxide , Animals , Histidine/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Muscle Proteins/chemistry , Hydrogen-Ion Concentration , Myofibrils/chemistry
16.
Food Chem ; 443: 138563, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38290301

In this study, golden pomfret myofibrillar protein (MP) was used as the research object, and the oxidation system of malondialdehyde (MDA) as an inducer and the static digestion model in vitro was established for the analysis of the changes in protein structure and molecular morphology during oxidation and digestion. Subsequently, the effects of MDA-mediated oxidation on the structure and digestive properties of golden pomfret myofibrillar fibrillar protein were determined. The results showed that the hydrolysis degree and digestion rate of MP were inhibited with the increase in MDA concentration (0, 0.5, 1, 2, 5, 10 mmol/L), and the carbonyl group, surface hydrophobicity, irregular curling, and MDA content increased significantly (P < 0.05), whereas the total sulfhydryl groups, α-helices, free amino groups, hydrolysis degree, and MDA incorporation decreased significantly (P < 0.05), The molecular particle size was significantly reduced (P < 0.05), and the molecular morphology and molecular structure were analyzed (P >0.05). Finally, the molecular size and cross-linking degree gradually increased. In conclusion, MDA can alter the structure and morphology of proteins, resulting in a decrease in hydrolysis and digestion rate. This study can provide theoretical support and reference for the regulation of protein digestion.


Muscle Proteins , Seafood , Muscle Proteins/chemistry , Oxidation-Reduction , Myofibrils/chemistry , Hydrolysis
17.
J Sci Food Agric ; 104(7): 3947-3957, 2024 May.
Article En | MEDLINE | ID: mdl-38264924

BACKGROUND: In order to improve the tenderness of dried shrimp products as well as to reduce the hardness of the meat during the drying process, shrimp were treated with ultrasound combined with pineapple protease and the tenderization condition was optimized by measuring the texture and shear force of dried shrimp. In addition, the sulfhydryl content, myofibril fragmentation index (MFI) and microstructure were also examined to clarify the mechanisms of shrimp tenderization. RESULTS: The results showed UB1 group with ultrasonic power of 100 W, heating temperature of 50 °C and pineapple protease concentration of 20 U mL-1 were the optimum tenderization conditions, where shrimp showed the lowest hardness (490.76 g) and shear force (2006.35 gf). Microstructure as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis results suggested that during the tenderization process the muscle segments of shrimps were broken, degradation of myofibrillar proteins occurred, and MFI values and total sulfhydryl content increased significantly (P < 0.05) (MFI value = 193.6 and total sulfhydryl content = 93.93 mmol mg-1 protein for UB 1 group). CONCLUSION: Ultrasound combined with bromelain could be used as a simple and effective tenderization method for the production of tender dried shrimp. The best conditions were 100 W ultrasonic power, 50 °C ultrasonic temperature, and 20 U mL-1 bromelain. © 2024 Society of Chemical Industry.


Ananas , Bromelains , Bromelains/analysis , Bromelains/metabolism , Seafood/analysis , Meat/analysis , Proteins/metabolism , Myofibrils/chemistry
18.
Food Res Int ; 175: 113709, 2024 Jan.
Article En | MEDLINE | ID: mdl-38129033

Free radical grafting and oxidative modification show superiority in myofibrillar protein (MP) aggregation patterns during salting process, but their consequent formation mechanisms of protein hydration network require further evaluation. Herein, we explored the effect of salt-curing (0, 1, 3 and 5 %) on MP protein polymer substrate, water-protein interaction, crystallization events and thermal stability under H2O2/ascorbate-based hydroxyl radical (•OH)-generating system (HRGS) (1, 10, 20 mM H2O2). Results showed that moderate salting (≤3%) favored the water binding of MP gels during the oxidation course. Accordingly, the maximum thermal stability (Tm) of MP gels was obtained at 3 % salting could be greatly attributed to the protein chain solubilization and refolding process. However, 5 % salt synergized with •OH oxidation intensified diffraction peak 2 (the most striking diffraction feature). Microstructural analysis validated a maximum compactness of MP gel following brining with 5 % salt at potent oxidation strength (20 mM H2O2). This study maybe promises efficient strategy to the myogenetic fibril products and biomaterials.


Hot Temperature , Myofibrils , Swine , Animals , Crystallization , Myofibrils/chemistry , Hydrogen Peroxide/metabolism , Muscle Proteins/chemistry , Gels/chemistry , Water/chemistry
19.
J Agric Food Chem ; 71(44): 16777-16786, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37885230

The concept of healthiness and sustainability has promoted the innovation and development of "clean-label" products. Herein, this study aims to explore the influence mechanism of "clean label" skin protein powder (FPP) on the gelation properties of myofibrillar proteins (MPs). Specifically, the addition of FPP (0.2-4.0%) can improve the water holding capability and texture properties of MP composite gels. When the FPP concentration is over 1.0%, the composite gels exhibit no significant water loss during centrifugation. Dynamic rheology and sodium-dodecyl sulfate-polyacrylamide gel electrophoresis results revealed that FPP can slow the aggregation and denaturation of myosin and promote the formation of disulfide bonds between myofibril proteins, thus forming a stable network structure. Structural observation revealed that FPP can fill into the MP gel and lead to the formation of compact gel structures. Besides, with the increase of FPP concentration, the chemical forces involved in structural stabilization change significantly. Specifically, hydrophobic interaction and hydrogen bonding are the dominant forces at a lower FPP concentration (0.2 and 0.4%), while the ionic bond and disulfide bond are the dominant forces at a higher concentration. Overall, this work demonstrated that FPP can significantly improve the gel functionality of MP by altering the gel structure and strengthening the molecular forces.


Muscle Proteins , Water , Powders/analysis , Muscle Proteins/chemistry , Gels/chemistry , Water/chemistry , Disulfides , Rheology , Myofibrils/chemistry
20.
Food Chem ; 428: 136786, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37429235

This study investigated the impact of low-voltage electrostatic field-assisted freezing on the water-holding capacity of beef steaks. The enhances mechanism of water-holding capacity by electrostatic field was elucidated through the detection of dynamic changes in the myofilament lattice and the construction of an in vitro myosin filaments model. The findings demonstrated that the disorder of the myofilament array, resulted from the aggregation of myosin filaments during freezing, is a crucial factor responsible for the water loss. The intervention of the electrostatic field can effectively reduce the myofibril density by 18.7%, while maintaining a regular lattice array by modulating electrostatic and hydrophobic interactions between myofibrils. Moreover, the electrostatic field significantly inhibited the migration of immobilized water to free water, thus resulting in an increase in the water-holding capacity of myofibrils by 36%. This work provides insights into the underlying mechanisms of water loss in frozen steaks and its regulation.


Myofibrils , Water , Animals , Cattle , Myofibrils/chemistry , Freezing , Water/analysis , Static Electricity , Myosins/chemistry
...