Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.046
1.
Zhongguo Gu Shang ; 37(5): 519-26, 2024 May 25.
Article Zh | MEDLINE | ID: mdl-38778538

OBJECTIVE: To explore the molecular mechanism of chronic osteomyelitis and to clarify the role of MAPK signal pathway in the pathogenesis of chronic osteomyelitis, by collecting and analyzing the transcriptional information of bone tissue in patients with chronic osteomyelitis. METHODS: Four cases of traumatic osteomyelitis in limbs from June 2019 to June 2020 were selected, and the samples of necrotic osteonecrosis from chronic osteomyelitis (necrotic group), and normal bone tissue (control group) were collected. Transcriptome information was collected by Illumina Hiseq Xten high throughput sequencing platform, and the gene expression in bone tissue was calculated by FPKM. The differentially expressed genes were screened by comparing the transcripts of the Necrotic group and control group. Genes were enriched by GO and KEGG. MAP3K7 and NFATC1 were selected as differential targets in the verification experiments, by using rat osteomyelitis animal model and immunohistochemical analysis. RESULTS: A total of 5548 differentially expressed genes were obtained by high throughput sequencing by comparing the necrotic group and control group, including 2701 up-regulated and 2847 down-regulated genes. The genes enriched in MAPK pathway and osteoclast differentiation pathway were screened, the common genes expressed in both MAPK and osteoclast differentiation pathway were (inhibitor of nuclear factor κ subunit Beta, IκBKß), (mitogen-activated protein kinase 7, MAP3K7), (nuclear factor of activated t cells 1, NFATC1) and (nuclear factor Kappa B subunit 2, NFκB2). In rat osteomyelitis model, MAP3K7 and NFATC1 were highly expressed in bone marrow and injured bone tissue. CONCLUSION: Based on the transcriptome analysis, the MAPK signaling and osteoclast differentiation pathways were closely related to chronic osteomyelitis, and the key genes IκBKß, MAP3K7, NFATC1, NFκB2 might be new targets for clinical diagnosis and therapy of chronic osteomyelitis.


Osteomyelitis , Transcriptome , Osteomyelitis/genetics , Animals , Humans , Chronic Disease , Male , Rats , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Gene Expression Profiling , Bone and Bones/metabolism , Rats, Sprague-Dawley , Female , MAP Kinase Signaling System/genetics
2.
Molecules ; 29(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38731604

Edible grey oyster mushroom, Pleurotus sajor-caju, ß (1,3), (1,6) glucan possesses a wide range of biological activities, including anti-inflammation, anti-microorganism and antioxidant. However, its biological activity is limited by low water solubility resulting from its high molecular weight. Our previous study demonstrated that enzymatic hydrolysis of grey oyster mushroom ß-glucan using Hevea ß-1,3-glucanase isozymes obtains a lower molecular weight and higher water solubility, Pleurotus sajor-caju glucanoligosaccharide (Ps-GOS). Additionally, Ps-GOS potentially reduces osteoporosis by enhancing osteoblast-bone formation, whereas its effect on osteoclast-bone resorption remains unknown. Therefore, our study investigated the modulatory activities and underlying mechanism of Ps-GOS on Receptor activator of nuclear factor kappa-Β ligand (RANKL) -induced osteoclastogenesis in pre-osteoclastic RAW 264.7 cells. Cell cytotoxicity of Ps-GOS on RAW 264.7 cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and its effect on osteoclast differentiation was determined by tartrate-resistant acid phosphatase (TRAP) staining. Additionally, its effect on osteoclast bone-resorptive ability was detected by pit formation assay. The osteoclastogenic-related factors were assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), Western blot and immunofluorescence. The results revealed that Ps-GOS was non-toxic and significantly suppressed the formation of mature osteoclast multinucleated cells and their resorption activity by reducing the number of TRAP-positive cells and pit formation areas in a dose-dependent manner. Additionally, Ps-GOS attenuated the nuclear factor kappa light chain-enhancer of activated B cells' P65 (NFκB-P65) expression and their subsequent master osteoclast modulators, including nuclear factor of activated T cell c1 (NFATc1) and Fos proto-oncogene (cFOS) via the NF-κB pathway. Furthermore, Ps-GOS markedly inhibited RANK expression, which serves as an initial transmitter of many osteoclastogenesis-related cascades and inhibited proteolytic enzymes, including TRAP, matrix metallopeptidase 9 (MMP-9) and cathepsin K (CTK). These findings indicate that Ps-GOS could potentially be beneficial as an effective natural agent for bone metabolic disease.


Cell Differentiation , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Pleurotus , RANK Ligand , Receptor Activator of Nuclear Factor-kappa B , Signal Transduction , Animals , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/cytology , RAW 264.7 Cells , RANK Ligand/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , NF-kappa B/metabolism , Pleurotus/chemistry , Receptor Activator of Nuclear Factor-kappa B/metabolism , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-fos/metabolism , beta-Glucans/pharmacology , beta-Glucans/chemistry , Oligosaccharides/pharmacology , Oligosaccharides/chemistry , Osteogenesis/drug effects
3.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Article En | MEDLINE | ID: mdl-38726894

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Calgranulin A , Calgranulin B , Disease Models, Animal , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Myocytes, Cardiac , NFATC Transcription Factors , Up-Regulation , Animals , Calgranulin A/metabolism , Calgranulin A/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Calgranulin B/metabolism , Calgranulin B/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Fibroblast Growth Factor-23/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Signal Transduction , Cardiomegaly/metabolism , Cardiomegaly/pathology , Mice, Inbred C57BL , Male , Mice, Knockout , Calcineurin/metabolism , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Ventricular Remodeling
4.
Front Immunol ; 15: 1382459, 2024.
Article En | MEDLINE | ID: mdl-38799459

Introduction: Trough blood levels (C0) of tacrolimus are used to adjust drug dosage, but they do not consistently correlate with clinical outcomes. Measurement of residual gene expression of nuclear factor of activated T cell (NFAT)-regulated genes (NFAT-RGE) has been proposed as a pharmacodynamic biomarker to assess the degree of immunosuppression in certain solid organ transplantations, but little is known regarding lung transplant recipients (LTR). Our primary objective is to correlate tacrolimus blood levels with NFAT-RGE. Methods: NFAT-RGE and tacrolimus C0 and peak (C1.5) levels were determined in 42 patients at three, six and 12 months post-transplantation. Results: Tacrolimus C0 did not exhibit a correlation with NFAT-RGE, whereas C1.5 did. Besides, over 20% of measurements indicated high levels of immunosuppression based on the below 30% NFAT-RGE threshold observed in many studies. Among those measurements within the therapeutic range, 19% had an NFAT-RGE<30%. Conclusion: Consequently, a subset of patients within the tacrolimus therapeutic range may be more susceptible to infection or cancer, potentially benefiting from NFAT-RGE and tacrolimus peak level monitoring to tailor their dosage. Further quantitative risk assessment studies are needed to elucidate the relationship between NFAT-RGE and the risk of infection, cancer, or rejection.


Immunosuppressive Agents , Lung Transplantation , NFATC Transcription Factors , Tacrolimus , Humans , Tacrolimus/therapeutic use , Tacrolimus/pharmacokinetics , Tacrolimus/blood , Lung Transplantation/adverse effects , Male , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Middle Aged , Female , Immunosuppressive Agents/therapeutic use , Adult , Aged , Transplant Recipients , Drug Monitoring/methods , Graft Rejection/immunology , Graft Rejection/genetics , Gene Expression Regulation/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38803221

FK506-binding protein 52 (FKBP52) is a member of the FKBP family of proline isomerases. FKBP52 is up-regulated in various cancers and functions as a positive regulator of steroid hormone receptors. Depletion of FKBP52 is known to inhibit cell proliferation; however, the detailed mechanism remains poorly understood. In this study, we found that FKBP52 depletion decreased MDM2 transcription, leading to stabilization of p53, and suppressed cell proliferation. We identified NFATc1 and NFATc3 as transcription factors that regulate MDM2 We also found that FKBP52 associated with NFATc3 and facilitated its nuclear translocation. In addition, calcineurin, a well-known Ca2+ phosphatase essential for activation of NFAT, plays a role in MDM2 transcription. Supporting this notion, MDM2 expression was found to be regulated by intracellular Ca2+ Taken together, these findings reveal a new role of FKBP52 in promoting cell proliferation via the NFAT-MDM2-p53 axis, and indicate that inhibition of FKBP52 could be a new therapeutic tool to activate p53 and inhibit cell proliferation.


Cell Proliferation , NFATC Transcription Factors , Proto-Oncogene Proteins c-mdm2 , Tacrolimus Binding Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tacrolimus Binding Proteins/metabolism , Tacrolimus Binding Proteins/genetics , Cell Proliferation/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Calcium/metabolism , Calcineurin/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction
6.
Mol Biol Rep ; 51(1): 587, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683225

BACKGROUND: Patients with multiple myeloma exhibit malignant osteolytic bone disease due to excessive osteoclast formation and function. We recently identified that osteoclastogenic stimulator selenoprotein W (SELENOW) is upregulated via ERK signaling and downregulated via p38 signaling during receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation. In the intrinsic physiological process, RANKL-induced downregulation of SELENOW maintains proper osteoclast differentiation; in contrast, forced overexpression of SELENOW leads to overactive osteoclast formation and function. METHODS AND RESULTS: We observed that SELENOW is highly expressed in multiple myeloma-derived peripheral blood mononuclear cells (PBMCs) and mature osteoclasts when compared to healthy controls. Also, the level of tumor necrosis factor alpha (TNFα), a pathological osteoclastogenic factor, is increased in the PBMCs and serum of patients with multiple myeloma. ERK activation by TNFα was more marked and sustained than that by RANKL, allowing SELENOW upregulation. Excessive expression of SELENOW in osteoclast progenitors and mature osteoclasts derived from multiple myeloma facilitated efficient nuclear translocation of osteoclastogenic transcription factors NF-κB and NFATc1, which are favorable for osteoclast formation. CONCLUSION: Our findings suggest a possibility that feedforward signaling of osteoclastogenic SELENOW by TNFα derived from multiple myeloma induces overactive osteoclast differentiation, leading to bone loss during multiple myeloma.


Cell Differentiation , Multiple Myeloma , Osteoclasts , Selenoprotein W , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Differentiation/genetics , Leukocytes, Mononuclear/metabolism , MAP Kinase Signaling System , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Multiple Myeloma/genetics , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteoclasts/metabolism , RANK Ligand/metabolism , Selenoprotein W/metabolism , Selenoprotein W/genetics , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
7.
Biochem Pharmacol ; 224: 116230, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643905

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Arthritis, Experimental , Bone Resorption , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Animals , Mice , NFATC Transcription Factors/metabolism , RAW 264.7 Cells , Bone Resorption/drug therapy , Bone Resorption/metabolism , Bone Resorption/prevention & control , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Arthritis, Experimental/chemically induced , Osteogenesis/drug effects , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Male , Signal Transduction/drug effects , CSK Tyrosine-Protein Kinase/metabolism , Molecular Docking Simulation , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors
8.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653977

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Hydrogen Peroxide , Oxidative Stress , Transcription Factors , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Oxidative Stress/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Peroxiredoxins/metabolism , Peroxiredoxins/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , NFATC Transcription Factors/metabolism , Glucose Oxidase/metabolism , Animals
9.
Phytomedicine ; 129: 155559, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579642

BACKGROUND: Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis. PURPOSE: We aim to search for natural compound that may suppress osteoclast formation and function. STUDY DESIGN: In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo. METHODS: Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model. RESULTS: In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease. CONCLUSION: Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.


Benzylisoquinolines , NF-kappa B , NFATC Transcription Factors , Osteoclasts , Osteogenesis , Ovariectomy , RANK Ligand , Reactive Oxygen Species , Animals , Benzylisoquinolines/pharmacology , Female , RANK Ligand/metabolism , Mice , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Osteogenesis/drug effects , Osteoclasts/drug effects , NFATC Transcription Factors/metabolism , Disease Models, Animal , Bone Resorption/drug therapy , Mice, Inbred C57BL , RAW 264.7 Cells , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Humans , Tetrahydroisoquinolines
10.
Inflamm Res ; 73(6): 945-960, 2024 Jun.
Article En | MEDLINE | ID: mdl-38587532

OBJECTIVE AND DESIGN: Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT: In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS: The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The  hippocampal mast cell accumulation and activation  were detected by toluidine blue staining and immunohistochemistry with ß-tryptase. RESULTS: In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation  in LPS-induced depressive mice. CONCLUSIONS: Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.


Depression , Hippocampus , Kaempferols , Lipopolysaccharides , Mast Cells , NFATC Transcription Factors , Quercetin , Animals , Mast Cells/drug effects , Mast Cells/metabolism , NFATC Transcription Factors/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Male , Quercetin/pharmacology , Quercetin/therapeutic use , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Cell Line , Signal Transduction/drug effects , Mice , Calcium/metabolism , Calcium Channels/metabolism , Mice, Inbred C57BL , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
11.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Article En | MEDLINE | ID: mdl-38604070

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Bone Resorption , Sizofiran , Humans , Osteoclasts/metabolism , Sizofiran/metabolism , Sizofiran/pharmacology , NFATC Transcription Factors/metabolism , Osteoblasts/metabolism , Cell Differentiation , Bone Resorption/drug therapy , Bone Resorption/metabolism , Osteogenesis , RANK Ligand/metabolism
12.
Adv Mater ; 36(21): e2308126, 2024 May.
Article En | MEDLINE | ID: mdl-38533956

The behavior of tissue resident cells can be influenced by the spatial arrangement of cellular interactions. Therefore, it is of significance to precisely control the spatial organization of various cells within multicellular constructs. It remains challenging to construct a versatile multicellular scaffold with ordered spatial organization of multiple cell types. Herein, a modular multicellular tissue engineering scaffold with ordered spatial distribution of different cell types is constructed by assembling varying cell-laden modules. Interestingly, the modular scaffolds can be disassembled into individual modules to evaluate the specific contribution of each cell type in the system. Through assembling cell-laden modules, the macrophage-mesenchymal stem cell (MSC), endothelial cell-MSC, and chondrocyte-MSC co-culture models are successfully established. The in vitro results indicate that the intercellular cross-talk can promote the proliferation and differentiation of each cell type in the system. Moreover, MSCs in the modular scaffolds may regulate the behavior of chondrocytes through the nuclear factor of activated T-Cells (NFAT) signaling pathway. Furthermore, the modular scaffolds loaded with co-cultured chondrocyte-MSC exhibit enhanced regeneration ability of osteochondral tissue, compared with other groups. Overall, this work offers a promising strategy to construct a multicellular tissue engineering scaffold for the systematic investigation of intercellular cross-talk and complex tissue engineering.


Cell Differentiation , Chondrocytes , Coculture Techniques , Mesenchymal Stem Cells , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Animals , Mice , Cell Proliferation , Humans , NFATC Transcription Factors/metabolism , Macrophages/cytology , Macrophages/metabolism , RAW 264.7 Cells , Signal Transduction
13.
Phytomedicine ; 128: 155431, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537440

BACKGROUND: Non-small cell lung cancer (NSCLC) remains at the forefront of new cancer cases, and there is an urgent need to find new treatments or improve the efficacy of existing therapies. In addition to the application in the field of cerebrovascular diseases, recent studies have revealed that tanshinone IIA (Tan IIA) has anticancer activity in a variety of cancers. PURPOSE: To investigate the potential anticancer mechanism of Tan IIA and its impact on immunotherapy in NSCLC. METHODS: Cytotoxicity and colony formation assays were used to detect the Tan IIA inhibitory effect on NSCLC cells. This research clarified the mechanisms of Tan IIA in anti-tumor and programmed death-ligand 1 (PD-L1) regulation by using flow cytometry, transient transfection, western blotting and immunohistochemistry (IHC) methods. Besides, IHC was also used to analyze the nuclear factor of activated T cells 1 (NFAT2) expression in NSCLC clinical samples. Two animal models including xenograft mouse model and Lewis lung cancer model were used for evaluating tumor suppressive efficacy of Tan IIA. We also tested the efficacy of Tan IIA combined with programmed cell death protein 1 (PD-1) inhibitors in Lewis lung cancer model. RESULTS: Tan IIA exhibited good NSCLC inhibitory effect which was accompanied by endoplasmic reticulum (ER) stress response and increasing Ca2+ levels. Moreover, Tan IIA could suppress the NFAT2/ Myc proto oncogene protein (c-Myc) signaling, and it also was able to control the Jun Proto-Oncogene(c-Jun)/PD-L1 axis in NSCLC cells through the c-Jun N-terminal kinase (JNK) pathway. High NFAT2 levels were potential factors for poor prognosis in NSCLC patients. Finally, animal experiments data showed a stronger immune activation phenotype, when we performed treatment of Tan IIA combined with PD-1 monoclonal antibody. CONCLUSION: The findings of our research suggested a novel mechanism for Tan IIA to inhibit NSCLC, which could exert anti-cancer effects through the JNK/NFAT2/c-Myc pathway. Furthermore, Tan IIA could regulate tumor PD-L1 levels and has the potential to improve the efficacy of PD-1 inhibitors.


Abietanes , Carcinoma, Non-Small-Cell Lung , Endoplasmic Reticulum Stress , Lung Neoplasms , NFATC Transcription Factors , Abietanes/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Animals , Humans , Lung Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Mice , NFATC Transcription Factors/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Proto-Oncogene Mas , B7-H1 Antigen/metabolism , Xenograft Model Antitumor Assays , Programmed Cell Death 1 Receptor , Immunotherapy/methods , JNK Mitogen-Activated Protein Kinases/metabolism , A549 Cells , Mice, Nude , Mice, Inbred BALB C , Proto-Oncogene Proteins c-myc/metabolism , Male , Female
15.
Adv Sci (Weinh) ; 11(20): e2306059, 2024 May.
Article En | MEDLINE | ID: mdl-38528665

Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.


Adenocarcinoma of Lung , Galectins , Lung Neoplasms , NFATC Transcription Factors , Neoplastic Stem Cells , Phenotype , Humans , Galectins/genetics , Galectins/metabolism , Galectins/immunology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Cell Line, Tumor
16.
Biomed Pharmacother ; 173: 116422, 2024 Apr.
Article En | MEDLINE | ID: mdl-38471268

Osteoporosis, characterized by low bone mass and bone microarchitecture breakdown, has become a growing public health problem. The increase in oxidative stress could lead to an imbalance between osteoblasts-mediated osteogenesis and osteoclast-mediated bone resorption, which gives rise to osteoporosis. Nrf2 is a master transcription factor that regulates oxidative stress and has recently been reported to take part in the development of osteoporosis. Icariin, a leading active flavonoid in herbal Epimedium pubescens, has significant antioxidant activity in and is widely applied for treating bone diseases. In this study, we aimed to explore the effect of icariin on osteoclastogenesis and its potential mechanism from the perspective of oxidative stress inhibition, using ovariectomized (OVX) rats and RANKL-induced RAW264.7 cells. Our results demonstrated that icariin-treated OVX rats exhibited higher bone density, fewer tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower ROS levels in bone tissues than vehicle-treated OVX rats. Also, icariin suppressed osteoclast differentiation and inhibited the expression of osteoclastogenesis-related genes, such as NFATc1, Ctsk, Trap, and c-Fos, in RANKL-induced RAW264.7 cells. Icariin also reduced intracellular ROS levels by increasing the expression of nuclear Nrf2 and HO-1. Further mechanistic studies showed icariin inhibited Cullin 3 expression and could delay Nrf2 degradation by reducing the ubiquitination of endogenous Nrf2 in RANKL-stimulated RAW264.7 cells, and these effects were markedly reversed by cullin three overexpression. These findings suggest icariin alleviated osteoporosis by suppressing osteoclastogenesis via targeting the Cullin 3/Nrf2/OH signaling pathway. Our study implied that icariin may be a potential candidate to treat osteoporosis.


Osteoclasts , Osteoporosis , Rats , Animals , Cullin Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/metabolism , Osteogenesis , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism , NF-kappa B/metabolism
17.
Arch Oral Biol ; 161: 105912, 2024 May.
Article En | MEDLINE | ID: mdl-38382164

OBJECTIVES: D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts. DESIGN: Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA). RESULTS: The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention. CONCLUSION: D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.


Bone Resorption , Osteogenesis , Animals , Mice , MAP Kinase Signaling System , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Macrophages/metabolism , Osteoclasts , Cell Differentiation , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/metabolism , Bone Resorption/metabolism , NFATC Transcription Factors/metabolism
18.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article En | MEDLINE | ID: mdl-38338716

Transcription factors within microglia contribute to the inflammatory response following intracerebral hemorrhage (ICH). Therefore, we employed bioinformatics screening to identify the potential transcription factor tonicity-responsive enhancer-binding protein (TonEBP) within microglia. Inflammatory stimuli can provoke an elevated expression of TonEBP in microglia. Nevertheless, the expression and function of microglial TonEBP in ICH-induced neuroinflammation remain ambiguous. In our recent research, we discovered that ICH instigated an increased TonEBP in microglia in both human and mouse peri-hematoma brain tissues. Furthermore, our results indicated that TonEBP knockdown mitigates lipopolysaccharide (LPS)-induced inflammation and the activation of NF-κB signaling in microglia. In order to more deeply comprehend the underlying molecular mechanisms of how TonEBP modulates the inflammatory response, we sequenced the transcriptomes of TonEBP-deficient cells and sought potential downstream target genes of TonEBP, such as Pellino-1 (PELI1). PELI has been previously reported to mediate nuclear factor-κB (NF-κB) signaling. Through the utilization of CUT & RUN, a dual-luciferase reporter, and qPCR, we confirmed that TonEBP is the transcription factor of Peli1, binding to the Peli1 promoter. In summary, TonEBP may enhance the LPS-induced inflammation and activation of NF-κB signaling via PELI1.


Cerebral Hemorrhage , Microglia , NFATC Transcription Factors , Animals , Humans , Mice , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/metabolism , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Microglia/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
19.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article En | MEDLINE | ID: mdl-38338818

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Calcineurin , Heart Failure , TRPV Cation Channels , Ventricular Remodeling , Animals , Mice , Calcineurin/metabolism , Cells, Cultured , Fibrosis , Heart Failure/metabolism , Isoproterenol , Mice, Transgenic , Myocytes, Cardiac/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Ventricular Remodeling/genetics
20.
Mol Med ; 30(1): 27, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378457

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Bone Resorption , Luteolin , Osteoporosis , Female , Rats , Animals , Bone Resorption/pathology , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases , Network Pharmacology , Cell Differentiation , Mitogen-Activated Protein Kinases/metabolism , Osteoporosis/drug therapy , NFATC Transcription Factors/metabolism
...