Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.493
Filter
1.
PLoS One ; 19(7): e0303808, 2024.
Article in English | MEDLINE | ID: mdl-38959277

ABSTRACT

Calcium Hydroxide-based endodontic sealer loaded with antimicrobial agents have been commonly employed in conventional root canal treatment. These sealers are not effective against E. faecalis due to the persistent nature of this bacterium and its ability to evade the antibacterial action of calcium hydroxide. Therefore, endodontic sealer containing Carbon nanodots stabilized silver nanoparticles (CD-AgNPs) was proposed to combat E. faecalis. The therapeutic effect of CD-AgNPs was investigated and a new cytocompatible Calcium Hydroxide-based endodontic sealer enriched with CD-AgNPs was synthesized that exhibited a steady release of Ag+ ions and lower water solubility at 24 hours, and enhanced antibacterial potential against E. faecalis. CD-AgNPs was synthesized and characterized morphologically and compositionally by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy (FTIR), and UV-Vis Spectroscopy, followed by optimization via minimum inhibitory concentration (MIC) determination against E. faecalis by broth microdilution technique and Cytotoxicity analysis against NIH3T3 cell lines via Alamar Blue assay. Calcium hydroxide in distilled water was taken as control (C), Calcium hydroxide with to CD-AgNPs (5mg/ml and 10mg/ml) yielded novel endodontic sealers (E1 and E2). Morphological and chemical analysis of the novel sealers were done by SEM and FTIR; followed by in vitro assessment for antibacterial potential against E. faecalis via agar disc diffusion method, release of Ag+ ions for 21 days by Atomic Absorption Spectrophotometry and water solubility by weight change for 21 days. CD-AgNPs were 15-20 nm spherical-shaped particles in uniformly distributed clusters and revealed presence of constituent elements in nano-assembly. FTIR spectra revealed absorption peaks that correspond to various functional groups. UV-Vis absorption spectra showed prominent peaks that correspond to Carbon nanodots and Silver nanoparticles. CD-AgNPs exhibited MIC value of 5mg/ml and cytocompatibility of 84.47% with NIH3T3 cell lines. Novel endodontic sealer cut-discs revealed irregular, hexagonal particles (100-120 nm) with aggregation and rough structure with the presence of constituent elements. FTIR spectra of novel endodontic sealers revealed absorption peaks that correspond to various functional groups. Novel endodontic sealers exhibited enhanced antibacterial potential where E-2 showed greatest inhibition zone against E. faecalis (6.3±2 mm), a steady but highest release of Ag+ ions was exhibited by E-1 (0.043±0.0001 mg/mL) and showed water solubility of <3% at 24 hours where E-2 showed minimal weight loss at all time intervals. Novel endodontic sealers were cytocompatible and showed enhanced antibacterial potential against E. faecalis, however, E2 outperformed in this study in all aspects.


Subject(s)
Anti-Bacterial Agents , Calcium Hydroxide , Carbon , Enterococcus faecalis , Metal Nanoparticles , Microbial Sensitivity Tests , Root Canal Filling Materials , Silver , Silver/chemistry , Silver/pharmacology , Calcium Hydroxide/chemistry , Calcium Hydroxide/pharmacology , Animals , Mice , Metal Nanoparticles/chemistry , Root Canal Filling Materials/chemistry , Root Canal Filling Materials/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , NIH 3T3 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared
2.
J Mater Chem B ; 12(26): 6371-6383, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38864345

ABSTRACT

The self-assembly of peptides and peptide analogues may be exploited to develop platforms for different biomedical applications, among which CEST-MRI (chemical exchange saturation transfer magnetic resonance imaging) represents one of the most attractive techniques to be explored as a novel metal-free contrast approach in imaging acquisitions. A lysine-containing peptide sequence (LIVAGK-NH2, named K2) was thus modified by insertion, at the N-terminus, of a peptide nucleic acid (PNA) base, leading to a primary amine suitable for the signal generation. a-K2, c-K2, g-K2 and t-K2 peptides were synthesized and characterized. The c-K2 sequence displayed gelling properties and the Watson and Crick pairing, arising from its combination with g-K2, allowed a significant increase in the mechanical responsivity of the hydrogel. These matrices were able to generate a CEST signal around 2.5 ppm from water and, after assessing their cytocompatibility on GL261 (murine glioma), TS/a (murine breast carcinoma), and 3T3-NIH (murine fibroblasts) cell lines, their capability to work as implants for in vivo detection, was proved by intratumor injection in Balb/c mice inoculated with TS/a murine breast cancer cells.


Subject(s)
Contrast Media , Hydrogels , Magnetic Resonance Imaging , Mice, Inbred BALB C , Peptide Nucleic Acids , Peptides , Animals , Hydrogels/chemistry , Hydrogels/chemical synthesis , Mice , Peptide Nucleic Acids/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Contrast Media/chemistry , Contrast Media/chemical synthesis , Female , NIH 3T3 Cells , Cell Line, Tumor
3.
Int J Mol Sci ; 25(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928060

ABSTRACT

At present, the magnetic selection of genetically modified cells is mainly performed with surface markers naturally expressed by cells such as CD4, LNGFR (low affinity nerve growth factor receptor), and MHC class I molecule H-2Kk. The disadvantage of such markers is the possibility of their undesired and poorly predictable expression by unmodified cells before or after cell manipulation, which makes it essential to develop new surface markers that would not have such a drawback. Earlier, modified CD52 surface protein variants with embedded HA and FLAG epitope tags (CD52/FLAG and CD52/HA) were developed by the group of Dr. Mazurov for the fluorescent cell sorting of CRISPR-modified cells. In the current study, we tested whether these markers can be used for the magnetic selection of transduced cells. For this purpose, appropriate constructs were created in MigR1-based bicistronic retroviral vectors containing EGFP and DsRedExpress2 as fluorescent reporters. Cytometric analysis of the transduced NIH 3T3 cell populations after magnetic selection evaluated the efficiency of isolation and purity of the obtained populations, as well as the change in the median fluorescence intensity (MFI). The results of this study demonstrate that the surface markers CD52/FLAG and CD52/HA can be effectively used for magnetic cell selection, and their efficiencies are comparable to that of the commonly used LNGFR marker. At the same time, the significant advantage of these markers is the absence of HA and FLAG epitope sequences in cellular proteins, which rules out the spurious co-isolation of negative cells.


Subject(s)
CD52 Antigen , Recombinant Fusion Proteins , Animals , Mice , NIH 3T3 Cells , CD52 Antigen/metabolism , CD52 Antigen/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Humans , Flow Cytometry/methods , Cell Separation/methods , Biomarkers
4.
Int J Biol Macromol ; 273(Pt 1): 132827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834128

ABSTRACT

Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (ß-CDsD). Here, ß-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with ß-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 µm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.


Subject(s)
Alginates , Anti-Bacterial Agents , Dopamine , Hydrogels , beta-Cyclodextrins , Alginates/chemistry , beta-Cyclodextrins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Dopamine/chemistry , NIH 3T3 Cells , Drug Liberation , Dimerization , Escherichia coli/drug effects
5.
Int J Biol Macromol ; 273(Pt 2): 133147, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878934

ABSTRACT

Wound healing involves several cellular and molecular pathways. Tridax procumbens activates genetic pathways with antibacterial, antioxidant, anticancer, and anti-inflammatory properties, aiding wound healing. This study purified Procumbenase, a serine protease from T. procumbens extract, using gel filtration (Sephadex G-75) and ion exchange (CM-Sephadex C-50) chromatography. Characterization involved analyses of protease activity, RP-HPLC, SDS-PAGE, gelatin zymogram, PAS staining, mass spectrometry, and circular dichroism. Optimal pH and temperature were determined. Protease type was identified using inhibitors. Wound-healing potential was evaluated through tensile strength, wound models, hydroxyproline estimation, and NIH 3T3 cell scratch analysis. In incision wound rat models, Procumbenase increased tensile strength on day 14 more than saline and Povidone­iodine. It increased wound contraction by 89 % after 10 days in excision wound models, attaining full contraction by day 15 and closure by day 21. Scarless wound healing was enhanced by 18 days of epithelialization against 22 and 21 days for saline and povidone­iodine. Procumbenase increased hydroxyproline concentration 2.53-fold (59.93 ± 2.89 mg/g) compared to saline (23.67 ± 1.86 mg/g). In NIH 3 T3 cell scratch assay, Procumbenase increased migration by 60.93 % (50 µg) and 60.57 % (150 µg) after 48 h. Thus, Procumbenase is the primary bioactive molecule in T. procumbens, demonstrates scar-free wound healing properties.


Subject(s)
Plant Extracts , Serine Proteases , Wound Healing , Wound Healing/drug effects , Animals , Mice , Rats , NIH 3T3 Cells , Serine Proteases/metabolism , Serine Proteases/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Male , Cicatrix/drug therapy , Hydroxyproline/metabolism , Tensile Strength
6.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825657

ABSTRACT

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Subject(s)
Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
7.
Int J Nanomedicine ; 19: 5125-5138, 2024.
Article in English | MEDLINE | ID: mdl-38855730

ABSTRACT

Purpose: Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods: Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results: The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion: In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Doxorubicin , Liposomes , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Mice , Liposomes/chemistry , MCF-7 Cells , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Cell Proliferation/drug effects , Mice, Inbred BALB C , NIH 3T3 Cells , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Particle Size , Nanoparticle Drug Delivery System/chemistry , Drug Delivery Systems/methods , Cell Movement/drug effects , Nanoparticles/chemistry
8.
Int J Biol Macromol ; 272(Pt 2): 132844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38834119

ABSTRACT

Nanofibers have been investigated in regenerative medicine. Dragon's blood (DB)- and poly helixan PF (PHPF) are natural materials used in cosmetics. Herein, we generated DB- and PHPF-loaded polyvinyl alcohol/chitosan (PVA/CS/DB and PVA/CS/PHPF, respectively) nanofibers. PVA/CS/DB and PVA/CS/PHPF nanofibers had an average diameter of 547.5 ± 17.13 and 521 ± 24.67 nm, respectively as assessed by SEM, and a degradation rate of 43.1 and 47.6 % after 14 days, respectively. PVA/CS/DB and PVA/CS/PHPF nanofibers had a hemolysis rate of 0.10 and 0.39 %, respectively, and a water vapor transmission rate of ∼2200 g.m-2.day-1. These nanofibers exhibited favorable antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis in vitro. PVA/CS/DB and PVA/CS/PHPF nanofibers demonstrated a sustained release of 77.91 and 76.55 % over 72 h. PVA/CS/DB and PVA/CS/PHPF nanofibers had a high rate of cytocompatibility and significantly improved the viability of NIH/3T3 cells as compared with free drugs or unloaded nanofibers. Histological inspection via H&E and Verhoeff's staining demonstrated PVA/CS/DB and PVA/CS/PHPF nanofibers enhanced the wound healing and damaged tissue recovery of unsplinted wound models by promoting epithelial layer formation, collagen deposition, and enhancing the presence of fibroblasts. Conclusively, PVA/CS/DB and PVA/CS/PHPF can be introduced as potential wound dressing candidates with favorable properties.


Subject(s)
Bandages , Chitosan , Nanofibers , Polyvinyl Alcohol , Nanofibers/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Animals , Mice , NIH 3T3 Cells , Wound Healing/drug effects , Hemolysis/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Plant Extracts
9.
Cancer Med ; 13(13): e7445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940430

ABSTRACT

INTRODUCTION: Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS: To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS: NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION: We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.


Subject(s)
Cell Transformation, Neoplastic , Nuclear Pore Complex Proteins , Oncogene Proteins, Fusion , Proto-Oncogene Proteins c-pim-1 , Animals , Humans , Mice , Apoptosis , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Jurkat Cells , NIH 3T3 Cells , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins c-pim-1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation
10.
FASEB J ; 38(13): e23753, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38924591

ABSTRACT

Lunatic Fringe (LFNG) is required for spinal development. Biallelic pathogenic variants cause spondylocostal dysostosis type-III (SCD3), a rare disease generally characterized by malformed, asymmetrical, and attenuated development of the vertebral column and ribs. However, a variety of SCD3 cases reported have presented with additional features such as auditory alterations and digit abnormalities. There has yet to be a single, comprehensive, functional evaluation of causative LFNG variants and such analyses could unveil molecular mechanisms for phenotypic variability in SCD3. Therefore, nine LFNG missense variants associated with SCD3, c.564C>A, c.583T>C, c.842C>A, c.467T>G, c.856C>T, c.601G>A, c.446C>T, c.521G>A, and c.766G>A, were assessed in vitro for subcellular localization and protein processing. Glycosyltransferase activity was quantified for the first time in the c.583T>C, c.842C>A, and c.446C>T variants. Primarily, our results are the first to satisfy American College of Medical Genetics and Genomics PS3 criteria (functional evidence via well-established assay) for the pathogenicity of c.583T>C, c.842C>A, and c.446C>T, and replicate this evidence for the remaining six variants. Secondly, this work indicates that all variants that prevent Golgi localization also lead to impaired protein processing. It appears that the FRINGE domain is responsible for this phenomenon. Thirdly, our data suggests that variant proximity to the catalytic residue may influence whether LFNG is improperly trafficked and/or enzymatically dysfunctional. Finally, the phenotype of the axial skeleton, but not elsewhere, may be modulated in a variant-specific fashion. More reports are needed to continue testing this hypothesis. We anticipate our data will be used as a basis for discussion of genotype-phenotype correlations in SCD3.


Subject(s)
Dysostoses , Genetic Variation , Glycosyltransferases , Animals , Mice , Cell Line , Chlorocebus aethiops , Dysostoses/congenital , Dysostoses/genetics , Genetic Variation/genetics , Genomics , Glycosyltransferases/genetics , NIH 3T3 Cells , Protein Processing, Post-Translational/genetics , Protein Transport/genetics , Proteomics
11.
J Food Drug Anal ; 32(2): 168-183, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38934695

ABSTRACT

Nutraceuticals, that include food ingredients and bioactives from natural products, confer physiological health benefits and protection against chronic diseases. Annatto is a tropical shrub grown in Central and South America and parts of India. Its seeds are rich in the edible carotenoid-derived apocarotenoid pigment, bixin, which is used as a natural colorant in food, textiles, and cosmetics, and is now gaining attention for its potential health-promoting attributes. Here, we compared a green solvent (ethyl lactate) based extraction of bixin and associated metabolites in annatto seeds (crushed and seed coat) with two other conventional solvents (acetone and acid-base). Bixin was characterized in the extracts using UV-visible- and FTIR-spectroscopy and thin-layer chromatography. The bixin-containing solvent extracts were then profiled for other co-existing metabolites using GC-MS analysis, which were found to be sesquiterpenes, terpenes, terpenoids, phytosterols, and tocotrienols. Their bioactivity was evaluated based on antioxidant and wound-healing efficacies and compared with pure bixin, using NIH-3T3 fibroblast cells in-vitro. Pure bixin, as well as the annatto solvent extracts, showed strong antioxidant and wound healing properties, wherein pure bixin and green solvent extract (ethyl lactate coat) exhibited higher levels of antioxidant activity, achieving 46.00% and 44.60% reduction in MDA levels, respectively, as well as enhanced wound-healing activity, with 54.09% and 53.60% wound closure within 24 h. The green solvent extracts of annatto seeds revealed: (a) differential bioactive profiles in annatto seeds (crushed and seed coat) in comparison with other solvents, and (b) strong antioxidant and wound healing properties. Thus, ethyl lactate extraction shows strong potential for sustainable environmental friendly production of functional foods/nutraceuticals from annatto seeds.


Subject(s)
Bixaceae , Carotenoids , Plant Extracts , Seeds , Bixaceae/chemistry , Seeds/chemistry , Carotenoids/chemistry , Carotenoids/pharmacology , Carotenoids/analysis , Carotenoids/isolation & purification , Mice , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Solvents/chemistry , NIH 3T3 Cells , Green Chemistry Technology
12.
Phytomedicine ; 130: 155687, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759312

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a debilitating interstitial lung disorder characterized by its limited therapeutic interventions. Macrophages, particularly the alternatively activated macrophages (M2 subtype), have been acknowledged for their substantial involvement in the development of pulmonary fibrosis. Hence, targeting macrophages emerges as a plausible therapeutic avenue for IPF. Icariside II (ISE II) is a natural flavonoid glycoside molecule known for its excellent anti-tumor and anti-fibrotic activities. Nevertheless, the impact of ISE II on pulmonary fibrosis and the intricate mechanisms through which it operates have yet to be elucidated. OBJECTIVE: To scrutinize the impact of ISE II on the regulation of M2 macrophage polarization and its inhibitory effect on pulmonary fibrosis, as well as to delve deeper into the underlying mechanisms of its actions. METHODS: The effect of ISE II on proliferation and apoptosis in RAW264.7 cells was assessed through the use of EdU-488 labeling and the Annexin V/PI assay. Flow cytometry, western blot, and qPCR were employed to detect markers associated with the M2 polarization phenotype. The anti-fibrotic effects of ISE II in NIH-3T3 cells were investigated in a co-culture with M2 macrophages. Si-Ctnnb1 and pcDNA3.1(+)-Ctnnb1 plasmid were used to investigate the mechanism of targeted intervention. The murine model of pulmonary fibrosis was induced by intratracheal administration of bleomycin (BLM). Pulmonary function, histopathological manifestations, lung M2 macrophage infiltration, and markers associated with pulmonary fibrosis were evaluated. Furthermore, in vivo transcriptomics analysis was employed to elucidate differentially regulated genes in lung tissues. Immunofluorescence, western blot, and immunohistochemistry were conducted for corresponding validation. RESULTS: Our investigation demonstrated that ISE II effectively inhibited the proliferation of RAW264.7 cells and mitigated the pro-fibrotic characteristics of M2 macrophages, exemplified by the downregulation of CD206, Arg-1, and YM-1, Fizz1, through the inhibition of the PI3K/Akt/ß-catenin signaling pathway. This impact led to the amelioration of myofibroblast activation and the suppression of nuclear translocation of ß-catenin of NIH-3T3 cells in a co-culture. Consequently, it resulted in decreased collagen deposition, reduced infiltration of profibrotic macrophages, and a concurrent restoration of pulmonary function in mice IPF models. Furthermore, our RNA sequencing results showed that ISE II could suppress the expression of genes related to M2 polarization, primarily by inhibiting the PI3K/Akt and ß-catenin signaling pathway. In essence, our findings suggest that ISE II holds potential as an anti-fibrotic agent by orchestrating macrophage polarization. This may have significant implications in clinical practice. CONCLUSION: This study has provided evidence that ISE II exerts a significant anti-fibrotic effect by inhibiting macrophage M2 polarization through the suppression of the PI3K/Akt/ß-catenin signaling pathway. These findings underscore the potential of ISE II as a promising candidate for the development of anti-fibrotic pharmaceuticals in the future.


Subject(s)
Flavonoids , Macrophages , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , beta Catenin , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Flavonoids/pharmacology , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , beta Catenin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , NIH 3T3 Cells , Cell Proliferation/drug effects , Signal Transduction/drug effects , Bleomycin , Mice, Inbred C57BL , Apoptosis/drug effects , Male , Idiopathic Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/drug therapy
13.
Biomed Mater ; 19(4)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38815598

ABSTRACT

Bacterial infection can lead to various complications, such as inflammations on surrounding tissues, which can prolong wound healing and thus represent a significant clinical and public healthcare problem. Herein, a report on the fabrication of a novel genipin/quaternized chitosan (CS) hydrogel for wound dressing is presented. The hydrogel was prepared by mixing quaternized CS and genipin under 35 °C bath. The hydrogels showed porous structure (250-500 µm) and mechanical properties (3000-6000 Pa). In addition, the hydrogels displayed self-healing ability and adhesion performance on different substrates. Genipin crosslinked quaternized CS hydrogels showed antibacterial activities againstE. coliandS. aureus. The CCK-8 and fluorescent images confirmed the cytocompatibility of hydrogels by seeding with NIH-3T3 cells. The present study showed that the prepared hydrogel has the potential to be used as wound dressing.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Cross-Linking Reagents , Escherichia coli , Hydrogels , Iridoids , Quaternary Ammonium Compounds , Staphylococcus aureus , Wound Healing , Chitosan/chemistry , Iridoids/chemistry , Animals , Mice , Hydrogels/chemistry , Wound Healing/drug effects , NIH 3T3 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Cross-Linking Reagents/chemistry , Quaternary Ammonium Compounds/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Porosity
14.
Anticancer Res ; 44(6): 2393-2406, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821585

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma (CCA) is an aggressive tumor with limited treatment options especially in 2nd line or later treatments. Targeting fibroblast growth factor receptor (FGFR) 2 has recently emerged as a promising treatment option for patients with CCA harboring FGFR2-fusion. This study investigated the antitumor activities of tasurgratinib as an orally available FGFR1-3 inhibitor, in preclinical FGFR2-driven CCA models. MATERIALS AND METHODS: Antitumor activities of tasurgratinib were examined in vitro and in vivo using NIH/3T3 cells expressing FGFR2-fusion as FGFR2-driven CCA models, and in vivo using a CCA patient-derived xenograft model. The molecular mechanism of action of tasurgratinib was elucidated through co-crystal structure analysis with FGFR1, manual complex model analysis with FGFR2, and binding kinetics analysis with FGFR2. Furthermore, the cell-based inhibitory activities against acquired resistant FGFR2 mutations in patients with CCA treated with FGFR inhibitors were evaluated. RESULTS: Tasurgratinib showed antitumor activity in preclinical FGFR2-driven CCA models by inhibiting the FGFR signaling pathway in vitro and in vivo. Furthermore, cell-based target engagement assays indicated that tasurgratinib had potent inhibitory activities against FGFR2 mutations, such as N549H/K, which are the major acquired mutations in CCA. We also confirmed that tasurgratinib exhibited fast association and slow dissociation kinetics with FGFR2, binding to the ATP-binding site and the neighboring region, and adopting an Asp-Phe-Gly (DFG)-"in" conformation. CONCLUSION: These data demonstrate the therapeutic potential of tasurgratinib in FGFR2-driven CCA and provide molecular mechanistic insights into its unique inhibitory profile against secondary FGFR2 resistance mutations in patients with CCA treated with FGFR inhibitors.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Xenograft Model Antitumor Assays , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/metabolism , Animals , Humans , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Mice , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Administration, Oral , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , NIH 3T3 Cells , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Cell Proliferation/drug effects , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors
15.
Int J Biol Macromol ; 270(Pt 1): 131856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693000

ABSTRACT

Biomacromolecules derived from natural sources offer superior biocompatibility, biodegradability, and water-holding capacity, which make them promising scaffolds for tissue engineering. Psyllium seed has gained attention in biomedical applications recently due to its gel-forming ability, which is provided by its polysaccharide-rich content consisting mostly of arabinoxylan. This study focuses on the extraction and gelation of Psyllium seed hydrocolloid (PSH) in a single-step water-based protocol, and scaffold fabrication using freeze-drying method. After characterization of the scaffold, including morphological, mechanical, swelling, and protein adsorption analyses, 3D cell culture studies were done using NIH-3 T3 fibroblast cells on PSH scaffold, and cell viability was assessed using Live/Dead and Alamar Blue assays. Starting from day 1, high cell viability was obtained, and it reached 90 % at the end of 15-day culture period. Cellular morphology on PSH scaffold was monitored via SEM analysis; cellular aggregates then spheroid formation were observed throughout the study. Collagen Type-I and F-actin expressions were followed by immunostaining revealing a 9- and 10-fold increase during long-term culture. Overall, a single-step and non-toxic protocol was developed for extraction and gelation of PSH. Obtained results unveiled that PSH scaffold provided a favorable 3D microenvironment for cells, holding promise for further tissue engineering applications.


Subject(s)
Colloids , Psyllium , Seeds , Tissue Engineering , Tissue Scaffolds , Xylans , Psyllium/chemistry , Xylans/chemistry , Xylans/pharmacology , Tissue Engineering/methods , Animals , Seeds/chemistry , Mice , Colloids/chemistry , Tissue Scaffolds/chemistry , NIH 3T3 Cells , Cell Survival/drug effects , Water/chemistry
16.
ACS Appl Mater Interfaces ; 16(23): 29737-29759, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805212

ABSTRACT

Biomaterial properties have recently been shown to modulate extracellular vesicle (EV) secretion and cargo; however, the effects of substrate composition on EV production remain underexplored. This study investigates the impacts of surface coatings composed of collagen I (COLI), fibronectin (FN), and poly l-lysine (PLL) on EV secretion for applications in therapeutic EV production and to further understanding of how changes in the extracellular matrix microenvironment affect EVs. EV secretion from primary bone marrow-derived mesenchymal stromal cells (BMSCs), primary adipose-derived stem cells (ASCs), HEK293 cells, NIH3T3 cells, and RAW264.7 cells was characterized on the different coatings. Expression of EV biogenesis genes and cellular adhesion genes was also analyzed. COLI coatings significantly decreased EV secretion in RAW264.7 cells, with associated decreases in cell viability and changes in EV biogenesis-related and cell adhesion genes at day 4. FN coatings increased EV secretion in NIH3T3 cells, while PLL coatings increased EV secretion in ASCs. Surface coatings had significant effects on the capacity of EVs derived from RAW264.7 and NIH3T3 cells to impact in vitro macrophage proliferation. Overall, surface coatings had different cell-specific effects on EV secretion and in vitro functional capacity, thus highlighting the potential of substrate coatings to further the development of clinical EV production systems.


Subject(s)
Extracellular Vesicles , Fibronectins , Mesenchymal Stem Cells , Mice , Animals , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , NIH 3T3 Cells , RAW 264.7 Cells , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Fibronectins/chemistry , Fibronectins/metabolism , Surface Properties , Polylysine/chemistry , Polylysine/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , HEK293 Cells , Cell Proliferation/drug effects , Cell Adhesion/drug effects , Cell Survival/drug effects , Collagen Type I/metabolism , Collagen Type I/chemistry , Collagen Type I/genetics
17.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805270

ABSTRACT

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Subject(s)
ARNTL Transcription Factors , CLOCK Proteins , Circadian Clocks , Period Circadian Proteins , Animals , Humans , Mice , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/chemistry , Circadian Clocks/genetics , Circadian Rhythm/physiology , Circadian Rhythm/genetics , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , DNA/metabolism , HEK293 Cells , Mutation , NIH 3T3 Cells , Period Circadian Proteins/metabolism , Period Circadian Proteins/genetics , Phosphorylation , Protein Binding , Protein Domains
18.
Toxicol In Vitro ; 98: 105845, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754600

ABSTRACT

Current clinical therapies for metastatic breast cancer (MBC) have limited therapeutic efficacy and induce significant systemic side effects, leading to poor patient compliance. To address this challenge, this investigation focuses on the design of LINC02535 + miR-30a-5p for treating breast cancer. In vitro cytotoxicity studies confirmed that LINC02535 + miR-30a-5p was more effective in 4 T1 cells, with reduced toxicity in NIH3T3 cells. Further verification of cellular morphology was achieved through various biochemical staining methods. Additionally, the antimetastatic attributes of LINC02535 + miR-30a-5p have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the 4 T1 cells was assessed using a comet assay. LINC02535 + miR-30a-5p improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. Therefore, we propose that LINC02535 + miR-30a-5p could be an alternative therapeutic strategy for breast cancer therapy.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Apoptosis/drug effects , Animals , Mice , Humans , Cell Proliferation/drug effects , Female , Cell Line, Tumor , RNA, Long Noncoding/genetics , Cell Movement , NIH 3T3 Cells , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , DNA Damage
19.
Hum Cell ; 37(4): 1091-1106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782857

ABSTRACT

Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3' untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Epithelium, Corneal , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , DNA Methylation/genetics , Exosomes/genetics , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Promoter Regions, Genetic/genetics , Corneal Injuries/genetics , Corneal Injuries/etiology , Corneal Injuries/therapy , Corneal Injuries/metabolism , Epithelial Cells/metabolism , Gene Expression/genetics , Freezing , NIH 3T3 Cells
20.
ACS Biomater Sci Eng ; 10(6): 4085-4092, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38780535

ABSTRACT

With the utilization of advanced microfluidic techniques, the microfluidic particle counter demonstrates significant potential due to its high efficiency, precise manipulation, and portability. This work focuses on a photodetection counter based on optical absorption. To achieve precise particle detection, a Christmas tree-like structure was implemented to separate a single particle from a cluster, which was then detected in independent multiple parallel channels. The system exhibits a high degree of reliability, as evidenced by a linear correlation coefficient over 0.99 obtained during testing with gradient-concentrated beads. Furthermore, when the calculated density of NIH 3T3 cells is compared with that of a traditional flow cytometer, the system achieves a substantial agreement percentage ranging from 87.5 to 99.9%. The system's ability to perform high-throughput analysis with a high acquisition rate positions it as a promising tool for real-time point-of-care testing.


Subject(s)
Microfluidic Analytical Techniques , Mice , Animals , NIH 3T3 Cells , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , High-Throughput Screening Assays/methods , High-Throughput Screening Assays/instrumentation , Flow Cytometry/methods , Flow Cytometry/instrumentation , Microfluidics/methods , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...