Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
Cell Death Dis ; 15(7): 466, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956029

ABSTRACT

Metastasis is the major culprit of treatment failure in nasopharyngeal carcinoma (NPC). Aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2), a core circadian gene, plays a crucial role in the development of various tumors. Nevertheless, the biological role and mechanism of ARNTL2 are not fully elucidated in NPC. In this study, ARNTL2 expression was significantly upregulated in NPC tissues and cells. Overexpression of ARNTL2 facilitated NPC cell migration and invasion abilities, while inhibition of ARNTL2 in similarly treated cells blunted migration and invasion abilities in vitro. Consistently, in vivo xenograft tumor models revealed that ARNTL2 silencing reduced nude mice inguinal lymph node and lung metastases, as well as tumor growth. Mechanistically, ARNTL2 negatively regulated the transcription expression of AMOTL2 by directly binding to the AMOTL2 promoter, thus reducing the recruitment and stabilization of AMOTL2 to LATS1/2 kinases, which strengthened YAP nuclear translocation by suppressing LATS-dependent YAP phosphorylation. Inhibition of AMOTL2 counteracted the effects of ARNTL2 knockdown on NPC cell migration and invasion abilities. These findings suggest that ARNTL2 may be a promising therapeutic target to combat NPC metastasis and further supports the crucial roles of circadian genes in cancer development.


Subject(s)
ARNTL Transcription Factors , Adaptor Proteins, Signal Transducing , Angiomotins , Cell Movement , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Humans , Animals , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Cell Movement/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Neoplasm Metastasis , Female , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
2.
Hereditas ; 161(1): 20, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956710

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor of the nasopharyngeal mucosa with a high incidence rate all over the world. Methyltransferase-like 14 (METTL14) is a major RNA N6-adenosine methyltransferase implicated in tumor progression by regulating RNA function. This study is designed to explore the biological function and mechanism of METTL14 in NPC. METHODS: METTL14 and Amine oxidase copper containing 1 (AOC1) expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein levels of METTL14, AOC1, Cyclin D1, B-cell lymphoma-2 (Bcl-2), and N-cadherin were measured using western blot. Cell proliferation, cycle progression, apoptosis, migration, and invasion were assessed using 5-ethynyl-2'-deoxyuridine (EdU), Colony formation, flow cytometry, wound scratch, and transwell assays. The interaction between METTL14 and AOC1 was verified using RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP), and dual-luciferase reporter assays. The biological role of METTL14 on NPC tumor growth was examined by the xenograft tumor model in vivo. RESULTS: METTL14 and AOC1 were highly expressed in NPC tissues and cells. Moreover, METTL14 knockdown might block NPC cell proliferation, migration, invasion, and induce cell apoptosis in vitro. In mechanism, METTL14 might enhance the stability of AOC1 mRNA via m6A methylation. METTL14 silencing might repress NPC tumor growth in vivo. CONCLUSION: METTL14 might boosted the development of NPC cells partly by regulating the stability of AOC1 mRNA, which provided a promising therapeutic target for NPC treatment.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Neoplastic , Methyltransferases , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , RNA Stability , RNA, Messenger , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Cell Line, Tumor , Animals , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , RNA, Messenger/genetics , Apoptosis/genetics , Mice , Cell Movement , Disease Progression , Male , Female
3.
World J Surg Oncol ; 22(1): 166, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918785

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of malignant tumor with high morbidity. Aberrant levels of N7-methylguanosine (m7G) are closely associated with tumor progression. However, the characteristics of the tumor microenvironment (TME) in NPC associated with m7G modification remain unclear. METHODS: A total of 68,795 single cells from single-cell RNA sequencing data derived from 11 NPC tumor samples and 3 nasopharyngeal lymphatic hyperplasia (NLH) samples were clustered using a nonnegative matrix factorization algorithm according to 61 m7G RNA modification regulators. RESULTS: The m7G regulators were found differential expression in the TME cells of NPC, and most m7G-related immune cell clusters in NPC tissues had a higher abundance compared to non-NPC tissues. Specifically, m7G scores in the CD4+ and CD8+ T cell clusters were significantly lower in NPC than in NLH. T cell clusters differentially expressed immune co-stimulators and co-inhibitors. Macrophage clusters differentially expressed EIF4A1, and high EIF4A1 expression was associated with poor survival in patients with head and neck squamous carcinoma. EIF4A1 was upregulated in NPC tissues compared to the non-NPC tissues and mainly expressed in CD86+ macrophages. Moreover, B cell clusters exhibited tumor biological characteristics under the regulation of m7G-related genes in NPC. The fibroblast clusters interacted with the above immune cell clusters and enriched tumor biological pathways, such as FGER2 signaling pathway. Importantly, there were correlations and interactions through various ligand-receptor links among epithelial cells and m7G-related TME cell clusters. CONCLUSION: Our study revealed tumor-associated characteristics and immune dysregulation in the NPC microenvironment under the regulation of m7G-related TME cells. These results demonstrated the underlying regulatory roles of m7G in NPC.


Subject(s)
Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/immunology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Survival Rate , Female
5.
In Vivo ; 38(4): 1731-1739, 2024.
Article in English | MEDLINE | ID: mdl-38936920

ABSTRACT

BACKGROUND/AIM: The up-regulation of matrix metalloproteinase-9 (MMP-9) expression is a characteristic feature observed across various malignancies, including nasopharyngeal carcinoma (NPC). Nevertheless, the influence of MMP-9 genotype in the context of NPC remains underexplored. This study examined the implications of MMP-9 promoter rs3918242 genotypes on the susceptibility to NPC in Taiwan. MATERIALS AND METHODS: In a cohort comprising 208 NPC cases and 416 healthy controls, genotyping of MMP-9 rs3918242 was conducted utilizing polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS: Individuals harbouring the variant CT or TT genotype of MMP-9 rs3918242 did not demonstrate a discernible alteration in NPC risk when compared to wild-type CC carriers [odds ratio (OR)=0.83 and 0.79, with 95% confidence intervals (95%CI)=0.56-1.24 and 0.27-2.29; p=0.4205 and 0.8675, respectively]. Moreover, the presence of the variant T allele did not confer a modified risk of NPC (OR=0.84, 95%CI=0.60-1.19, p=0.3761). Intriguingly, a protective effect associated with the MMP-9 rs3918242 CT genotype against NPC risk was discerned among individuals abstaining from betel quid chewing behaviour (OR=0.51, 95%CI=0.30-0.87, p=0.0166). Notably, no significant association was established between the MMP-9 rs3918242 CT or TT genotype and NPC risk among individuals with or without smoking or alcohol consumption habits. CONCLUSION: Presence of the variant CT or TT genotype at MMP-9 rs3918242 did not appear to substantially contribute to an elevated risk of NPC. Notably, a protective effect against NPC risk was observed in individuals carrying the CT genotype, particularly in those abstaining from betel quid chewing.


Subject(s)
Matrix Metalloproteinase 9 , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Adult , Aged , Female , Humans , Male , Middle Aged , Alleles , Case-Control Studies , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Matrix Metalloproteinase 9/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/epidemiology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/epidemiology , Odds Ratio , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Risk Factors , Taiwan/epidemiology
6.
Technol Cancer Res Treat ; 23: 15330338241246457, 2024.
Article in English | MEDLINE | ID: mdl-38836311

ABSTRACT

Objectives: Exploring the relationship between the hOGG1 rs1052133 polymorphism and the occurrence of nasopharyngeal carcinoma (NPC). Methods: PubMed, Web of Science, Scopus, CNKI, Wanfangdata, and VIP were used to search for studies and the NOS evaluation scale was used to evaluate the quality. All studies were grouped according to different genotypes. The Cochrane's Q test and I2 test were used for heterogeneity evaluations. If heterogeneity was small, the fixed effects model was used, and conversely, the random effects model was used. Publication bias was also detected. P < .05 in all results indicated statistically significant. Results: We ultimately included 6 studies with 2021 NPC patients in the study group and 2375 healthy populations in the control group. After meta-analysis, it was found that the total OR value of the "Ser/Cys (CG) vs Ser/Ser (CC)" group was 1.00 (95% CI: 0.85-1.18) and the "Cys/Cys (GG) vs Ser/Ser (CC)" group was 1.06 (95% CI: 0.87-1.28). These results were not statistically significant (P > .05). Furthermore, the integrated total OR values of each group were not statistically significant with or without the smoking history, even in other genotype models (Allele, Dominant, Recessive, and Additive) (P > .05). Conclusion: There is no clear correlation between the hOGG1 rs1052133 polymorphism and the occurrence of NPC, even with or without the smoking history.


Subject(s)
Alleles , DNA Glycosylases , Genetic Predisposition to Disease , Genotype , Nasopharyngeal Carcinoma , Polymorphism, Single Nucleotide , Humans , Nasopharyngeal Carcinoma/genetics , DNA Glycosylases/genetics , Nasopharyngeal Neoplasms/genetics , Odds Ratio , Genetic Association Studies , Publication Bias , Case-Control Studies
7.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906860

ABSTRACT

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Pyroptosis , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Pyroptosis/drug effects , Pyroptosis/genetics , Ubiquitination/drug effects , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Mice, Nude , Female , Dynamins/metabolism , Dynamins/genetics , Reactive Oxygen Species/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Male , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Phosphorylation/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Middle Aged , Gasdermins
8.
Cell Death Dis ; 15(6): 423, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890304

ABSTRACT

Mitochondria play a crucial role in the progression of nasopharyngeal carcinoma (NPC). YME1L, a member of the AAA ATPase family, is a key regulator of mitochondrial function and has been implicated in various cellular processes and diseases. This study investigates the expression and functional significance of YME1L in NPC. YME1L exhibits significant upregulation in NPC tissues from patients and across various primary human NPC cells, while its expression remains relatively low in adjacent normal tissues and primary nasal epithelial cells. Employing genetic silencing through the shRNA strategy or knockout (KO) via the CRISPR-sgRNA method, we demonstrated that YME1L depletion disrupted mitochondrial function, leading to mitochondrial depolarization, reactive oxygen species (ROS) generation, lipid peroxidation, and ATP reduction within primary NPC cells. Additionally, YME1L silencing or KO substantially impeded cell viability, proliferation, cell cycle progression, and migratory capabilities, concomitant with an augmentation of Caspase-apoptosis activation in primary NPC cells. Conversely, ectopic YME1L expression conferred pro-tumorigenic attributes, enhancing ATP production and bolstering NPC cell proliferation and migration. Moreover, our findings illuminate the pivotal role of YME1L in Akt-mTOR activation within NPC cells, with Akt-S6K phosphorylation exhibiting a significant decline upon YME1L depletion but enhancement upon YME1L overexpression. In YME1L-silenced primary NPC cells, the introduction of a constitutively-active Akt1 mutant (caAkt1, at S473D) restored Akt-S6K phosphorylation, effectively ameliorating the inhibitory effects imposed by YME1L shRNA. In vivo studies revealed that intratumoral administration of YME1L-shRNA-expressing adeno-associated virus (AAV) curtailed subcutaneous NPC xenograft growth in nude mice. Furthermore, YME1L downregulation, concurrent with mitochondrial dysfunction and ATP reduction, oxidative injury, Akt-mTOR inactivation, and apoptosis induction were evident within YME1L-silenced NPC xenograft tissues. Collectively, these findings shed light on the notable pro-tumorigenic role by overexpressed YME1L in NPC, with a plausible mechanism involving the promotion of Akt-mTOR activation.


Subject(s)
Cell Proliferation , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Animals , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Cell Line, Tumor , Mice , Mitochondria/metabolism , Apoptosis/genetics , Mice, Nude , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , TOR Serine-Threonine Kinases/metabolism , Male , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Female , Signal Transduction
9.
Discov Med ; 36(185): 1210-1220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926107

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an aggressive and highly metastatic malignant tumor. Despite recent therapeutic advances, resistance to Taxol (the generic name of paclitaxel) therapy remains a major challenge in clinical management. Therefore, it is imperative to explore the potential mechanisms of paclitaxel resistance in NPC. This study aimed to investigate the expression of aldehyde dehydrogenase 2 (ALDH2) in NPC cells and its critical role in paclitaxel resistance. METHODS: Paclitaxel-resistant cell line CNE1/Taxol (CNE1-TR), a drug-resistant cell line, was established by exposing the CNE1 nasopharyngeal carcinoma cell line to progressively increasing concentrations of paclitaxel. Furthermore, we investigated the role of ALDH2 in paclitaxel resistance and the function of exosomes using cell culture, Western blotting, reverse transcription-polymerase chain reaction (RT-PCR), Cell Counting Kit-8 (CCK-8), and nanoparticle tracking analysis. RESULTS: The results showed that in the presence of paclitaxel, the CNE1-TR cells manifested higher survival rate and half-maximal inhibitory concentration (IC50) value compared to the parental cell line, indicating strong resistance to paclitaxel. CNE1-TR cells had significantly upregulated mRNA and protein levels of ALDH2. In addition, exosome analysis showed that CNE1-TR cells were able to deliver ALDH2 via exosomes, increasing paclitaxel resistance in the recipient cells. We observed that the ALDH2 expression levels and paclitaxel resistance in CNE1-TR cells were effectively reduced by blocking the release of exosomes. CONCLUSION: ALDH2 is not only a key molecular marker indicative of therapeutic efficacy, but also a potential therapeutic target for developing novel anticancer strategies. By blocking the exosomal transport of ALDH2 or directly inhibiting its activity, it may be possible to overcome paclitaxel resistance, thus improving the success rate of clinical treatment.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial , Drug Resistance, Neoplasm , Exosomes , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Paclitaxel , Humans , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Exosomes/metabolism , Exosomes/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Aldehyde Dehydrogenase, Mitochondrial/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects
10.
Cell Mol Biol Lett ; 29(1): 92, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943090

ABSTRACT

Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.


Subject(s)
Autophagy , Berberine , ErbB Receptors , MAP Kinase Signaling System , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Berberine/pharmacology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/pathology , Autophagy/drug effects , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Cell Line, Tumor , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , MAP Kinase Signaling System/drug effects , Animals , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/genetics , Cell Proliferation/drug effects , ras Proteins/metabolism , ras Proteins/genetics , Mice , Gene Expression Regulation, Neoplastic/drug effects , Enhancer Elements, Genetic/genetics , Mice, Nude
11.
PLoS Pathog ; 20(5): e1012263, 2024 May.
Article in English | MEDLINE | ID: mdl-38805547

ABSTRACT

Genetic variants in Epstein-Barr virus (EBV) have been strongly associated with nasopharyngeal carcinoma (NPC) in South China. However, different results regarding the most significant viral variants, with polymorphisms in EBER2 and BALF2 loci, have been reported in separate studies. In this study, we newly sequenced 100 EBV genomes derived from 61 NPC cases and 39 population controls. Comprehensive genomic analyses of EBV sequences from both NPC patients and healthy carriers in South China were conducted, totaling 279 cases and 227 controls. Meta-analysis of genome-wide association study revealed a 4-bp deletion downstream of EBER2 (coordinates, 7188-7191; EBER-del) as the most significant variant associated with NPC. Furthermore, multiple viral variants were found to be genetically linked to EBER-del forming a risk haplotype, suggesting that multiple viral variants might be associated with NPC pathogenesis. Population structure and phylogenetic analyses further characterized a high risk EBV lineage for NPC revealing a panel of 38 single nucleotide polymorphisms (SNPs), including those in the EBER2 and BALF2 loci. With linkage disequilibrium clumping and feature selection algorithm, the 38 SNPs could be narrowed down to 9 SNPs which can be used to accurately detect the high risk EBV lineage. In summary, our study provides novel insight into the role of EBV genetic variation in NPC pathogenesis by defining a risk haplotype of EBV for downstream functional studies and identifying a single high risk EBV lineage characterized by 9 SNPs for potential application in population screening of NPC.


Subject(s)
Epstein-Barr Virus Infections , Genome, Viral , Herpesvirus 4, Human , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Female , Humans , Male , China/epidemiology , East Asian People , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Genetic Variation , Genome-Wide Association Study , Herpesvirus 4, Human/genetics , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/genetics , Phylogeny , Polymorphism, Single Nucleotide
12.
Cytokine ; 179: 156631, 2024 07.
Article in English | MEDLINE | ID: mdl-38710115

ABSTRACT

BACKGROUND: Chitinase 3 like-1 (CHI3L1) has been reported to function as an oncogene in many types of cancer. However, the biological function of CHI3L1 in nasopharyngeal carcinoma (NPC) remains unknown. METHODS: Differentially expressed genes (DEGs) in NPC tissues in GSE64634 and GSE12452 were downloaded from Gene Expression Omnibus (GEO). CHI3L1, interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) mRNA expression was examined by qRT-PCR. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. Western blot analysis was used to measure the changes of CHI3L1, nuclear factor-κappaB (NF-κB), and protein kinase B (Akt) pathways. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analyses were performed using DAVID database. RESULTS: We identified 3 overlapping DEGs using Draw Venn diagram, among which CHI3L1 was chosen for the following analyses. CHI3L1 was upregulated in NPC tissues and cells. CHI3L1 silencing suppressed inflammatory response by inactivating the NF-κB pathway and inhibited cell proliferation in NPC cells. On the contrary, CHI3L1 overexpression induced inflammatory response by activating the NF-κB pathway and promoted cell proliferation in NPC cells. According to GO and KEGG analyses, CHI3L1 positive regulates Akt signaling and is enriched in the PI3K-Akt pathway. CHI3L1 knockdown inhibited the Akt pathway, and CHI3L1 overexpression activated the Akt pathway in NPC cells. Akt overexpression abolished the effects of CHI3L1 knockdown on inflammatory response, NF-κB pathway, and proliferation in NPC cells. On the contrary, Akt knockdown abolished the effects of CHI3L1 overexpression on inflammatory response, NF-κB pathway, and proliferation in NPC cells. CONCLUSION: CHI3L1 knockdown inhibited NF-κB-dependent inflammatory response and promoting proliferation in NPC cells by inactivating the Akt pathway.


Subject(s)
Cell Proliferation , Chitinase-3-Like Protein 1 , Cytokines , NF-kappa B , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Cell Line, Tumor , Cytokines/metabolism , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Inflammation/metabolism , Inflammation/genetics
13.
Pathol Res Pract ; 258: 155314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696855

ABSTRACT

Nasopharyngeal carcinoma (NPC) arises from the epithelium of the nasopharynx and is characterized by geography-dependent incidence. Despite the high mortality rate, specifically in some ethnic groups, the mechanisms underlying NPC pathogenesis are not thoroughly understood and there is an urgent need to detect the potential and clinically applicable biomarkers to ameliorate the overall survival rate and improve the prognosis of patients. In recent years, research has increasingly focused on the importance of long non-coding RNAs (LncRNAs) in cancer progression. LncRNAs play critical roles in regulating gene expression through mechanisms such as competitively binding to microRNAs (CeRNA). While numerous LncRNAs have been studied in nasopharyngeal carcinoma (NPC), their potential as diagnostic and prognostic biomarkers have not been systematically examined. In the present study, we delve into elucidating the biological functions, molecular mechanisms, and clinical significance of newly identified LncRNAs that serve as sponges for different microRNAs in NPC. We highlight their regulatory mechanisms in promoting cell proliferation, invasion, and metastasis, and discuss their implications in diverse cancer-related signaling pathways. Our overall goal is to emboss the fundamental roles of LncRNA-mediated CeRNA networks in NPC progression, which may open up new avenues for determining the pathogenesis of NPC and developing effective prevention and treatment strategies.


Subject(s)
Gene Expression Regulation, Neoplastic , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Competitive Endogenous
14.
J Histochem Cytochem ; 72(6): 363-371, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804681

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck. Its pathogenesis is complicated and needs further investigation. The aim of this study was to investigate the expression and clinical significance of WWP1 in NPC. Bioinformatics approaches were used to evaluate the expression and functions of WWP1 in NPC. WWP1 protein expression was then detected by immunohistochemistry on a tissue microarray in an NPC cohort and its association with clinical features and prognosis was determined. In addition, WWP1 expression was knocked down in NPC cells using RNA interference, and their colony formation and invasion abilities were assessed. A total of 25 genes closely related to WWP1, which may be enriched in different pathways, were filtered out. WWP1 expression was significantly higher in NPC cells than in normal controls. High WWP1 expression was correlated with lymph node metastasis, tumor recurrence, clinical stage and poor prognosis. Knockdown of WWP1 resulted in attenuated proliferation and invasion of NPC cells. The results suggest that WWP1 may serve as a novel biomarker and prognostic factor for NPC and a potential therapeutic target worthy of further investigation.


Subject(s)
Immunohistochemistry , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Ubiquitin-Protein Ligases , Humans , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/diagnosis , Male , Female , Middle Aged , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/diagnosis , Cell Line, Tumor , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Adult , Neoplasm Invasiveness , Carcinoma/pathology , Carcinoma/metabolism , Carcinoma/genetics , Carcinoma/diagnosis , Lymphatic Metastasis , Gene Expression Regulation, Neoplastic , Clinical Relevance
15.
PLoS One ; 19(5): e0296034, 2024.
Article in English | MEDLINE | ID: mdl-38753689

ABSTRACT

BACKGROUND: Dermatomyositis (DM) is prone to nasopharyngeal carcinoma (NPC), but the mechanism is unclear. This study aimed to explore the potential pathogenesis of DM and NPC. METHODS: The datasets GSE46239, GSE142807, GSE12452, and GSE53819 were downloaded from the GEO dataset. The disease co-expression module was obtained by R-package WGCNA. We built PPI networks for the key modules. ClueGO was used to analyze functional enrichment for the key modules. DEG analysis was performed with the R-package "limma". R-package "pROC" was applied to assess the diagnostic performance of hub genes. MiRNA-mRNA networks were constructed using MiRTarBase and miRWalk databases. RESULTS: The key modules that positively correlated with NPC and DM were found. Its intersecting genes were enriched in the negative regulation of viral gene replication pathway. Similarly, overlapping down-regulated DEGs in DM and NPC were also enriched in negatively regulated viral gene replication. Finally, we identified 10 hub genes that primarily regulate viral biological processes and type I interferon responses. Four key genes (GBP1, IFIH1, IFIT3, BST2) showed strong diagnostic performance, with AUC>0.8. In both DM and NPC, the expression of key genes was correlated with macrophage infiltration level. Based on hub genes' miRNA-mRNA network, hsa-miR-146a plays a vital role in DM-associated NPC. CONCLUSIONS: Our research discovered pivot genes between DM and NPC. Viral gene replication and response to type I interferon may be the crucial bridge between DM and NPC. By regulating hub genes, MiR-146a will provide new strategies for diagnosis and treatment in DM complicated by NPC patients. For individuals with persistent viral replication in DM, screening for nasopharyngeal cancer is necessary.


Subject(s)
Computational Biology , Dermatomyositis , Gene Regulatory Networks , MicroRNAs , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Neoplasms/genetics , Dermatomyositis/genetics , Dermatomyositis/complications , Computational Biology/methods , MicroRNAs/genetics , Nasopharyngeal Carcinoma/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Protein Interaction Maps/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Databases, Genetic
16.
Front Public Health ; 12: 1375533, 2024.
Article in English | MEDLINE | ID: mdl-38756891

ABSTRACT

Background: Nasopharyngeal carcinoma (NPC) has an extremely high incidence rate in Southern China, resulting in a severe disease burden for the local population. Current EBV serologic screening is limited by false positives, and there is opportunity to integrate polygenic risk scores for personalized screening which may enhance cost-effectiveness and resource utilization. Methods: A Markov model was developed based on epidemiological and genetic data specific to endemic areas of China, and further compared polygenic risk-stratified screening [subjects with a 10-year absolute risk (AR) greater than a threshold risk underwent EBV serological screening] to age-based screening (EBV serological screening for all subjects). For each initial screening age (30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, and 65-69 years), a modeled cohort of 100,000 participants was screened until age 69, and then followed until age 79. Results: Among subjects aged 30 to 54 years, polygenic risk-stratified screening strategies were more cost-effective than age-based screening strategies, and almost comprised the cost-effectiveness efficiency frontier. For men, screening strategies with a 1-year frequency and a 10-year absolute risk (AR) threshold of 0.7% or higher were cost-effective, with an incremental cost-effectiveness ratio (ICER) below the willingness to pay (¥203,810, twice the local per capita GDP). Specifically, the strategies with a 10-year AR threshold of 0.7% or 0.8% are the most cost-effective strategies, with an ICER ranging from ¥159,752 to ¥201,738 compared to lower-cost non-dominated strategies on the cost-effectiveness frontiers. The optimal strategies have a higher probability (29.4-35.8%) of being cost-effective compared to other strategies on the frontier. Additionally, they reduce the need for nasopharyngoscopies by 5.1-27.7% compared to optimal age-based strategies. Likewise, for women aged 30-54 years, the optimal strategy with a 0.3% threshold showed similar results. Among subjects aged 55 to 69 years, age-based screening strategies were more cost-effective for men, while no screening may be preferred for women. Conclusion: Our economic evaluation found that the polygenic risk-stratified screening could improve the cost-effectiveness among individuals aged 30-54, providing valuable guidance for NPC prevention and control policies in endemic areas of China.


Subject(s)
Cost-Benefit Analysis , Markov Chains , Nasopharyngeal Carcinoma , Humans , China/epidemiology , Middle Aged , Male , Adult , Female , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/genetics , Aged , Nasopharyngeal Neoplasms/diagnosis , Early Detection of Cancer/economics , Mass Screening/economics , Multifactorial Inheritance , Risk Factors , Risk Assessment
17.
Sci Rep ; 14(1): 10019, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693171

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a tumor that occurs in the nasopharynx. Although advances in detection and treatment have improved the prognosis of NPC the treatment of advanced NPC remains challenging. Here, we explored the effect of microRNA (miR)-122-5p on erastin-induced ferroptosis in NPC cells and the role of ferroptosis in the development of NPC. The effect of miR-122-5p silencing and overexpression and the effect of citrate synthase on erastin-induced lipid peroxidation in NPC cells was analyzed by measuring the amounts of malondialdehyde, Fe2+, glutathione, and reactive oxygen species and the morphological alterations of mitochondria. The malignant biological behavior of NPC cells was examined by cell counting kit-8, EDU, colony formation, Transwell, and wound healing assays. The effects of miR-122-5p on cell proliferation and migration associated with ferroptosis were examined in vivo in a mouse model of NPC generated by subcutaneous injection of NPC cells. We found that erastin induced ferroptosis in NPC cells. miR-122-5p overexpression inhibited CS, thereby promoting erastin-induced ferroptosis in NPC cells and decreasing NPC cell proliferation, migration, and invasion.


Subject(s)
Cell Movement , Cell Proliferation , Ferroptosis , MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Humans , Animals , Cell Line, Tumor , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude
18.
Front Biosci (Landmark Ed) ; 29(5): 179, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38812313

ABSTRACT

Nasopharyngeal carcinoma (NPC) is an aggressive head and neck tumor that is influenced by a variety of molecular factors during its pathogenesis. Among these, the phosphatase and tensin homolog (PTEN) plays a crucial role in regulatory networks. This article systematically reviews the multifaceted functions of PTEN in NPC, including its roles in inhibiting cell proliferation, regulating migration and invasion, promoting autophagy and apoptosis, and influencing resistance to radiotherapy. Molecular factors such as long non-coding RNA, microRNA (miRNA), and circular RNA can modulate PTEN through various pathways, thereby impacting the biological behavior of NPC. In addition, PTEN is involved in regulating the tumor microenvironment of NPC, and its interaction with the Epstein-Barr virus has also recently become a focus of research. A comprehensive understanding of the PTEN regulatory network provides a foundation for future personalized and targeted therapeutic strategies. This study expands our understanding of the pathogenesis of NPC and suggests new directions in the field of tumor biology and NPC treatment.


Subject(s)
MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , PTEN Phosphohydrolase , Tumor Microenvironment , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Microenvironment/genetics , Cell Proliferation/genetics , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Autophagy/genetics , Cell Movement/genetics , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/physiology , Herpesvirus 4, Human/genetics , Signal Transduction
19.
Sci Rep ; 14(1): 12234, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806556

ABSTRACT

Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms , Immunotherapy , Procollagen-Proline Dioxygenase , Humans , Biomarkers, Tumor/metabolism , Prognosis , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/diagnosis , Immunotherapy/methods , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/mortality
20.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38747699

ABSTRACT

Nasopharyngeal carcinoma (NPC) carcinogenesis and malignant transformation are intimately associated with Epstein-Barr virus (EBV) infection. A zinc-fingered transcription factor known as Krüppel-like factor 5 (KLF5) has been shown to be aberrantly expressed in a number of cancer types. However, little is known about the regulatory pathways and roles of KLF5 in EBV-positive NPC. Our study found that KLF5 expression was significantly lower in EBV-positive NPC than in EBV-negative NPC. Further investigation revealed that EBER1, which is encoded by EBV, down-regulates KLF5 via the extracellular signal-regulated kinase (ERK) signalling pathway. This down-regulation of KLF5 by EBER1 contributes to maintaining latent EBV infection in NPC. Furthermore, we uncovered the biological roles of KLF5 in NPC cells. Specifically, KLF5 may influence the cell cycle, prevent apoptosis, and encourage cell migration and proliferation - all of which have a generally pro-cancer impact. In conclusion, these findings offer novel strategies for EBV-positive NPC patients' antitumour treatment.


Subject(s)
Down-Regulation , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Kruppel-Like Transcription Factors , MAP Kinase Signaling System , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Nasopharyngeal Neoplasms/virology , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Apoptosis , Virus Latency
SELECTION OF CITATIONS
SEARCH DETAIL
...