Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93.922
Filter
1.
BMC Cancer ; 24(1): 793, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961353

ABSTRACT

BACKGROUND: Accurate regulation of gene expression is crucial for normal development and function of cells. The prognostic significance and potential carcinogenic mechanisms of the related gene JARID2 in OSCC are not yet clear, but existing research has indicated a significant association between the two. METHODS AND MATERIALS: The relationship between the expression of the JARID2 gene in tumor samples of OSCC patients and clinical pathological factors was analyzed using immunohistochemistry experiments and RT-qPCR analysis. Based on the clinical pathological data of patients, bioinformatics analysis was conducted using public databases to determine the function of JARID2 in OSCC. Knockdown OSCC cell lines were constructed, and the impact of JARID2 on the biological behavior of OSCC cell lines was assessed through CCK-8, wound healing assay, and transwell analysis. RESULTS: Immunohistochemistry experiments confirmed the correlation between JARID2 and the prognosis of OSCC patients, while RT-qPCR experiments demonstrated its expression levels in tissue and cells. CKK-8 experiments, wound healing assays, and Transwell experiments indicated that knocking down JARID2 had a negative impact on the proliferation, invasion, and migration of OSCC cells. Bioinformatics analysis results showed that the expression of JARID2 in OSCC is closely associated with patient gene co-expression, gene function enrichment, immune infiltration, and drug sensitivity. CONCLUSION: Our study indicates that JARID2 is a novel prognostic biomarker and potential therapeutic target for OSCC.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Mouth Neoplasms , Neoplasm Invasiveness , Polycomb Repressive Complex 2 , Humans , Mouth Neoplasms/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Cell Movement/genetics , Prognosis , Cell Line, Tumor , Female , Male , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Knockdown Techniques
2.
Int J Surg Oncol ; 2024: 5339292, 2024.
Article in English | MEDLINE | ID: mdl-38966634

ABSTRACT

Objective: Determine the histopathologic features that correlate with head and neck cancer (HNC) cachexia. Methods: A single-institution, retrospective study was performed on adults with HPV-negative, mucosal squamous cell carcinoma of the aerodigestive tract undergoing resection and free flap reconstruction from 2014 to 2019. Patients with distant metastases were excluded. Demographics, comorbidities, preoperative nutrition, and surgical pathology reports were collected. Comparisons of histopathologic features and cachexia severity were made. Results: The study included 222 predominantly male (64.9%) patients aged 61.3 ± 11.8 years. Cachexia was identified in 57.2% patients, and 18.5% were severe (≥15% weight loss). No differences in demographics were identified between the groups. Compared to control, patients with severe cachexia had lower serum hemoglobin (p=0.048) and albumin (p < 0.001), larger tumor diameter (p < 0.001), greater depth of invasion (p < 0.001), and elevated proportions of pT4 disease (p < 0.001), pN2-N3 disease (p=0.001), lymphovascular invasion (p=0.009), and extranodal extension (p=0.014). Multivariate logistic regression identified tumor size (OR [95% CI] = 1.36 [1.08-1.73]), oral cavity tumor (OR [95% CI] = 0.30 [0.11-0.84]), and nodal burden (OR [95% CI] = 1.16 [0.98-1.38]) as significant histopathologic contributors of cancer cachexia. Conclusions: Larger, more invasive tumors with nodal metastases and aggressive histologic features are associated with greater cachexia severity in mucosal HNC.


Subject(s)
Cachexia , Head and Neck Neoplasms , Humans , Cachexia/pathology , Cachexia/etiology , Male , Middle Aged , Female , Retrospective Studies , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/complications , Aged , Squamous Cell Carcinoma of Head and Neck/surgery , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/complications , Prognosis , Neoplasm Invasiveness , Free Tissue Flaps
3.
PeerJ ; 12: e17628, 2024.
Article in English | MEDLINE | ID: mdl-38952983

ABSTRACT

Background: Ovarian cancer is an aggressive malignancy with high mortality known for its considerable metastatic potential. This study aimed to explore the expression and functional role of Unc-51 like autophagy activating kinase 2 (ULK2) in the progression of ovarian cancer. Methods: ULK2 expression patterns in ovarian cancer tissues as well as benign tumor control samples obtained from our institution were evaluated using immunohistochemistry. Cell counting kit 8 and Transwell assays were applied to assess the effects of ULK2 overexpression on cell proliferation, migration and invasion, respectively. RNA sequencing was performed to explore potential mechanisms of action of ULK2 beyond its classical autophagy modulation. Results: Our experiments showed significant downregulation of ULK2 in ovarian cancer tissues. Importantly, low expression of ULK2 was markedly correlated with decreased overall survival. In vitro functional studies further demonstrated that overexpression of ULK2 significantly suppressed tumor cell proliferation, migration, and invasion. RNA sequencing analysis revealed a potential regulatory role of ULK2 in the insulin signaling pathway through upregulation of insulin-like growth factor binding protein-3 (IGFBP3) in ovarian cancer cells. Conclusions: In summary, the collective data indicated that ULK2 acted as a tumor suppressor in ovarian cancer by upregulating the expression of IGFBP3. Our study underscores the potential utility of ULK2 as a valuable prognostic marker for ovarian cancer.


Subject(s)
Cell Movement , Cell Proliferation , Insulin-Like Growth Factor Binding Protein 3 , Neoplasm Invasiveness , Ovarian Neoplasms , Humans , Female , Cell Movement/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Cell Line, Tumor , Neoplasm Invasiveness/genetics , Cell Proliferation/genetics , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Gene Expression Regulation, Neoplastic , Up-Regulation , Signal Transduction , Protein Serine-Threonine Kinases
4.
Gen Physiol Biophys ; 43(4): 301-312, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953570

ABSTRACT

Vascular endothelial growth factor A (VEGFA) is an important regulator for non-small cell lung cancer (NSCLC). Our study aimed to reveal its upstream pathway to provide new ideas for developing the therapeutic targets of NSCLC. The mRNA and protein levels of VEGFA, ubiquitin-specific peptidase 35 (USP35), and FUS were determined by quantitative real-time PCR and Western blot. Cell proliferation, apoptosis, invasion and angiogenesis were detected using CCK8 assay, EdU assay, flow cytometry, transwell assay and tube formation assay. The interaction between USP35 and VEGFA was assessed by Co-IP assay and ubiquitination assay. Animal experiments were performed to assess USP35 and VEGFA roles in vivo. VEGFA had elevated expression in NSCLC tissues and cells. Interferences of VEGFA inhibited NSCLC cell proliferation, invasion, angiogenesis, and increased apoptosis. USP35 could stabilize VEGFA protein level by deubiquitination, and USP35 knockdown suppressed NSCLC cell growth, invasion and angiogenesis via reducing VEGFA expression. FUS interacted with USP35 to promote its mRNA stability, thereby positively regulating VEGFA expression. Also, USP35 silencing could reduce NSCLC tumorigenesis by downregulating VEGFA. FUS-stabilized USP35 facilitated NSCLC cell growth, invasion and angiogenesis through deubiquitinating VEGFA, providing a novel idea for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Neovascularization, Pathologic , RNA-Binding Protein FUS , Ubiquitination , Vascular Endothelial Growth Factor A , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Proliferation/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neoplasm Invasiveness/genetics , Cell Line, Tumor , Mice , Animals , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/genetics , Mice, Nude , Angiogenesis
5.
Sci Rep ; 14(1): 15023, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951593

ABSTRACT

Proline 4-hydroxylase 2 (P4HA2) is known for its hydroxylase activity, primarily involved in hydroxylating collagen precursors and promoting collagen cross-linking under physiological conditions. Although its overexpression influences a wide variety of malignant tumors' occurrence and development, its specific effects and mechanisms in oral squamous cell carcinoma (OSCC) remain unclear. This study focused on investigating the expression patterns, carcinogenic functions, and underlying mechanisms of P4HA2 in OSCC cells. Various databases, including TCGA, TIMER, UALCAN, GEPIA, and K-M plotter, along with paraffin-embedded samples, were used to ascertain P4HA2 expression in cancer and its correlation with clinicopathological features. P4HA2 knockdown and overexpression cell models were developed to assess its oncogenic roles and mechanisms. The results indicated that P4HA2 was overexpressed in OSCC and inversely correlated with patient survival. Knockdown of P4HA2 suppressed invasion, migration, and proliferation of OSCC cells both in vitro and in vivo, whereas overexpression of P4HA2 had the opposite effects. Mechanistically, the phosphorylation levels of the PI3K/AKT pathway were reduced following P4HA2 silencing. The study reveals that P4HA2 acts as a promising biomarker for predicting prognosis in OSCC and significantly affects metastasis, invasion, and proliferation of OSCC cells through the regulation of the PI3K/AKT signaling pathway.


Subject(s)
Carcinoma, Squamous Cell , Cell Movement , Cell Proliferation , Mouth Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Procollagen-Proline Dioxygenase , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement/genetics , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Female , Male , Neoplasm Metastasis , Middle Aged , Mice, Nude
6.
PLoS One ; 19(7): e0304597, 2024.
Article in English | MEDLINE | ID: mdl-38954708

ABSTRACT

OBJECTIVE: To investigate the mechanism of endothelial cell specific molecule 1 (ESM1) promoting cervical cancer cell proliferation and EMT characteristics through zinc finger E-box binding homeobox 1 (ZEB1)/EMT pathway. METHODS: The correlation between ESM1 expression and prognosis of cervical cancer patients was analyzed by bioinformatics. SiHa, HeLa cell lines and corresponding control cell lines with stable ESM1 expression were obtained. Cell proliferation ability was detected by CCK-8 assay. The invasion and migration ability of Hela and SiHa cells were detected by Transwell assay and scratch closure assay. Expressions of EMT-related markers E-cadherin and Vimentin were detected by real-time PCR. The ability of silenced ESM1 to tumor formation in vivo was detected by tumor formation in nude mice. The effects of aloe-emodin on inhibit ESM1 expression and its inhibitory effect on cervical cancer cells in vitro and in vivo were analyzed by the same method. RESULTS: ESM1 was highly expressed in cervical cancer, and the high expression of ESM1 was associated with poor prognosis of cervical cancer patients. CCK-8 results showed that the proliferation, invasion and migration of Hela and SiHa cells were significantly reduced after siRNA interfered with ESM1 expression. Overexpression of ESM1 promoted the proliferation and migration of cervical cancer cells. Mechanism studies have shown that the oncogenic effect of ESM1 is realized through the ZEB1/PI3K/AKT pathway. High throughput drug screening found that aloe-emodin can target ESM1. Inhibitory effect of aloe emodin on ESM1/ZEB1/EMT signaling pathway and cervical cancer cells. CONCLUSION: The silencing of ESM1 expression may inhibit the proliferation, invasion, metastasis and epithelial-mesenchymal transformation of cervical cancer cells by inhibiting ZEB1/PI3K/AKT. Aloe-emodin is a potential treatment for cervical cancer, which can play an anti-tumor role by inhibiting ESM1/ZEB1.


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Neoplasm Proteins , Proteoglycans , Uterine Cervical Neoplasms , Zinc Finger E-box-Binding Homeobox 1 , Humans , Epithelial-Mesenchymal Transition/drug effects , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/drug therapy , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Female , Animals , Cell Proliferation/drug effects , Mice , Cell Movement/drug effects , HeLa Cells , Proteoglycans/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Invasiveness , Prognosis , Mice, Inbred BALB C
7.
Cell Death Dis ; 15(7): 466, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956029

ABSTRACT

Metastasis is the major culprit of treatment failure in nasopharyngeal carcinoma (NPC). Aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2), a core circadian gene, plays a crucial role in the development of various tumors. Nevertheless, the biological role and mechanism of ARNTL2 are not fully elucidated in NPC. In this study, ARNTL2 expression was significantly upregulated in NPC tissues and cells. Overexpression of ARNTL2 facilitated NPC cell migration and invasion abilities, while inhibition of ARNTL2 in similarly treated cells blunted migration and invasion abilities in vitro. Consistently, in vivo xenograft tumor models revealed that ARNTL2 silencing reduced nude mice inguinal lymph node and lung metastases, as well as tumor growth. Mechanistically, ARNTL2 negatively regulated the transcription expression of AMOTL2 by directly binding to the AMOTL2 promoter, thus reducing the recruitment and stabilization of AMOTL2 to LATS1/2 kinases, which strengthened YAP nuclear translocation by suppressing LATS-dependent YAP phosphorylation. Inhibition of AMOTL2 counteracted the effects of ARNTL2 knockdown on NPC cell migration and invasion abilities. These findings suggest that ARNTL2 may be a promising therapeutic target to combat NPC metastasis and further supports the crucial roles of circadian genes in cancer development.


Subject(s)
ARNTL Transcription Factors , Adaptor Proteins, Signal Transducing , Angiomotins , Cell Movement , Mice, Nude , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Humans , Animals , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Cell Line, Tumor , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Cell Movement/genetics , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Male , Neoplasm Metastasis , Female , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics
8.
Sci Rep ; 14(1): 15116, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956424

ABSTRACT

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Subject(s)
Caspase 9 , Cell Movement , Organoids , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Caspase 9/metabolism , Cell Movement/drug effects , Organoids/drug effects , Organoids/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Neoplasm Metastasis , Epithelial-Mesenchymal Transition/drug effects , Female , Neoplasm Invasiveness , Coculture Techniques , Fibroblasts/metabolism , Fibroblasts/drug effects , MDA-MB-231 Cells
9.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956466

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit , ELAV-Like Protein 1 , MicroRNAs , RNA, Circular , RNA-Binding Protein FUS , Stomach Neoplasms , p21-Activated Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Proliferation/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Cell Movement/genetics , Cell Line, Tumor , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C
10.
Cell Mol Biol Lett ; 29(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956497

ABSTRACT

BACKGROUND: We have previously identified an unsuspected role for GJB3 showing that the deficiency of this connexin protein induces aneuploidy in human and murine cells and accelerates cell transformation as well as tumor formation in xenograft models. The molecular mechanisms by which loss of GJB3 leads to aneuploidy and cancer initiation and progression remain unsolved. METHODS: GJB3 expression levels were determined by RT-qPCR and Western blot. The consequences of GJB3 knockdown on genome instability were assessed by metaphase chromosome counting, multinucleation of cells, by micronuclei formation and by the determination of spindle orientation. Interactions of GJB3 with α-tubulin and F-actin was analyzed by immunoprecipitation and immunocytochemistry. Consequences of GJB3 deficiency on microtubule and actin dynamics were measured by live cell imaging and fluorescence recovery after photobleaching experiments, respectively. Immunohistochemistry was used to determine GJB3 levels on human and murine bladder cancer tissue sections. Bladder cancer in mice was chemically induced by BBN-treatment. RESULTS: We find that GJB3 is highly expressed in the ureter and bladder epithelium, but it is downregulated in invasive bladder cancer cell lines and during tumor progression in both human and mouse bladder cancer. Downregulation of GJB3 expression leads to aneuploidy and genomic instability in karyotypically stable urothelial cells and experimental modulation of GJB3 levels alters the migration and invasive capacity of bladder cancer cell lines. Importantly, GJB3 interacts both with α-tubulin and F-actin. The impairment of these interactions alters the dynamics of these cytoskeletal components and leads to defective spindle orientation. CONCLUSION: We conclude that deregulated microtubule and actin dynamics have an impact on proper chromosome separation and tumor cell invasion and migration. Consequently, these observations indicate a possible role for GJB3 in the onset and spreading of bladder cancer and demonstrate a molecular link between enhanced aneuploidy and invasive capacity cancer cells during tumor cell dissemination.


Subject(s)
Actins , Aneuploidy , Neoplasm Invasiveness , Tubulin , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Humans , Animals , Tubulin/metabolism , Tubulin/genetics , Cell Line, Tumor , Mice , Actins/metabolism , Actins/genetics , Urothelium/pathology , Urothelium/metabolism , Cell Movement/genetics , Microtubules/metabolism , Genomic Instability , Protein Binding
11.
PeerJ ; 12: e17579, 2024.
Article in English | MEDLINE | ID: mdl-38978755

ABSTRACT

Background: Lysyl oxidase enzymes (LOXs), as extracellular matrix (ECM) protein regulators, play vital roles in tumor progression by remodeling the tumor microenvironment. However, their roles in glioblastoma (GBM) have not been fully elucidated. Methods: The genetic alterations and prognostic value of LOXs were investigated via cBioPortal. The correlations between LOXs and biological functions/molecular tumor subtypes were explored in The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). After Kaplan‒Meier and Cox survival analyses, a Loxl1-based nomogram and prognostic risk score model (PRSM) were constructed and evaluated by time-dependent receiver operating characteristic curves, calibration curves, and decision curve analyses. Tumor enrichment pathways and immune infiltrates were explored by single-cell RNA sequencing and TIMER. Loxl1-related changes in tumor viability/proliferation and invasion were further validated by CCK-8, western blot, wound healing, and Transwell invasion assays. Results: GBM patients with altered LOXs had poor survival. Upregulated LOXs were found in IDH1-wildtype and mesenchymal (not Loxl1) GBM subtypes, promoting ECM receptor interactions in GBM. The Loxl1-based nomogram and the PRSM showed high accuracy, reliability, and net clinical benefits. Loxl1 expression was related to tumor invasion and immune infiltration (B cells, neutrophils, and dendritic cells). Loxl1 knockdown suppressed GBM cell proliferation and invasion by inhibiting the EMT pathway (through the downregulation of N-cadherin/Vimentin/Snai1 and the upregulation of E-cadherin). Conclusion: The Loxl1-based nomogram and PRSM were stable and individualized for assessing GBM patient prognosis, and the invasive role of Loxl1 could provide a promising therapeutic strategy.


Subject(s)
Brain Neoplasms , Epithelial-Mesenchymal Transition , Glioblastoma , Neoplasm Invasiveness , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/metabolism , Epithelial-Mesenchymal Transition/genetics , Prognosis , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/metabolism , Cell Line, Tumor , Nomograms , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/genetics , Male , Tumor Microenvironment , Female , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Cell Proliferation , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Protein-Lysine 6-Oxidase/metabolism , Protein-Lysine 6-Oxidase/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism
12.
J Immunol Res ; 2024: 3145695, 2024.
Article in English | MEDLINE | ID: mdl-38983273

ABSTRACT

Background: This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods: The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results: The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion: Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.


Subject(s)
Breast Neoplasms , Cell Movement , Disease Progression , Programmed Cell Death 1 Ligand 2 Protein , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Animals , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Ligand 2 Protein/genetics , Mice , Cell Line, Tumor , Middle Aged , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Adult , Cell Proliferation , MCF-7 Cells , Gene Expression Regulation, Neoplastic , Neoplasm Invasiveness , Aged , Immunohistochemistry , Neoplasm Grading , Biomarkers, Tumor/metabolism , Disease Models, Animal , Receptors, Progesterone/metabolism , Gene Knockdown Techniques
13.
Med Sci (Paris) ; 40(6-7): 515-524, 2024.
Article in French | MEDLINE | ID: mdl-38986096

ABSTRACT

Invadosome is an umbrella term used to describe a family of cellular structures including podosomes and invadopodia. They serve as contact zones between the cell plasma membrane and extracellular matrix, contributing to matrix remodeling by locally enriched proteolytic enzymes. Invadosomes, which are actin-dependent, are implicated in cellular processes promoting adhesion, migration, and invasion. Invadosomes, which exist in various cell types, play crucial roles in physiological phenomena such as vascularization and bone resorption. Invadosomes are also implicated in pathological processes such as matrix tissue remodeling during metastatic tumor cell invasion. This review summarizes basic information and recent advances about mechanisms underlying podosome and invadopodia formation, their organization and function.


Title: Invadosomes - Entre mobilité et invasion, naviguer dans la dualité des fonctions cellulaires. Abstract: Le terme « invadosome ¼ désigne une famille de structures cellulaires, comprenant les podosomes et les invadopodes, qui constituent des zones de contact entre la membrane plasmique des cellules et la matrice extracellulaire. Ces structures contribuent au remodelage de la matrice grâce à un enrichissement local en enzymes protéolytiques qui dégradent ses constituants fibrillaires. Les invadosomes, présents dans des types cellulaires variés, contribuent à des processus physiologiques, tels que la vascularisation, ou pathologiques, comme l'invasion des tissus par les cellules métastatiques.


Subject(s)
Cell Movement , Extracellular Matrix , Neoplasm Invasiveness , Neoplasms , Podosomes , Humans , Podosomes/physiology , Podosomes/pathology , Cell Movement/physiology , Animals , Neoplasms/pathology , Extracellular Matrix/physiology , Extracellular Matrix/pathology
14.
J Pak Med Assoc ; 74(6): 1160-1162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948990

ABSTRACT

Bladder cancer is the ninth leading cause of death worldwide and 14th leading cause of death in Pakistan. The objective of this study was to determine the frequency of urothelial carcinoma in various age groups, its gender distribution, and grades. A total of 131 cases of urothelial carcinoma, received at Department of Pathology, Peshawar Medical College, Peshawar, between January 2017 to December 2022, were included in the study; of them 107 (81.6%) were males while 24 (18.3%) were females with a mean age of 62±13 years. The most common histological subtype was papillary urothelial carcinoma in 117(89.3%) cases, followed by Squamous and Glandular in 5(3.8%) cases. Majority of the urothelial carcinoma with high grade showed a statistically significant relation with muscle invasion 38 (50.66%). Males were four times more likely to have urothelial carcinoma while older age groups were more likely to have high grade urothelial carcinoma.


Subject(s)
Carcinoma, Transitional Cell , Tertiary Care Centers , Urinary Bladder Neoplasms , Humans , Pakistan/epidemiology , Male , Female , Middle Aged , Aged , Tertiary Care Centers/statistics & numerical data , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/epidemiology , Carcinoma, Transitional Cell/pathology , Adult , Neoplasm Grading , Aged, 80 and over , Neoplasm Invasiveness , Carcinoma, Papillary/epidemiology , Carcinoma, Papillary/pathology , Sex Distribution , Age Distribution , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/pathology
15.
Oncol Res ; 32(7): 1209-1219, 2024.
Article in English | MEDLINE | ID: mdl-38948021

ABSTRACT

Objective: This study aimed to investigate the role of receptor tyrosine kinase-like orphan receptor 2 (ROR2) in triple-negative breast cancer (TNBC). Methods: ROR2 expression in primary TNBC and metastatic TNBC tissues was analyzed by immunohistochemical staining and PCR. ROR2 expression in TNBC cell lines was detected by PCR and Western blot analysis. The migration, invasion and chemosensitivity of TNBC cells with overexpression or knockdown of ROR2 were examined. Results: ROR2 expression was high in metastatic TNBC tissues. ROR2 knockdown suppressed the migration, invasion and chemoresistance of TNBC cells. ROR2 overexpression in MDA-MB-435 cells promoted the migration, invasion, and chemoresistance. Moreover, ROR2 knockdown in HC1599 and MDA-MB-435 adriamycin-resistant cells enhanced chemosensitivity to adriamycin. ROR2 could activate PI3K/AKT/mTOR signaling in TNBC cells. Conclusion: ROR2 is upregulated and promotes metastatic phenotypes of TNBC by activating PI3K/AKT/mTOR signaling.


Subject(s)
Cell Movement , Drug Resistance, Neoplasm , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptor Tyrosine Kinase-like Orphan Receptors , Signal Transduction , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Drug Resistance, Neoplasm/genetics , Female , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Doxorubicin/pharmacology
16.
Oncol Res ; 32(7): 1173-1184, 2024.
Article in English | MEDLINE | ID: mdl-38948026

ABSTRACT

Background: Inhibitor of NF-κB kinase-interacting protein (IKIP) is known to promote proliferation of glioblastoma (GBM) cells, but how it affects migration and invasion by those cells is unclear. Methods: We compared levels of IKIP between glioma tissues and normal brain tissue in clinical samples and public databases. We examined the effects of IKIP overexpression and knockdown on the migration and invasion of GBM using transwell and wound healing assays, and we compared the transcriptomes under these different conditions to identify the molecular mechanisms involved. Results: Based on data from our clinical samples and from public databases, IKIP was overexpressed in GBM tumors, and its expression level correlated inversely with survival. IKIP overexpression in GBM cells inhibited migration and invasion in transwell and wound healing assays, whereas IKIP knockdown exerted the opposite effects. IKIP overexpression in GBM cells that were injected into mouse brain promoted tumor growth but inhibited tumor invasion of surrounding tissue. The effects of IKIP were associated with downregulation of THBS1 mRNA and concomitant inhibition of THBS1/FAK signaling. Conclusions: IKIP inhibits THBS1/FAK signaling to suppress migration and invasion of GBM cells.


Subject(s)
Brain Neoplasms , Cell Movement , Focal Adhesion Kinase 1 , Glioblastoma , Neoplasm Invasiveness , Signal Transduction , Thrombospondin 1 , Humans , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Animals , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Proliferation
17.
Oncol Res ; 32(7): 1221-1229, 2024.
Article in English | MEDLINE | ID: mdl-38948025

ABSTRACT

At present, the role of many long non-coding RNAs (lncRNAs) as tumor suppressors in the formation and development of cervical cancer (CC) has been studied. However, lncRNA prostate cancer gene expression marker 1 (PCGEM1), whose high expression not only aggravates ovarian cancer but also can induce tumorigenesis and endometrial cancer progression, has not been studied in CC. The objective of this study was to investigate the expression and the underlying role of PCGEM1 in CC. The relative expression of PCGEM1 in CC cells was detected by real-time PCR. After the suppression of PCGEM1 expression by shRNA, the changes in the proliferation, migration, and invasion capacities were detected via CCK-8 assay, EdU assay, and colony formation assay wound healing assay. Transwell assay and the changes in expressions of epithelial-to-mesenchymal transition (EMT) markers were determined by western blot and immunofluorescence. The interplay among PCGEM1, miR-642a-5p, and kinesin family member 5B (KIF5B) was confirmed by bioinformatics analyses and luciferase reporter assay. Results showed that PCGEM1 expressions were up-regulated within CC cells. Cell viabilities, migration, and invasion were remarkably reduced after the suppression of PCGEM1 expression by shRNA in Hela and SiHa cells. N-cadherin was silenced, but E-cadherin expression was elevated by sh-PCGEM1. Moreover, by sponging miR-642a-5p in CC, PCGEM1 was verified as a competitive endogenous RNA (ceRNA) that modulates KIF5B levels. MiR-642a-5p down-regulation partially rescued sh-PCGEM1's inhibitory effects on cell proliferation, migration, invasion, and EMT process. In conclusion, the PCGEM1/miR-642a-5p/KIF5B signaling axis might be a novel therapeutic target in CC. This study provides a research basis and new direction for targeted therapy of CC.


Subject(s)
Cell Movement , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Kinesins , MicroRNAs , RNA, Long Noncoding , Uterine Cervical Neoplasms , Humans , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , MicroRNAs/genetics , Female , Kinesins/genetics , Kinesins/metabolism , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Cell Line, Tumor , HeLa Cells , Neoplasm Invasiveness
19.
J Cancer Res Clin Oncol ; 150(7): 335, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38969831

ABSTRACT

BACKGROUND: Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS: The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS: UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION: We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.


Subject(s)
Autophagy-Related Proteins , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Lung Neoplasms , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Mice , Female , Male , Prognosis , Cell Line, Tumor , Mice, Nude , Cell Movement , Gene Expression Regulation, Neoplastic , Middle Aged , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Carrier Proteins , Nuclear Proteins
20.
BMC Med Imaging ; 24(1): 167, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969972

ABSTRACT

PURPOSE: To develop and validate a multiparametric magnetic resonance imaging (mpMRI)-based radiomics model for predicting lymph-vascular space invasion (LVSI) of cervical cancer (CC). METHODS: The data of 177 CC patients were retrospectively collected and randomly divided into the training cohort (n=123) and testing cohort (n = 54). All patients received preoperative MRI. Feature selection and radiomics model construction were performed using max-relevance and min-redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) on the training cohort. The models were established based on the extracted features. The optimal model was selected and combined with clinical independent risk factors to establish the radiomics fusion model and the nomogram. The diagnostic performance of the model was assessed by the area under the curve. RESULTS: Feature selection extracted the thirteen most important features for model construction. These radiomics features and one clinical characteristic were selected showed favorable discrimination between LVSI and non-LVSI groups. The AUCs of the radiomics nomogram and the mpMRI radiomics model were 0.838 and 0.835 in the training cohort, and 0.837 and 0.817 in the testing cohort. CONCLUSION: The nomogram model based on mpMRI radiomics has high diagnostic performance for preoperative prediction of LVSI in patients with CC.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Neoplasm Invasiveness , Nomograms , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Female , Multiparametric Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , Neoplasm Invasiveness/diagnostic imaging , Adult , Lymphatic Metastasis/diagnostic imaging , Aged , Radiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...