Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.763
1.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article En | MEDLINE | ID: mdl-38725854

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
2.
BMC Cancer ; 24(1): 614, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773427

OBJECTIVE: Our study was to investigate the impact of taurolactone, a novel anti-tumor and anti-angiogenic drug, on AGGF1, an angiogenic factor, and angiogenesis mimicry in patients diagnosed with hepatocellular carcinoma (HCC). METHODS: A total of 120 HCC patients were enrolled from the Department of Oncology and Hepatobiliary Surgery at our hospital between May 2021 and December 2022. HCC diagnoses were confirmed through imaging or tissue biopsy for all patients. The age of patients ranged from 37 to 72 years, with an average age of 64.29 ± 4.58 years. These participants were divided equally into two groups: the control group and the observation group, each consisting of 60 individuals. While the control group received standard drug treatment, the observation group was administered taurolactone treatment. Before being included in the study, all participants or their legal representatives provided signed informed consent. Patient demographic information was collected through a questionnaire survey. ELISA was used to measure the levels of VEGF and AGGF1 in patients following treatment. Western blot was applied to assess the protein expression of PDGF, Angiopoietin, and AGGF1. MRI imaging technology was utilized to assess the perfusion characteristics of tumor blood vessels in patients. Tumor vessel density was compared between patients using ultrasonography. We also conducted a comparison between the two groups in terms of progression-free survival and overall survival. RESULTS: General patient information between the two groups showed no significant differences (P > 0.05). Of note, the observation group exhibited greatly lower levels of VEGF and AGGF1 compared to the control group (P < 0.05). Moreover, the levels of PDGF, Angiopoietin, and AGGF1 protein expression were significantly reduced in the observation group compared to the control group (P < 0.05). In terms of tumor perfusion, the observation group displayed lower average and maximum perfusion volumes in tumor blood vessels compared to the control group (P < 0.05). Additionally, the observation group demonstrated delayed peak times and arrival times of tumor blood vessels in comparison to the control group (P < 0.05). Furthermore, the density of tumor blood vessels was notably lower in the observation group compared to the control group (P < 0.05). Patients in the observation group had longer progression-free survival and overall survival than the control group (P < 0.05). CONCLUSION: In HCC patients, our study highlighted the potential efficacy of taurolactone treatment as it effectively inhibited angiogenic factors and angiogenesis mimicry, ultimately leading to an improved prognosis for these patients.


Angiogenesis Inhibitors , Angiogenic Proteins , Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Middle Aged , Male , Female , Aged , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Angiogenic Proteins/metabolism , Adult , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Lactones/therapeutic use , Lactones/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis
3.
Oncoimmunology ; 13(1): 2356942, 2024.
Article En | MEDLINE | ID: mdl-38778816

Brain metastasis is the most devasting form of lung cancer. Recent studies highlight significant differences in the tumor microenvironment (TME) between lung cancer brain metastasis (LCBM) and primary lung cancer, which contribute significantly to tumor progression and drug resistance. Cancer-associated fibroblasts (CAFs) are the major component of pro-tumor TME with high plasticity. However, the lineage composition and function of CAFs in LCBM remain elusive. By reanalyzing single-cell RNA sequencing (scRNA-seq) data (GSE131907) from lung cancer patients with different stages of metastasis comprising primary lesions and brain metastasis, we found that CAFs undergo distinctive lineage transition during LCBM under a hypoxic situation, which is directly driven by hypoxia-induced HIF-2α activation. Transited CAFs enhance angiogenesis through VEGF pathways, trigger metabolic reprogramming, and promote the growth of tumor cells. Bulk RNA sequencing data was utilized as validation cohorts. Multiplex immunohistochemistry (mIHC) assay was performed on four paired samples of brain metastasis and their primary lung cancer counterparts to validate the findings. Our study revealed a novel mechanism of lung cancer brain metastasis featuring HIF-2α-induced lineage transition and functional alteration of CAFs, which offers potential therapeutic targets.


Basic Helix-Loop-Helix Transcription Factors , Brain Neoplasms , Cancer-Associated Fibroblasts , Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Mice , Animals , Cell Line, Tumor , Phenotype , Cell Lineage , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Single-Cell Analysis
4.
FASEB J ; 38(10): e23682, 2024 May 31.
Article En | MEDLINE | ID: mdl-38780524

Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.


Cell Differentiation , Endothelial Cells , Glioma , Neoplastic Stem Cells , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Mice , Endothelial Cells/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Mice, Nude , Transcription, Genetic , Microfilament Proteins/metabolism , Microfilament Proteins/genetics
5.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731540

Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.


Deferoxamine , Neovascularization, Physiologic , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Humans , Animals , Neovascularization, Physiologic/drug effects , Regeneration/drug effects , Wound Healing/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Angiogenesis
6.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Article Zh | MEDLINE | ID: mdl-38742353

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Carcinoma, Hepatocellular , Liver Neoplasms , Neovascularization, Pathologic , Receptors, LDL , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood supply , Receptors, LDL/metabolism , Receptors, LDL/genetics , Cell Line, Tumor , Neovascularization, Pathologic/metabolism , Carcinoembryonic Antigen/metabolism , Carcinoembryonic Antigen/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Signal Transduction , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Transcriptome , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/genetics
7.
Mol Carcinog ; 63(6): 1160-1173, 2024 Jun.
Article En | MEDLINE | ID: mdl-38695641

Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent form of skin cancer, with an escalating incidence rate and a notable potential (up to 5%) for metastasis. Ultraviolet radiation (UVA and UVB) exposure is the primary risk factor for cSCC carcinogenesis, with literature suggesting ultraviolet radiation (UVR) promotes vascular endothelial growth factor A (VEGFA) expression. This study aims to investigate UVR-induced upregulation of VEGFA and explore combination therapeutic strategies. The skin squamous cell carcinoma cell line A431 was exposed to specific durations of ultraviolet radiation. The effect of emodin on ATR/SerRS/VEGFA pathway was observed. The cell masses were also transplanted subcutaneously into mice (n = 8). ATR inhibitor combined with emodin was used to observe the growth and angiogenesis of the xenografts. The results showed that UV treatment significantly enhanced the phosphorylation of SerRS and the expression level of VEGFA in A431 cells (p < 0.05). Treatment with emodin significantly inhibited this expression (p < 0.05), and the combination of emodin and ATR inhibitor further enhanced the inhibitory effect (p < 0.05). This phenomenon was further confirmed in the xenograft model, which showed that the combination of ATR inhibitor and emodin significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.05), thus showing an inhibitory effect on cSCC. This study innovatively reveals the molecular mechanism of UV-induced angiogenesis in cSCC and confirms SerRS as a novel target to inhibit cSCC angiogenesis and progression in vitro and in vivo studies.


Ataxia Telangiectasia Mutated Proteins , Carcinoma, Squamous Cell , Neovascularization, Pathologic , Skin Neoplasms , Ultraviolet Rays , Vascular Endothelial Growth Factor A , Animals , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Skin Neoplasms/pathology , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Ultraviolet Rays/adverse effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/drug therapy , Humans , Mice , Neovascularization, Pathologic/metabolism , Cell Line, Tumor , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Emodin/pharmacology , Cell Proliferation/drug effects , Mice, Inbred BALB C , Angiogenesis
8.
Mol Cancer ; 23(1): 94, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720298

BACKGROUND: The hypoxic tumor microenvironment is a key factor that promotes metabolic reprogramming and vascular mimicry (VM) in ovarian cancer (OC) patients. ESM1, a secreted protein, plays an important role in promoting proliferation and angiogenesis in OC. However, the role of ESM1 in metabolic reprogramming and VM in the hypoxic microenvironment in OC patients has not been determined. METHODS: Liquid chromatography coupled with tandem MS was used to analyze CAOV3 and OV90 cells. Interactions between ESM1, PKM2, UBA2, and SUMO1 were detected by GST pull-down, Co-IP, and molecular docking. The effects of the ESM1-PKM2 axis on cell glucose metabolism were analyzed based on an ECAR experiment. The biological effects of the signaling axis on OC cells were detected by tubule formation, transwell assay, RT‒PCR, Western blot, immunofluorescence, and in vivo xenograft tumor experiments. RESULTS: Our findings demonstrated that hypoxia induces the upregulation of ESM1 expression through the transcription of HIF-1α. ESM1 serves as a crucial mediator of the interaction between PKM2 and UBA2, facilitating the SUMOylation of PKM2 and the subsequent formation of PKM2 dimers. This process promotes the Warburg effect and facilitates the nuclear translocation of PKM2, ultimately leading to the phosphorylation of STAT3. These molecular events contribute to the promotion of ovarian cancer glycolysis and vasculogenic mimicry. Furthermore, our study revealed that Shikonin effectively inhibits the molecular interaction between ESM1 and PKM2, consequently preventing the formation of PKM2 dimers and thereby inhibiting ovarian cancer glycolysis, fatty acid synthesis and vasculogenic mimicry. CONCLUSION: Our findings demonstrated that hypoxia increases ESM1 expression through the transcriptional regulation of HIF-1α to induce dimerization via PKM2 SUMOylation, which promotes the OC Warburg effect and VM.


Carrier Proteins , Fatty Acids , Membrane Proteins , Neoplasm Proteins , Ovarian Neoplasms , Thyroid Hormone-Binding Proteins , Thyroid Hormones , Tumor Microenvironment , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Animals , Thyroid Hormones/metabolism , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Warburg Effect, Oncologic , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Xenograft Model Antitumor Assays , Cell Proliferation , Proteoglycans
9.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731899

The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.


CX3C Chemokine Receptor 1 , Carcinogenesis , Chemokine CX3CL1 , Inflammation , Neovascularization, Pathologic , Signal Transduction , Humans , Chemokine CX3CL1/metabolism , Neovascularization, Pathologic/metabolism , Inflammation/metabolism , Inflammation/pathology , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/genetics , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/etiology , Tumor Microenvironment , Angiogenesis
10.
J Tradit Chin Med ; 44(3): 458-467, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767629

OBJECTIVE:To elucidate the mechanism by which Huoxue Jiedu Huayu recipe (, HJHR) regulates angiogenesis in the contralateral kidney of unilateral ureteral obstruction (UUO) rats and the mechanism by which it reduces of renal fibrosis. METHODS: Male Wistar rats were randomly divided into 4 groups: the sham group, UUO group (180 d of left ureter ligation), UUO plus eplerenone (EPL) group, and UUO plus HJHR group. After 180 d of oral drug administration, blood and contralateral kidneys were collected for analysis. Angiogenesis- and fibrosis-related indexes were detected. RESULTS: HJHR and EPL improved structural damage and renal interstitial fibrosis in the contralateral kidney and reduced the protein expression levels of α-smooth muscle actin (α-SMA), vimentin and collagen I. Moreover, these treatments could reduce the expression of vascular endothelial growth factor-A (VEGFA) by inhibiting the infiltration of macrophages. Furthermore, HJHR and EPL significantly reduced the expression of CD34 and CD105 by downregulating VEGFA production, which inhibited angiogenesis. Finally, the coexpressions of CD34, CD105 and α-SMA were decreased in the HJHR and EPL groups, indicating that endothelial-to-mesenchymal transition was inhibited. CONCLUSIONS: These findings confirm that HJHR alleviates contralateral renal fibrosis by inhibiting VEGFA-induced angiogenesis, encourage the use of HJHR against renal interstitial fibrosis and provide a theoretical basis for the clinical management of patients with CKD.


Drugs, Chinese Herbal , Fibrosis , Kidney , Macrophages , Rats, Wistar , Ureteral Obstruction , Vascular Endothelial Growth Factor A , Animals , Male , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/genetics , Rats , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Kidney/drug effects , Kidney/metabolism , Macrophages/drug effects , Macrophages/metabolism , Drugs, Chinese Herbal/administration & dosage , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/genetics , Angiogenesis
11.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702792

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Neovascularization, Pathologic , Rhabdomyosarcoma , Ribonucleoproteins , Snail Family Transcription Factors , Ubiquitin-Specific Peptidase 7 , Humans , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Animals , Mice , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Rhabdomyosarcoma/metabolism , Rhabdomyosarcoma/pathology , Rhabdomyosarcoma/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Female , Disease Progression , Cell Proliferation , Male , Homeostasis , Cell Line, Tumor , Mice, Nude , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
13.
J Histochem Cytochem ; 72(5): 329-352, 2024 May.
Article En | MEDLINE | ID: mdl-38733294

Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).


Adenosine Triphosphate , Neoplasms , Neovascularization, Pathologic , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/blood supply , Neoplasms/drug therapy , Animals , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Glycolysis , Eye Diseases/metabolism , Eye Diseases/pathology , Oxidative Phosphorylation
14.
Mol Med ; 30(1): 57, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698308

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Integrin alphaVbeta3 , Ossification of Posterior Longitudinal Ligament , Osteogenesis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Humans , Osteogenesis/drug effects , Animals , Mice , Ossification of Posterior Longitudinal Ligament/metabolism , Ossification of Posterior Longitudinal Ligament/drug therapy , Male , Female , Middle Aged , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Disease Models, Animal , Oligopeptides/pharmacology , Oligopeptides/chemistry , Angiogenesis
15.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791597

Bladder cancer (BC) is a malignant tumor of the urinary system with high mortality and recurrence rates. Proteasome subunit type 4 (PSMB4) is highly expressed and has been identified as having oncogenic properties in a variety of cancer types. This study aimed to explore the effect of PSMB4 knockdown on the survival, migration, and angiogenesis of human bladder cancer cells with different degrees of malignancy. We analyzed the effects of PSMB4 knockdown in bladder cancer cells and endothelial cells in the tumor microenvironment. PSMB4 was highly expressed in patients with low- and high-grade urothelial carcinoma. Inhibition of PSMB4 reduced protein expression of focal adhesion kinase (FAK) and myosin light chain (MLC), leading to reduced migration. Furthermore, the suppression of PSMB4 decreased the levels of vascular endothelial factor B (VEGF-B), resulting in lower angiogenic abilities in human bladder cancer cells. PSMB4 inhibition affected the migratory ability of HUVECs and reduced VEGFR2 expression, consequently downregulating angiogenesis. In the metastatic animal model, PSMB4 knockdown reduced the relative volumes of lung tumors. Our findings suggest the role of PSMB4 as a potential target for therapeutic strategies against human bladder cancer.


Cell Movement , Neovascularization, Pathologic , Proteasome Endopeptidase Complex , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Cell Movement/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Cell Line, Tumor , Animals , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Knockdown Techniques , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Male , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/genetics , Female , Angiogenesis , Cysteine Endopeptidases
16.
Int J Mol Sci ; 25(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38791608

Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/ß-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.


Apigenin , Epithelial-Mesenchymal Transition , Neoplasms , Apigenin/pharmacology , Apigenin/therapeutic use , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Animals , Epithelial-Mesenchymal Transition/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
17.
Molecules ; 29(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38792080

Tumor cells in hypoxic conditions control cancer metabolism and angiogenesis by expressing HIF-1α. Tanshinone is a traditional Chinese medicine that has been shown to possess antitumor properties and exerts a therapeutic impact on angiogenesis. However, the precise molecular mechanism responsible for the antitumor activity of 3-Hydroxytanshinone (3-HT), a type of tanshinone, has not been fully understood. Therefore, our study aimed to investigate the mechanism by which 3-HT regulates the expression of HIF-1α. Our findings demonstrate that 3-HT inhibits HIF-1α activity and expression under hypoxic conditions. Additionally, 3-HT inhibits hypoxia-induced angiogenesis by suppressing the expression of VEGF. Moreover, 3-HT was found to directly bind to α-enolase, an enzyme associated with glycolysis, resulting in the suppression of its activity. This inhibition of α-enolase activity by 3-HT leads to the blockade of the glycolytic pathway and a decrease in glycolysis products, ultimately altering HIF1-α expression. Furthermore, 3-HT negatively regulates the expression of HIF-1α by altering the phosphorylation of AMP-activated protein kinase (AMPK). Our study's findings elucidate the mechanism by which 3-HT regulates HIF-1α through the inhibition of the glycolytic enzyme α-enolase and the phosphorylation of AMPK. These results suggest that 3-HT holds promise as a potential therapeutic agent for hypoxia-related angiogenesis and tumorigenesis.


Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Phosphopyruvate Hydratase , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Phosphopyruvate Hydratase/metabolism , Phosphopyruvate Hydratase/genetics , Glycolysis/drug effects , Humans , Abietanes/pharmacology , Cell Hypoxia/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism
18.
Mol Cell Biol ; 44(5): 178-193, 2024.
Article En | MEDLINE | ID: mdl-38767243

Transcription factor 12 (TCF12) is a known oncogene in many cancers. However, whether TCF12 can regulate malignant phenotypes and angiogenesis in osteosarcoma is not elucidated. In this study, we demonstrated increased expression of TCF12 in osteosarcoma tissues and cell lines. High TCF12 expression was associated with metastasis and poor survival rate of osteosarcoma patients. Knockdown of TCF12 reduced the proliferation, migration, and invasion of osteosarcoma cells. TCF12 was found to bind to the promoter region of sphingosine kinase 1 (SPHK1) to induce transcriptional activation of SPHK1 expression and enhance the secretion of sphingosine-1-phosphate (S1P), which eventually resulted in the malignant phenotypes of osteosarcoma cells. In addition, S1P secreted by osteosarcoma cells promoted the angiogenesis of HUVECs by targeting S1PR4 on the cell membrane to activate the STAT3 signaling pathway. These findings suggest that TCF12 may induce transcriptional activation of SPHK1 to promote the synthesis and secretion of S1P. This process likely enhances the malignant phenotypes of osteosarcoma cells and induces angiogenesis via the S1PR4/STAT3 signaling pathway.


Basic Helix-Loop-Helix Transcription Factors , Lysophospholipids , Neovascularization, Pathologic , Osteosarcoma , Phosphotransferases (Alcohol Group Acceptor) , STAT3 Transcription Factor , Signal Transduction , Sphingosine , Humans , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Lysophospholipids/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Transcriptional Activation/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Cell Movement/genetics , Male , Animals , Female , Angiogenesis
19.
BMC Cancer ; 24(1): 633, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783271

BACKGROUND: PD-L1 overexpression is commonly observed in various malignancies and is strongly correlated with poor prognoses for cancer patients. Moreover, PD-L1 has been shown to play a significant role in promoting angiogenesis and epithelial-mesenchymal transition (EMT) processes across different cancer types. METHODS: The relationship between PD-L1 and vasculogenic mimicry as well as epithelial-mesenchymal transition (EMT) was explored by bioinformatics approach and immunohistochemistry. The functions of PD-L1 in regulating the expression of ZEB1 and the EMT process were assessed by Western blotting and q-PCR assays. The impact of PD-L1 on the migratory and proliferative capabilities of A549 and H1299 cells was evaluated through wound healing, cell invasion, and CCK8 assays following siRNA-mediated PD-L1 knockdown. Tube formation assay was utilized to evaluate the presence of VM structures. RESULTS: In this study, increased PD-L1 expression was observed in A549 and H1299 cells compared to normal lung epithelial cells. Immunohistochemical analysis revealed a higher prevalence of VM structures in the PD-L1-positive group compared to the PD-L1-negative group. Additionally, high PD-L1 expression was also found to be significantly associated with advanced TNM stage and increased metastasis. Following PD-L1 knockdown, NSCLC cells exhibited a notable reduction in their ability to form tube-like structures. Moreover, the levels of key EMT and VM-related markers, including N-cadherin, MMP9, VE-cadherin, and VEGFA, were significantly decreased, while E-cadherin expression was upregulated. In addition, the migration and proliferation capacities of both cell lines were significantly inhibited after PD-L1 or ZEB1 knockdown. CONCLUSIONS: Knockdown PD-L1 can inhibit ZEB1-mediated EMT, thereby hindering the formation of VM in NSCLC.


B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Lung Neoplasms , Neovascularization, Pathologic , Zinc Finger E-box-Binding Homeobox 1 , Humans , Epithelial-Mesenchymal Transition/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Male , Female , A549 Cells , Middle Aged
20.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791252

Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.


Aquaporin 1 , Breast Neoplasms , Leptin , Neovascularization, Pathologic , STAT3 Transcription Factor , Humans , Leptin/metabolism , Leptin/pharmacology , Leptin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Aquaporin 1/metabolism , Aquaporin 1/genetics , Female , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cadherins/metabolism , Cadherins/genetics , MCF-7 Cells , Laminin/metabolism , Antigens, CD
...