Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.376
Filter
1.
Stem Cell Res Ther ; 15(1): 194, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956719

ABSTRACT

BACKGROUND: Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS: The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS: The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION: NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.


Subject(s)
Mesenchymal Stem Cells , Nerve Growth Factor , Osteogenesis , Rats, Sprague-Dawley , Tissue Scaffolds , Animals , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Rats , Tissue Scaffolds/chemistry , Bone Regeneration , Allografts , Male , Tissue Engineering/methods , Pyroptosis , Sulfonamides/pharmacology , Cell Differentiation , Mesenchymal Stem Cell Transplantation/methods , Bone Transplantation/methods
2.
Biomolecules ; 14(6)2024 May 29.
Article in English | MEDLINE | ID: mdl-38927039

ABSTRACT

Nerve growth factor (NGF), the first neurotrophin to be discovered, has a long and eventful research journey with a series of turning points, setbacks, and achievements. Since the groundbreaking investigations led by Nobel Prize winner Rita Levi-Montalcini, advancements in the comprehension of NGF's functions have revolutionized the field of neuroscience, offering new insights and opportunities for therapeutic innovation. However, the clinical application of NGF has historically been hindered by challenges in determining appropriate dosing, administration strategies, and complications related to the production process. Recent advances in the production and scientific knowledge of recombinant NGF have enabled its clinical development, and in 2018, the United States Food and Drug Administration approved cenegermin-bkbj, a recombinant human NGF, for the treatment of all stages of neurotrophic keratitis. This review traces the evolutionary path that transformed NGF from a biological molecule into a novel therapy with potential research applications beyond the eye. Special emphasis is put on the studies that advanced NGF from discovery to the first medicinal product approved to treat a human disease.


Subject(s)
Nerve Growth Factor , Humans , Nerve Growth Factor/metabolism , Nerve Growth Factor/history , Animals , Recombinant Proteins/therapeutic use , Recombinant Proteins/chemistry , History, 20th Century , History, 21st Century
3.
PLoS One ; 19(6): e0303934, 2024.
Article in English | MEDLINE | ID: mdl-38875221

ABSTRACT

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Subject(s)
Glucokinase , Glucose Transporter Type 2 , Glucose , Insulin-Secreting Cells , Nerve Growth Factor , Animals , Male , Rats , Cells, Cultured , Glucokinase/metabolism , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Rats, Wistar
4.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892241

ABSTRACT

Glutamate functions as the major excitatory neurotransmitter for primary sensory neurons and has a crucial role in sensitizing peripheral nociceptor terminals producing sensitization. Glutaminase (GLS) is the synthetic enzyme that converts glutamine to glutamate. GLS-immunoreactivity (-ir) and enzyme activity are elevated in dorsal root ganglion (DRG) neuronal cell bodies during chronic peripheral inflammation, but the mechanism for this GLS elevation is yet to be fully characterized. It has been well established that, after nerve growth factor (NGF) binds to its high-affinity receptor tropomyosin receptor kinase A (TrkA), a retrograde signaling endosome is formed. This endosome contains the late endosomal marker Rab7GTPase and is retrogradely transported via axons to the cell soma located in the DRG. This complex is responsible for regulating the transcription of several critical nociceptive genes. Here, we show that this retrograde NGF signaling mediates the expression of GLS in DRG neurons during the process of peripheral inflammation. We disrupted the normal NGF/TrkA signaling in adjuvant-induced arthritic (AIA) Sprague Dawley rats by the pharmacological inhibition of TrkA or blockade of Rab7GTPase, which significantly attenuated the expression of GLS in DRG cell bodies. The results indicate that NGF/TrkA signaling is crucial for the production of glutamate and has a vital role in the development of neurogenic inflammation. In addition, our pain behavioral data suggest that Rab7GTPase can be a potential target for attenuating peripheral inflammatory pain.


Subject(s)
Ganglia, Spinal , Glutaminase , Inflammation , Nerve Growth Factor , Rats, Sprague-Dawley , Receptor, trkA , Signal Transduction , Animals , Ganglia, Spinal/metabolism , Nerve Growth Factor/metabolism , Glutaminase/metabolism , Rats , Receptor, trkA/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Neurons/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
5.
Eur Rev Med Pharmacol Sci ; 28(11): 3787-3795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884514

ABSTRACT

OBJECTIVE: Burns are among the most common injuries in children. In burns of more than 20% of the total body surface area, a systemic inflammatory response involving several chemical mediators occurs. Among them, nerve growth factor (NGF) regulates the inflammatory response related to wound healing and promotes keratinocyte proliferation and angiogenesis. The aim of our study was to investigate the physiological response to injury in children with moderate-severe burns, assaying proNGF, mature NGF (mNGF), interleukins (IL)-1ß, and Il-10 serum levels. PATIENTS AND METHODS: This is a prospective observational study, including twelve children hospitalized for moderate-severe burns at the Gemelli Hospital (Rome). Their laboratory features were compared to those of patients with obstructive hydrocephalus who underwent surgery. RESULTS: Our results showed an increase in proNGF and mNGF serum levels. In burn patients, proNGF levels increased before mNGF, and serum concentrations of both were not correlated with burn extension and depth. The most significant levels of mNGF and proNGF were reported in scalds involving the face. Serum IL-1ß and IL-10 peak levels were reached with a time-course pattern similar to proNGF. CONCLUSIONS: Our preliminary results validate the hypothesis that serum levels of proNGF and mNGF may represent inflammatory biomarkers useful for monitoring burn patients and defining new strategies for their treatment.


Subject(s)
Burns , Nerve Growth Factor , Humans , Nerve Growth Factor/blood , Burns/blood , Child , Prospective Studies , Female , Male , Child, Preschool , Interleukins/blood , Interleukin-1beta/blood , Interleukin-10/blood , Infant , Protein Precursors/blood
6.
Pharmazie ; 79(3): 67-71, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38872272

ABSTRACT

We examined the mechanism by which 24(R)-ethyllophenol (MAB28) isolated from the branches of Morus alba caused neurite outgrowth in rat pheochromocytoma cells (PC12). MAB28 significantly promoted neurite outgrowth to a similar degree as the positive control, nerve growth factor (NGF). After incubation with MAB28 in PC12 cells, phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and cyclic AMP response element-binding protein was detected, but the time course of phosphorylation was different from that induced by NGF. The expression of chloride intracellular channel protein 3 (CLIC3) was significantly decreased by MAB28. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), an outward rectifying chloride channel inhibitor, significantly promoted neurite outgrowth in PC12 cells. These data suggested that MAB28 could induce neurite outgrowth by downregulating CLIC3 expression.


Subject(s)
Morus , Neurites , Animals , PC12 Cells , Rats , Morus/chemistry , Neurites/drug effects , Neuronal Outgrowth/drug effects , Nerve Growth Factor/pharmacology , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , Nitrobenzoates/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Phenols/pharmacology , Blotting, Western , Extracellular Signal-Regulated MAP Kinases/metabolism , Chloride Channels
7.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891925

ABSTRACT

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Skin , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mast Cells/metabolism , Mast Cells/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Mice , Skin/metabolism , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Peptide Hydrolases/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Substance P/metabolism , Stress, Physiological , Mice, Inbred C57BL , Nerve Growth Factor/metabolism
8.
Ecotoxicol Environ Saf ; 280: 116578, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38861803

ABSTRACT

Sertoli cells (SCs) maintain testicular homeostasis and promote spermatogenesis by forming the blood-testis barrier (BTB) and secreting growth factors. The pro-proliferative and anti-apoptotic effects of nerve growth factor (NGF) on SCs have been proved previously. It is still unclear whether the damage effect of arsenic on testis is related to the inhibition of NGF expression, and whether NGF can mitigate arsenic-induced testicular damage by decreasing the damage of SCs induced by arsenic. Here, the lower expression of NGF in testes of arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) was observed through detection of Western blot and Real-time PCR. Subsequently, hematoxylin and eosin (HE) staining, Evans blue staining and transmission electron microscopy were used to evaluate the pathology, BTB permeability and tight junction integrity in testes of control mice, arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) and arsenic + NGF treated mice (freely drinking water containing 15 mg/l of NaAsO2 + intraperitoneal injection with 30 µg/kg of NGF), respectively. Evidently, spermatogenic tubule epithelial cells in testis of arsenic exposed mice were disordered and the number of cell layers was reduced, accompanied by increased permeability and damaged integrity of the tight junction in BTB, but these changes were less obvious in testes of mice treated with arsenic + NGF. In addition, the sperm count, motility and malformation rate of mice treated with arsenic + NGF were also improved. On the basis of the above experiments, the viability and apoptosis of primary cultured SCs treated with arsenic (10 µM NaAsO2) or arsenic + NGF (10 µM NaAsO2 + 100 ng/mL NGF) were detected by Cell counting kit-8 (CCK8) and transferase-mediated DUTP-biotin nick end labeling (TUNEL) staining, respectively. It is found that NGF ameliorated the decline of growth activity and the increase of apoptosis in arsenic-induced SCs. This remarkable biological effect that NGF inhibited the increase of Bax expression and the decrease of Bcl-2 expression in arsenic-induced SCs was also determined by western blot and Real-time PCR. Moreover, the decrease in transmembrane resistance (TEER) and the expression of tight junction proteins ZO-1 and occludin was mitigated in SCs induced by arsenic due to NGF treatment. In conclusion, the above results confirmed that NGF could ameliorate the injury effects of arsenic on testis, which might be related to the function of NGF to inhibit arsenic-induced SCs injury.


Subject(s)
Arsenic , Blood-Testis Barrier , Nerve Growth Factor , Sertoli Cells , Testis , Animals , Male , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Mice , Arsenic/toxicity , Testis/drug effects , Testis/pathology , Blood-Testis Barrier/drug effects , Spermatogenesis/drug effects , Apoptosis/drug effects , Tight Junctions/drug effects
9.
Sci Rep ; 14(1): 13612, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871929

ABSTRACT

One of the most prevalent disorders of the urinary system is urinary tract infection, which is mostly brought on by uropathogenic Escherichia coli (UPEC). The objective of this study was to evaluate the regenerative therapeutic and antibacterial efficacy of PRP for induced bacterial cystitis in dogs in comparison to conventional antibiotics. 25 healthy male mongrel dogs were divided into 5 groups (n = 5). Control negative group that received neither induced infection nor treatments. 20 dogs were randomized into 4 groups after two weeks of induction of UPEC cystitis into; Group 1 (control positive; G1) received weekly intravesicular instillation of sodium chloride 0.9%. Group 2 (syst/PRP; G2), treated with both systemic intramuscular antibiotic and weekly intravesicular instillation of PRP; Group 3 (PRP; G3), treated with weekly intravesicular instillation of PRP, and Group 4 (syst; G4) treated with an intramuscular systemic antibiotic. Animals were subjected to weekly clinical, ultrasonographic evaluation, urinary microbiological analysis, and redox status biomarkers estimation. Urinary matrix metalloproteinases (MMP-2, MMP-9) and urinary gene expression for platelet-derived growth factor -B (PDGF-B), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) were measured. At the end of the study, dogs were euthanized, and the bladder tissues were examined macroscopically, histologically, and immunohistochemically for NF-κB P65 and Cox-2. The PRP-treated group showed significant improvement for all the clinical, Doppler parameters, and the urinary redox status (p < 0.05). The urinary MMPs activity was significantly decreased in the PRP-treated group and the expression level of urinary NGF and VEGF were downregulated while PDGFB was significantly upregulated (p < 0.05). Meanwhile, the urinary viable cell count was significantly reduced in all treatments (P < 0.05). Gross examination of bladder tissue showed marked improvement for the PRP-treated group, expressed in the histopathological findings. Immunohistochemical analysis revealed a marked increase in Cox-2 and NF-κB P65 in the PRP-treated group (P < 0.05). autologous CaCl2-activated PRP was able to overcome the bacterial infection, generating an inflammatory environment to overcome the old one and initiate tissue healing. Hence, PRP is a promising alternative therapeutic for UPEC cystitis instead of conventional antibiotics.


Subject(s)
Cystitis , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nerve Growth Factor , Platelet-Rich Plasma , Vascular Endothelial Growth Factor A , Animals , Dogs , Nerve Growth Factor/metabolism , Platelet-Rich Plasma/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cystitis/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Disease Models, Animal , Uropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections , Down-Regulation , Urinary Tract Infections/drug therapy
10.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38830774

ABSTRACT

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Subject(s)
Biocompatible Materials , Electric Stimulation , Graphite , Hydrogels , Nerve Growth Factor , Nerve Regeneration , Hydrogels/chemistry , Hydrogels/pharmacology , Graphite/chemistry , Graphite/pharmacology , Nerve Regeneration/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factor/metabolism , Nerve Growth Factor/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Animals , Particle Size , Materials Testing , Rats , PC12 Cells , Tissue Engineering
11.
Transl Vis Sci Technol ; 13(6): 12, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38888287

ABSTRACT

Purpose: Recombinant human nerve growth factor (rhNGF; cenegermin-bkbj, OXERVATE) is the first and only U.S. Food and Drug Administration-approved treatment for moderate to severe neurotrophic keratopathy. The aim of this study was to determine the feasibility of incorporating a version of rhNGF in a mucoadhesive hydrogel capable of sustained drug release to the ocular surface. Methods: Hydrogels loaded with rhNGF were synthesized by conjugating chitosan with azidobenzoic acid (Az-Ch), adding rhNGF, and exposing the solution to ultraviolet (UV) radiation to induce photocrosslinking. Az-Ch hydrogels were evaluated for physical properties and rhNGF release profiles. Cytocompatbility of Az-Ch was assessed using immortalized human corneal limbal epithelial (HCLE) cells. TF1 erythroleukemic cell proliferation and HCLE cell proliferation and migration were used to assess the bioactivity of rhNGF released from Az-Ch hydrogels. Results: Az-Ch formed hydrogels in <10 seconds of UV exposure and demonstrated high optical transparency (75-85 T%). Az-Ch hydrogels exhibited good cytocompatibility with no demonstratable effect on HCLE cell morphology or viability. rhNGF was released gradually over 24 hours from Az-Ch hydrogels and retained its ability to induce TF1 cell proliferation. No significant difference was observed between rhNGF released from Az-Ch and freshly prepared rhNGF solutions on HCLE cell proliferation or percent wound closure after 12 hours; however, both were significantly better than control (P < 0.01). Conclusions: rhNGF-loaded Az-Ch hydrogels exhibited favorable physical, optical, and drug-release properties, as well as retained drug bioactivity. This drug delivery system has the potential to be further developed for in vivo and translational clinical applications. Translational Relevance: Az-Ch hydrogels may be used to enhance rhNGF therapy in patients with NK.


Subject(s)
Cell Proliferation , Chitosan , Hydrogels , Nerve Growth Factor , Nerve Growth Factor/pharmacology , Nerve Growth Factor/chemistry , Nerve Growth Factor/administration & dosage , Humans , Chitosan/chemistry , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Cell Proliferation/drug effects , Cell Movement/drug effects , Ultraviolet Rays , Cross-Linking Reagents/chemistry , Limbus Corneae/drug effects , Limbus Corneae/cytology , Recombinant Proteins/chemistry , Drug Delivery Systems/methods
12.
Discov Med ; 36(185): 1241-1249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926110

ABSTRACT

OBJECTIVE: Rotator cuff injury is a common injury that includes inflammation, partial tearing, or complete tearing of the rotator cuff tendon. In cases of rotator cuff tears (RCTs), Tumor Necrosis Factor-alpha (TNF-α) can trigger the release of nerve growth factor (NGF). TNF-α is an important inflammatory mediator that affects rotator cuff activity and increased NGF expression is observed in RCTs. Therefore, this study aimed to investigate whether inhibition of TNF-α could reduce behavioural responses and inflammation levels in rats through NGF. METHODS: A rat RCT model was established, and the CatWalk gait analysis system was used for behavioural assessment. Immunohistochemistry was used to detect NGF protein levels in tendon tissue. Hematoxylin eosin (HE) staining was used to observe histopathological changes. The expressions of Interleukin-1beta (IL-1ß) and Cyclooxygenase-2 (COX2) were detected by western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). The expression of apoptosis protein Bcl-2-associated X (Bax), B-cell lymphoma 2 (Bcl-2), and Cysteine-aspartic acid protease-3 (Caspase-3) were detected using WB. Oxidative stress markers, namely Reactive Oxygen Species (ROS), Malondialdehyde (MDA), and Superoxide Dismutase (SOD) were quantified in tissues using an ELISA kit. RESULTS: In the RCT model, elevated NGF protein expression, noticeable atrophy in the supraspinatus muscle tissue, and substantial fat infiltration were observed. The levels of IL-1ß, COX2, apoptosis, and oxidative stress were all increased. TNF-α inhibition resulted in decreased NFG expression, decreased tissue fibrosis, and improved tendon atrophy. Moreover, when TNF-α was inhibited, the expressions of IL-1ß and Cox2 were reduced and both apoptosis and oxidative stress were decreased. The results showed that inhibiting TNF-α had the potential to reduce inflammation levels and behavioural responses in rats. CONCLUSION: TNF-α can affect behaviour and inflammation in rats with RCTs through NGF, and TNF-α inhibition can improve rotator cuff injury.


Subject(s)
Inflammation , Nerve Growth Factor , Rats, Sprague-Dawley , Rotator Cuff Injuries , Tumor Necrosis Factor-alpha , Animals , Nerve Growth Factor/metabolism , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Inflammation/pathology , Male , Oxidative Stress/drug effects , Behavior, Animal/drug effects , Disease Models, Animal , Apoptosis/drug effects , Interleukin-1beta/metabolism , Cyclooxygenase 2/metabolism
13.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896465

ABSTRACT

Spinal pain affects individuals of all ages and is the most common musculoskeletal problem globally. Its clinical management remains a challenge as the underlying mechanisms leading to it are still unclear. Here, we report that significantly increased numbers of senescent osteoclasts (SnOCs) are observed in mouse models of spinal hypersensitivity, like lumbar spine instability (LSI) or aging, compared to controls. The larger population of SnOCs is associated with induced sensory nerve innervation, as well as the growth of H-type vessels, in the porous endplate. We show that deletion of senescent cells by administration of the senolytic drug Navitoclax (ABT263) results in significantly less spinal hypersensitivity, spinal degeneration, porosity of the endplate, sensory nerve innervation, and H-type vessel growth in the endplate. We also show that there is significantly increased SnOC-mediated secretion of Netrin-1 and NGF, two well-established sensory nerve growth factors, compared to non-senescent OCs. These findings suggest that pharmacological elimination of SnOCs may be a potent therapy to treat spinal pain.


Subject(s)
Cellular Senescence , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Osteoclasts/drug effects , Osteoclasts/physiology , Cellular Senescence/drug effects , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , Sensory Receptor Cells/metabolism , Disease Models, Animal , Male , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Netrin-1/metabolism , Netrin-1/genetics , Mice, Inbred C57BL
14.
Eur J Pharmacol ; 976: 176667, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38795754

ABSTRACT

Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.


Subject(s)
Calcitonin Gene-Related Peptide , Cyclic AMP Response Element-Binding Protein , Fenofibrate , Migraine Disorders , Nerve Growth Factor , Nitroglycerin , Protein Kinase C , Receptors, Purinergic P2X3 , Signal Transduction , Animals , Nitroglycerin/pharmacology , Nitroglycerin/toxicity , Calcitonin Gene-Related Peptide/metabolism , Signal Transduction/drug effects , Migraine Disorders/drug therapy , Migraine Disorders/chemically induced , Migraine Disorders/metabolism , Male , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Rats , Cyclic AMP Response Element-Binding Protein/metabolism , Protein Kinase C/metabolism , Receptors, Purinergic P2X3/metabolism , Nerve Growth Factor/metabolism , Nitric Oxide/metabolism , Rats, Sprague-Dawley , Behavior, Animal/drug effects
15.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38716884

ABSTRACT

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Subject(s)
Adenosine Triphosphate , Nerve Growth Factor , Protein Binding , Nerve Growth Factor/metabolism , Adenosine Triphosphate/metabolism , Humans , Animals , Protein Precursors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/chemistry , Ligands , Binding Sites
16.
Prostate ; 84(11): 1016-1024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804836

ABSTRACT

BACKGROUND: Our research focused on the assessment of the impact of systemic inhibition of Trk receptors, which bind to nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), on bladder hypersensitivity in two distinct rodent models of prostatic inflammation (PI). METHODS: Male Sprague-Dawley rats were divided into three groups (n = 6 each): the control group (no PI, vehicle administration), the untreated group (PI, vehicle administration), and the treated group (PI, nonselective Trk inhibitor, GNF 5837, administration). PI in rats was induced by a intraprostatic injection of 5% formalin. Posttreatment, we carried out conscious cystometry and a range of histological and molecular analyses. Moreover, the study additionally evaluated the effects of a nonselective Trk inhibitor on bladder overactivity in a mouse model of PI, which was induced by prostate epithelium-specific conditional deletion of E-cadherin. RESULTS: The rat model of PI showed upregulations of NGF and BDNF in both bladder and prostate tissues in association with bladder overactivity and inflammation in the ventral lobes of the prostate. GNF 5837 treatment effectively mitigated these PI-induced changes, along with reductions in TrkA, TrkB, TrkC, and TRPV1 mRNA expressions in L6-S1 dorsal root ganglia. Also, in the mouse PI model, GNF 5837 treatment similarly improved bladder overactivity. CONCLUSIONS: The findings of our study suggest that Trk receptor inhibition, which reduced bladder hypersensitivity and inflammatory responses in the prostate, along with a decrease in overexpression of Trk and TRPV1 receptors in sensory pathways, could be an effective treatment strategy for male lower urinary tract symptoms associated with PI and bladder overactivity.


Subject(s)
Disease Models, Animal , Prostatitis , Rats, Sprague-Dawley , Receptor, trkA , Urinary Bladder, Overactive , Animals , Male , Urinary Bladder, Overactive/drug therapy , Urinary Bladder, Overactive/etiology , Rats , Mice , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/metabolism , Prostatitis/drug therapy , Prostatitis/pathology , Prostatitis/metabolism , Nerve Growth Factor/antagonists & inhibitors , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Administration, Oral , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Prostate/drug effects , Prostate/pathology , Prostate/metabolism , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/metabolism
17.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 220-225, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814212

ABSTRACT

This study explored the impact of penehyclidine hydrochloride on cognitive function in rats with brain injury. Sprague-Dawley rats (n=36) were randomly assigned to sham-operation, model, and penehyclidine hydrochloride groups. Rats in the sham-operation group underwent craniotomy, while the model and penehyclidine hydrochloride groups received brain injury models and interventions with normal saline and penehyclidine hydrochloride, respectively. Specimens were obtained two weeks post-intervention. Neurological deficits were evaluated using Zea-Longa scores, and memory was assessed with the Morris water maze test. ELISA determined brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) content. mRNA expressions of BDNF and NGF were assessed via qPCR, and phosphorylated CREB (p-CREB) protein expression was measured by Western blotting. Compared to the sham-operation group, both model and penehyclidine hydrochloride groups showed increased Zea-Longa scores. Escape latencies were longer and platform crossings were fewer in model and penehyclidine hydrochloride groups compared to the sham-operation group, but penehyclidine hydrochloride demonstrated a shorter latency and more platform crossings than the model group. BDNF and NGF content decreased in model and penehyclidine hydrochloride groups compared to the sham-operation group, with an increase in the penehyclidine hydrochloride group compared to the model group. mRNA expression levels declined in model and penehyclidine hydrochloride groups but were higher in the latter. p-CREB protein expression was lower in model and penehyclidine hydrochloride groups compared to the sham-operation group but higher in the penehyclidine hydrochloride group than the model group. Penehyclidine hydrochloride exhibited neuroprotective effects by upregulating the cAMP/CREB signaling pathway, improving cognitive function in rats with brain injury.


Subject(s)
Brain Injuries , Brain-Derived Neurotrophic Factor , Cognition , Cyclic AMP Response Element-Binding Protein , Cyclic AMP , Quinuclidines , Rats, Sprague-Dawley , Signal Transduction , Animals , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Quinuclidines/pharmacology , Quinuclidines/therapeutic use , Cognition/drug effects , Male , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cyclic AMP/metabolism , Rats , Nerve Growth Factor/metabolism , Nerve Growth Factor/genetics , Phosphorylation/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Disease Models, Animal
18.
Colloids Surf B Biointerfaces ; 239: 113967, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761494

ABSTRACT

The re-bridging of the deficient nerve is the main problem to be solved after the functional impairment of the peripheral nerve. In this study, a directionally aligned polycaprolactone/triiron tetraoxide (PCL/Fe3O4) fiber scaffolds were firstly prepared by electrospinning technique, and further then grafted with IKVAV peptide for regulating DRG growth and axon extension in peripheral nerve regeneration. The results showed that oriented aligned magnetic PCL/Fe3O4 composite scaffolds were successfully prepared by electrospinning technique and possessed good mechanical properties and magnetic responsiveness. The PCL/Fe3O4 scaffolds containing different Fe3O4 concentrations were free of cytotoxicity, indicating the good biocompatibility and low cytotoxicity of the scaffolds. The IKVAV-functionalized PCL/Fe3O4 scaffolds were able to guide and promote the directional extension of axons, the application of external magnetic field and the grafting of IKVAV peptides significantly further promoted the growth of DRGs and axons. The ELISA test results showed that the AP-10 F group scaffolds promoted the secretion of nerve growth factor (NGF) from DRG under a static magnetic field (SMF), thus promoting the growth and extension of axons. Importantly, the IKVAV-functionalized PCL/Fe3O4 scaffolds could significantly up-regulate the expression of Cntn2, PCNA, Sox10 and Isca1 genes related to adhesion, proliferation and magnetic receptor function under the stimulation of SMF. Therefore, IKVAV-functionalized PCL/Fe3O4 composite oriented scaffolds have potential applications in neural tissue engineering.


Subject(s)
Polyesters , Tissue Scaffolds , Animals , Polyesters/chemistry , Rats , Tissue Scaffolds/chemistry , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Nerve Growth Factor/pharmacology , Nerve Growth Factor/chemistry , Nerve Regeneration/drug effects , Magnetic Fields , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Rats, Sprague-Dawley , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , PC12 Cells
19.
Allergol Immunopathol (Madr) ; 52(3): 1-7, 2024.
Article in English | MEDLINE | ID: mdl-38721949

ABSTRACT

INTRODUCTION: Many chronic spontaneous urticaria (CSU) patients have highly stressful life events and exhibit psychiatric comorbidities. Emotional stress can cause or exacerbate urticaria symptoms by causing mast cell degranulation via neuromediators. OBJECTIVES: To investigate the frequency of stressful life events and compare psychiatric comorbidities and serum neuromediator levels in patients with CSU who responded to omalizumab with healthy controls. METHODS: In this cross-sectional study, we included 42 patients with CSU who received at least 6 months of omalizumab treatment and a control group of 42 healthy controls. Stressful life events were evaluated with the Life Events Checklist for DSM-5 (LEC-5). The Depression Anxiety Stress Scale-42 (DASS-42) was used to evaluate depression, anxiety and stress levels. Serum nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and substance P (SP) levels were measured using the enzyme-linked immunosorbent assay (ELISA) technique. RESULTS: Twenty-six (62%) patients reported at least one stressful life event a median of 3.5 months before the onset of CSU. There were no significant differences in all three variables in the DASS subscales between the patient and control groups. Serum NGF levels were found to be significantly lower in patients with CSU (p <0.001), whereas CGRP levels were found to be significantly higher (p <0.001). There was no significant difference for SP. CONCLUSIONS: The psychological status of patients with CSU who benefited from omalizumab was similar to that of healthy controls. Omalizumab may affect stress-related neuromediator levels.


Subject(s)
Anti-Allergic Agents , Chronic Urticaria , Nerve Growth Factor , Omalizumab , Stress, Psychological , Humans , Omalizumab/therapeutic use , Female , Male , Adult , Chronic Urticaria/drug therapy , Chronic Urticaria/blood , Cross-Sectional Studies , Middle Aged , Stress, Psychological/drug therapy , Stress, Psychological/blood , Nerve Growth Factor/blood , Anti-Allergic Agents/therapeutic use , Substance P/blood , Calcitonin Gene-Related Peptide , Comorbidity , Depression/drug therapy , Depression/blood , Depression/epidemiology , Mental Disorders/drug therapy , Mental Disorders/blood , Mental Disorders/epidemiology
20.
Biotechnol J ; 19(5): e2300734, 2024 May.
Article in English | MEDLINE | ID: mdl-38719571

ABSTRACT

Self-assembly of biological elements into biomimetic cargo carriers for targeting and delivery is a promising approach. However, it still holds practical challenges. We developed a functionalization approach of DNA origami (DO) nanostructures with neuronal growth factor (NGF) for manipulating neuronal systems. NGF bioactivity and its interactions with the neuronal system were demonstrated in vitro and in vivo models. The DO elements fabricated by molecular self-assembly have manipulated the surrounding environment through static spatially and temporally controlled presentation of ligands to the cell surface receptors. Our data showed effective bioactivity in differentiating PC12 cells in vitro. Furthermore, the DNA origami NGF (DON) affected the growth directionality and spatial capabilities of dorsal root ganglion neurons in culture by introducing a chemotaxis effect along a gradient of functionalized DO structures. Finally, we showed that these elements provide enhanced axonal regeneration in a rat sciatic nerve injury model in vivo. This study is a proof of principle for the functionality of DO in neuronal manipulation and regeneration. The approach proposed here, of an engineered platform formed out of programmable nanoscale elements constructed of DO, could be extended beyond the nervous system and revolutionize the fields of regenerative medicine, tissue engineering, and cell biology.


Subject(s)
DNA , Ganglia, Spinal , Nerve Growth Factor , Nerve Regeneration , Animals , Rats , PC12 Cells , DNA/chemistry , Ganglia, Spinal/cytology , Nerve Growth Factor/chemistry , Nerve Growth Factor/pharmacology , Nanostructures/chemistry , Neurons , Sciatic Nerve , Tissue Scaffolds/chemistry , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...