Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
J Headache Pain ; 25(1): 129, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107712

ABSTRACT

Migraine, a primary headache disorder whose mechanism remains incompletely understood, appears to involve the activation of the trigeminovascular system (TS) during attacks. Research suggests that inflammatory processes mediated by the immune system may play a role in migraine pathophysiology. Neuroinflammation is often associated with migraine attacks, with cytokines serving as crucial mediators in the process. Elevated levels of pro-inflammatory cytokines, such as interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), have been observed in the blood and cerebrospinal fluid of individuals experiencing migraine attacks. These cytokines have the capacity to sensitize pain pathways in the brain, thereby increasing sensitivity to pain stimuli. This phenomenon, known as central sensitization, is believed to contribute to the intensity and persistence of migraine pain. Kynurenines, endogenous mediators of glutamatergic mechanisms, can significantly influence the pathophysiology of primary headache disorders. The kynurenine system is collectively known as the kynurenine pathway (KP), which can act on multiple receptors, such as glutamate receptors, aryl hydrocarbon receptors (AhRs), G protein-coupled receptors 35 (GPR35), and α-7 nicotinic acetylcholine (α7 nACh) receptors. These receptors are also found on various cells of the immune system, so the role of the KP in the pathomechanism of primary headaches may also be mediated through them. In this review, our goal is to show a possible link between the receptors of the KP and immune system in the context of inflammation and migraine. Migraine research in recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as potential pathogenic factors and possible therapeutic approaches. These peptides share many similarities in their characteristics and roles. For instance, they exhibit potent vasodilation, occur in both the peripheral and central nervous systems, and play a role in transmitting nociception and neurogenic inflammation. The investigation of potential connections between the aforementioned neuropeptides and the kynurenine pathway could play a significant role in uncovering the pathomechanism of migraine and identifying new drug candidates.


Subject(s)
Kynurenine , Migraine Disorders , Humans , Migraine Disorders/immunology , Migraine Disorders/physiopathology , Migraine Disorders/metabolism , Kynurenine/metabolism , Animals , Neuroimmunomodulation/physiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/physiopathology
3.
J Headache Pain ; 25(1): 124, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39080518

ABSTRACT

BACKGROUND: The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION: We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.


Subject(s)
Meninges , Migraine Disorders , Neuroinflammatory Diseases , Signal Transduction , Humans , Migraine Disorders/metabolism , Migraine Disorders/physiopathology , Neuroinflammatory Diseases/physiopathology , Animals , Signal Transduction/physiology , Neurons/metabolism
4.
Mult Scler Relat Disord ; 87: 105687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776599

ABSTRACT

BACKGROUND: Brain hypoperfusion is linked with worse physical, cognitive and MRI outcomes in multiple sclerosis (MS). Understanding the proteomic signatures related to hypoperfusion could provide insights into the pathophysiological mechanism. METHODS: 140 people with MS (pwMS; 86 clinically isolated syndrome (CIS)/relapsing-remitting (RRMS) and 54 progressive (PMS)) were included. Cerebral arterial blood flow (CABF) was determined using ultrasound Doppler measurement as the sum of blood flow in the bilateral common carotid arteries and vertebral arteries. Proteomic analysis was performed using the Multiple Sclerosis Disease Activity (MSDA) test assay panel performed on the Olink™ platform. The MSDA test measures the concentrations of 18 proteins that are age and sex-adjusted. It utilizes a stacked classifier logistic regression model to determine 4 disease pathway scores (immunomodulation, neuroinflammation, myelin biology, and neuroaxonal integrity) as well as an overall disease activity score (1 to 10). MRI measures of T2 lesion volume (LV) and whole brain volume (WBV) were derived. RESULTS: The pwMS were on average 54 years old and had an average CABF of 951 mL/min. There were no differences in CABF between CIS/RRMS vs. PMS groups. Lower CABF levels were correlated with the overall disease activity score (r = -0.26, p = 0.003) and with the neuroinflammation (r = -0.29, p = 0.001), immunomodulation (r = -0.26, p = 0.003) and neuroaxonal integrity (r = -0.23, p = 0.007) pathway scores. After age and body mass index (BMI)-adjustment, lower CABF remained associated with the neuroinflammatory (r = -0.23, p = 0.011) and immunomodulation (r = -0.20, p = 0.024) pathway scores. The relationship between CABF and the neuroinflammation pathway score remained significant after adjusting for T2-LV and WBV (p = 0.038). Individual analyses identified neurofilament light chain, CCL-20 and TNFSF13B as contributors. When compared to the highest quartile (>1133.5 mL/min), the pwMS in the lowest CABF quartile (<764 mL/min) had greater overall disease activity score (p = 0.003), neuroinflammation (p = 0.001), immunomodulation (p = 0.004) and neuroaxonal integrity pathway scores (p = 0.007). CONCLUSION: Lower cerebral arterial perfusion in MS is associated with changes in neuroinflammatory/immunomodulation pathways and their respective proteomic biomarkers. These findings may suggest a relationship between the hypoperfusion and pro-inflammatory MS changes rather than being merely an epiphenomenon subsequent to lower energy demands.


Subject(s)
Cerebrovascular Circulation , Neuroinflammatory Diseases , Proteomics , Humans , Female , Middle Aged , Male , Cerebrovascular Circulation/physiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/physiopathology , Adult , Immunomodulation , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/physiopathology , Multiple Sclerosis/blood , Magnetic Resonance Imaging , Brain/diagnostic imaging , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/physiopathology , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiopathology
5.
Aging Dis ; 15(3): 939-944, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38722789

ABSTRACT

This editorial provides an overview of recent advancements in the understanding and treatment of neurological disorders, focusing on aging, immunity, and blood flow, as featured in this special issue. The first section explores the importance of identifying biomarkers of aging and aging-related diseases, such as Alzheimer's Disease, highlighting the emerging role of saliva-based biomarkers and the gut-brain axis in disease diagnosis and management. In the subsequent section, the dysregulated immune systems associated with aging are discussed, emphasizing the intricate landscape of the immune system during aging and its bidirectional relationship with neuroinflammation. Additionally, insights into the involvement of Myeloid-Derived Suppressor Cells (MDSCs) in Multiple Sclerosis (MS) pathogenesis are presented. The third section examines the role of microglia in neuroinflammation and various neurological diseases, including age-related macular degeneration (AMD) and Tuberculous Meningitis (TBM). Furthermore, the therapeutic potential of stem cell and extracellular vesicle-based therapies for stroke is explored, along with molecular mechanism of how inflammation regulates cerebral and myocardial ischemia. Finally, the importance of blood flow in maintaining vascular health and its impact on neurological disorders are discussed, highlighting the potential of novel assessment methods for optimizing patient care. Overall, this special issue offers valuable insights into the complex mechanisms underlying neurological disorders and identifies potential avenues for therapeutic intervention.


Subject(s)
Aging , Humans , Aging/immunology , Aging/physiology , Nervous System Diseases/immunology , Nervous System Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/physiopathology
6.
J Neuroinflammation ; 21(1): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715127

ABSTRACT

BACKGROUND: Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS: We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS: The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION: Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.


Subject(s)
Amino Acid Transport System y+ , Neuralgia , Neuroinflammatory Diseases , Animals , Female , Mice , Amino Acid Transport System y+/antagonists & inhibitors , Amino Acid Transport System y+/deficiency , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Biomarkers/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/drug therapy , Gliosis/physiopathology , Glutamic Acid/metabolism , Hyperalgesia/drug therapy , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Neuralgia/complications , Neuralgia/drug therapy , Neuralgia/physiopathology , Neuralgia/prevention & control , Neuroinflammatory Diseases/complications , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/prevention & control , Phenotype , Reproducibility of Results , RNA, Messenger/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sciatic Neuropathy/complications , Sciatic Neuropathy/physiopathology , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/physiopathology , Sulfasalazine/pharmacology , Sulfasalazine/therapeutic use
7.
Curr Opin Support Palliat Care ; 18(3): 138-144, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38752576

ABSTRACT

PURPOSE OF REVIEW: Cachexia is a devasting syndrome which impacts a large number of patients with cancer. This review aims to provide a comprehensive overview of the central mechanisms of cancer cachexia. In particular, it focuses on the role of the central nervous system (CNS), the melanocortin system, circulating hormones and molecules which are produced by and act on the CNS and the psychological symptoms of cancer cachexia. RECENT FINDINGS: A growing body of evidence suggests that a central mechanism of action underpins this multi-system disorder. Recent research has focused on the role of neuroinflammation that drives the sickness behaviour seen in cancer cachexia, with emphasis on the role of the hypothalamus. Melanocortin receptor antagonists are showing promise in preclinical studies. There are also new pharmacological developments to overcome the short half-life of ghrelin. GDF-15 has been identified as a core target and trials of compounds that interfere with its signalling or its central receptor are underway. SUMMARY: Understanding the central mechanisms of cancer cachexia is pivotal for enhancing treatment outcomes in patients. While emerging pharmacological interventions targeting these pathways have shown promise, further research is essential.


Subject(s)
Cachexia , Ghrelin , Neoplasms , Cachexia/etiology , Cachexia/physiopathology , Humans , Neoplasms/complications , Ghrelin/metabolism , Melanocortins , Growth Differentiation Factor 15 , Hypothalamus/physiopathology , Central Nervous System/physiopathology , Neuroinflammatory Diseases/physiopathology
8.
J Integr Neurosci ; 23(5): 101, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38812387

ABSTRACT

The feeling of emotional tension, restlessness, pressure, and inability to relax is referred to as psychological stress. Although it is unclear how psychological stress affects neurobiological processes, several factors are thought to be involved, including central and peripheral neuroinflammation, structural degeneration in the prefrontal cortex and hippocampus, alterations in fear neurocircuitry, and neuroplasticity. Aside from data relating cognitive impairment to chronic low-grade inflammatory stress, there is growing evidence linking mental stress, oxidative stress, and systemic inflammation to the development of psychological disorders. After chronic and acute illnesses, insomnia, depression, anxiety, posttraumatic stress disorder, and cognitive impairment were reported. Cognitive impairment is exacerbated by systemic and central inflammatory processes. There is uncertainty about the potential mechanisms causing these symptoms, although they are likely complex, with systemic inflammation playing a significant role. Therefore, this review aims to investigate the role of inflammation in stress-induced cognitive impairment. Depicting the inflammatory mechanisms of cognitive impairment is critical for understanding and treating illnesses, such as chronic stress exposure and anxiety disorders.


Subject(s)
Cognitive Dysfunction , Inflammation , Stress, Psychological , Humans , Stress, Psychological/physiopathology , Stress, Psychological/immunology , Stress, Psychological/complications , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Inflammation/physiopathology , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Animals
9.
Neuropsychobiology ; 83(2): 61-72, 2024.
Article in English | MEDLINE | ID: mdl-38574476

ABSTRACT

INTRODUCTION: Neurobiological dysfunction is associated with depression in children and adolescents. While research in adult depression suggests that inflammation may underlie the association between depression and brain alterations, it is unclear if altered levels of inflammatory markers provoke neurobiological dysfunction in early-onset depression. The aim of this scoping review was to provide an overview of existing literature investigating the potential interaction between neurobiological function and inflammation in depressed children and adolescents. METHODS: Systematic searches were conducted in six databases. Primary research studies that included measures of both neurobiological functioning and inflammation among children (≤18 years) with a diagnosis of depression were included. RESULTS: Four studies (240 participants; mean age 16.0 ± 0.6 years, 62% female) meeting inclusion criteria were identified. Studies primarily examined the inflammatory markers interleukin 6, tumor necrosis factor alpha, C-reactive protein, and interleukin 1 beta. Exploratory whole brain imaging and analysis as well as region of interest approaches focused on the anterior cingulate cortex, basal ganglia, and white matter tracts were conducted. Most studies found correlations between neurobiological function and inflammatory markers; however, depressive symptoms were not observed to moderate these effects. CONCLUSIONS: A small number of highly heterogeneous studies indicate that depression may not modulate the association between altered inflammation and neurobiological dysfunction in children and adolescents. Replication in larger samples using consistent methodological approaches (focus on specific inflammatory markers, examine certain brain areas) is needed to advance the knowledge of potential neuro-immune interactions early in the course of depression.


Subject(s)
Inflammation , Humans , Adolescent , Child , Inflammation/physiopathology , Brain/physiopathology , Brain/diagnostic imaging , Brain/metabolism , Depression/physiopathology , Female , Male , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Depressive Disorder/physiopathology
10.
Ageing Res Rev ; 97: 102288, 2024 06.
Article in English | MEDLINE | ID: mdl-38580172

ABSTRACT

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.


Subject(s)
COVID-19 , Neuroinflammatory Diseases , Olfaction Disorders , Parkinson Disease , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/complications , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/immunology , Olfaction Disorders/etiology , Olfaction Disorders/physiopathology , Olfaction Disorders/virology , Olfactory Bulb/physiopathology , Olfactory Bulb/virology , Olfactory Bulb/pathology
11.
Eur J Clin Invest ; 54(7): e14217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38644687

ABSTRACT

OBJECTIVES AND SCOPE: Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS: The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY: In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.


Subject(s)
Energy Metabolism , Mitochondrial Diseases , Neuroinflammatory Diseases , Oxidative Stress , Humans , Oxidative Stress/physiology , Mitochondrial Diseases/physiopathology , Mitochondrial Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/metabolism , Animals , Energy Metabolism/physiology , Oxidative Phosphorylation , Mice , Mitochondria/metabolism , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Leigh Disease/metabolism , Leigh Disease/genetics , Leigh Disease/physiopathology , MELAS Syndrome/metabolism , MELAS Syndrome/physiopathology , MELAS Syndrome/genetics , Disease Models, Animal
12.
Brain Behav Immun ; 119: 408-415, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636564

ABSTRACT

Vestibulodynia is a complex pain disorder characterized by chronic discomfort in the vulvar region, often accompanied by tactile allodynia and spontaneous pain. In patients a depressive behaviour is also observed. In this study, we have used a model of vestibulodynia induced by complete Freund's adjuvant (CFA) focusing our investigation on the spinal cord neurons and microglia. We investigated tactile allodynia, spontaneous pain, and depressive-like behavior as key behavioral markers of vestibulodynia. In addition, we conducted in vivo electrophysiological recordings to provide, for the first time to our knowledge, the characterization of the spinal sacral neuronal activity in the L6-S1 dorsal horn of the spinal cord. Furthermore, we examined microglia activation in the L6-S1 dorsal horn using immunofluorescence, unveiling hypertrophic phenotypes indicative of neuroinflammation in the spinal cord. This represents a novel insight into the role of microglia in vestibulodynia pathology. To address the therapeutic aspect, we employed pharmacological interventions using GABApentin, amitriptyline, and PeaPol. Remarkably, all three drugs, also used in clinic, showed efficacy in alleviating tactile allodynia and depressive-like behavior. Concurrently, we also observed a normalization of the altered neuronal firing and a reduction of microglia hypertrophic phenotypes. In conclusion, our study provides a comprehensive understanding of the CFA-induced model of vestibulodynia, encompassing behavioral, neurophysiological and neuroinflammatory aspects. These data pave the way to investigate spinal cord first pain plasticity in vestibulodynia.


Subject(s)
Disease Models, Animal , Freund's Adjuvant , Hyperalgesia , Microglia , Neurons , Spinal Cord , Vulvodynia , Animals , Spinal Cord/metabolism , Spinal Cord/physiopathology , Mice , Hyperalgesia/physiopathology , Hyperalgesia/metabolism , Vulvodynia/physiopathology , Vulvodynia/metabolism , Female , Microglia/metabolism , Neurons/metabolism , Neuroinflammatory Diseases/physiopathology , Gabapentin/pharmacology , Amitriptyline/pharmacology , Depression/physiopathology , Depression/metabolism , Mice, Inbred C57BL
13.
J Appl Physiol (1985) ; 137(1): 63-73, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38660728

ABSTRACT

We hypothesized that early intra-central nervous system (CNS) responses in a murine model of decompression sickness (DCS) would be reflected by changes in the microparticles (MPs) that exit the brain via the glymphatic system, and due to systemic responses the MPs would cause inflammatory changes lasting for many days leading to functional neurological deficits. Elevations on the order of threefold of blood-borne inflammatory MPs, neutrophil activation, glymphatic flow, and neuroinflammation in cerebral cortex and hippocampus were found in mice at 12 days after exposure to 760 kPa of air for 2 h. Mice also exhibited a significant decline in memory and locomotor activity, as assessed by novel object recognition and rotarod testing. Similar inflammatory changes in blood, neuroinflammation, and functional impairments were initiated in naïve mice by injection of filamentous (F-) actin-positive MPs, but not F-actin-negative MPs, obtained from decompressed mice. We conclude that high pressure/decompression stress establishes a systemic inflammatory process that results in prolonged neuroinflammation and functional impairments in the mouse decompression model.NEW & NOTEWORTHY Elevated glymphatic flow due to astrocyte and microglial activation from high-pressure exposure triggers release of microparticles (MPs) to the circulation where neutrophil activation and production of filamentous (F)-actin expressing MPs result in a persistent feed-forward neuroinflammatory cycle and functional deficits lasting for at least 12 days.


Subject(s)
Decompression Sickness , Disease Models, Animal , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Decompression Sickness/physiopathology , Decompression Sickness/metabolism , Mice , Male , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/metabolism , Cell-Derived Microparticles/metabolism , Glymphatic System/physiopathology , Glymphatic System/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Hippocampus/metabolism , Hippocampus/physiopathology , Inflammation/physiopathology , Inflammation/metabolism , Neutrophil Activation
14.
Sleep ; 47(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38526098

ABSTRACT

STUDY OBJECTIVES: Although short sleep could promote neurodegeneration, long sleep may be a marker of ongoing neurodegeneration, potentially as a result of neuroinflammation. The objective was to evaluate sleep patterns with age of expected Alzheimer's disease (AD) onset and neuroinflammation. METHODS: We tested 203 dementia-free participants (68.5 ±â€…5.4 years old, 78M). The PREVENT-AD cohort includes older persons with a parental history of AD whose age was nearing their expected AD onset. We estimated expected years to AD onset by subtracting the participants' age from their parent's at AD dementia onset. We extracted actigraphy sleep variables of interest (times of sleep onset and morning awakening, time in bed, sleep efficiency, and sleep duration) and general profiles (sleep fragmentation, phase delay, and hypersomnia). Cerebrospinal fluid (CSF) inflammatory biomarkers were assessed with OLINK multiplex technology. RESULTS: Proximity to, or exceeding, expected age of onset was associated with a sleep profile suggestive of hypersomnia (longer sleep and later morning awakening time). This hypersomnia sleep profile was associated with higher CSF neuroinflammatory biomarkers (IL-6, MCP-1, and global score). Interaction analyses revealed that some of these sleep-neuroinflammation associations were present mostly in those closer/exceeding the age of expected AD onset, APOE4 carriers, and those with better memory performance. CONCLUSIONS: Proximity to, or exceeding, parental AD dementia onset was associated with a longer sleep pattern, which was related to elevated proinflammatory CSF biomarkers. We speculate that longer sleep may serve a compensatory purpose potentially triggered by neuroinflammation as individuals are approaching AD onset. Further studies should investigate whether neuroinflammatory-triggered long sleep duration could mitigate cognitive deficits.


Subject(s)
Alzheimer Disease , Biomarkers , Humans , Alzheimer Disease/physiopathology , Alzheimer Disease/genetics , Male , Female , Aged , Biomarkers/cerebrospinal fluid , Actigraphy , Sleep/physiology , Neuroinflammatory Diseases/physiopathology , Age of Onset , Parents , Middle Aged , Cohort Studies , Sleep Duration
15.
Auton Neurosci ; 253: 103162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513382

ABSTRACT

Vagus nerve stimulation (VNS) is under clinical investigation as a therapy for heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate its therapeutic effects on three main components of heart failure: cardiac function, cardiac remodeling and central neuroinflammation using a pressure overload (PO) rat model. Male Sprague-Dawley rats were divided into four groups: PO, PO + VNS, PO + VNS sham, and controls. All rats, except controls, underwent a PO surgery to constrict the thoracic aorta (~50 %) to induce HFrEF. Open loop VNS therapy was continuously administered to PO + VNS rats at 20 Hz, 1.0 mA for 60 days. Evaluation of cardiac function and structure via echocardiograms showed decreases in stroke volume and relative ejection fraction and increases in the internal diameter of the left ventricle during systole and diastole in PO rats (p < 0.05). However, these PO-induced adverse changes were alleviated with VNS therapy. Additionally, PO rats exhibited significant increases in myocyte cross sectional areas indicating hypertrophy, along with significant increases in myocardial fibrosis and apoptosis, all of which were reversed by VNS therapy (p < 0.05). Furthermore, VNS mitigated microglial activation in two central autonomic nuclei: the paraventricular nucleus of the hypothalamus and locus coeruleus. These findings demonstrate that when VNS therapy is initiated at an early stage of HFrEF progression (<10 % reduction in relative ejection fraction), the supplementation of vagal activity is effective in restoring multi organ homeostasis in a PO model.


Subject(s)
Heart Failure , Rats, Sprague-Dawley , Vagus Nerve Stimulation , Animals , Vagus Nerve Stimulation/methods , Heart Failure/therapy , Heart Failure/physiopathology , Male , Rats , Disease Models, Animal , Stroke Volume/physiology , Ventricular Remodeling/physiology , Inflammation/therapy , Inflammation/physiopathology , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/physiopathology
16.
Med Sci Sports Exerc ; 56(6): 1159-1167, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38227543

ABSTRACT

INTRODUCTION: The aim of this study was to investigate 12 wk of simple and complex voluntary wheel running on Alzheimer's disease (AD), associated biomarkers, and behaviors. METHODS: Sixty male Wistar rats were randomly divided into six groups: healthy control (Con-Sed), AD only (AD-Sed), simple wheel control (SWC), complex wheel control (CWC), simple wheel AD (SWAD), and complex wheel AD (CWAD). Novelty-suppressed feeding test and the Morris water maze test were used to evaluate depression and memory, respectively. Ki67 was measured in the hippocampus, whereas interleukin (IL)-1ß and neural/glial antigen 2 (NG2) were measured in both the hippocampus and the prefrontal cortex. One-way ANOVA with Tukey's post hoc test was performed. RESULTS: AD-Sed group had significantly lower spacial memory ( P < 0.001) compared with Con-Sed. Simple and complex wheel running attenuated these deficits in the SWAD and CWAD groups, respectively ( P < 0.001). Only the CWAD group had significantly improved novelty-suppressed feeding test time compared with AD-Sed ( P < 0.001), equivalent to the healthy wheel running groups. AD-Sed has significantly higher hippocampal concentrations of Ki67 ( P = 0.01) compared with the Con-Sed. Both SWAD and CWAD had significantly reduced Ki67 with similar concentrations compared with the SWC and CWC groups ( P > 0.05). AD-Sed animals also presented with significantly higher hippocampal and prefrontal cortex concentrations of IL-1ß compared with Con-Sed ( P < 0.001). SWAD and CWAD had no effect in changing these concentrations. Complex wheel running significantly increased NG2 in the healthy control and AD models, whereas simple wheel running significantly increased NG2 in the AD model. CONCLUSIONS: The results of our study suggest that complex wheel running might be more advantageous in promoting memory and neuroplasticity while reducing depression that is associated with AD.


Subject(s)
Alzheimer Disease , Depression , Disease Models, Animal , Hippocampus , Interleukin-1beta , Memory , Neurogenesis , Neuroinflammatory Diseases , Rats, Wistar , Animals , Male , Hippocampus/metabolism , Interleukin-1beta/metabolism , Neuroinflammatory Diseases/physiopathology , Prefrontal Cortex/metabolism , Physical Conditioning, Animal/physiology , Running/physiology , Rats , Random Allocation
17.
Rev. Fac. Odontol. (B.Aires) ; 39(91): 67-85, 2024. ilus
Article in Spanish | LILACS | ID: biblio-1555113

ABSTRACT

Muchas investigaciones se han ocupado de evaluar la vinculación entre las afecciones bucales y otras funciones o afecciones del organismo. Algunos de esos estudios han sentado precedentes acerca de la influencia mutua que puede existir entre la fun-cionalidad de las glándulas salivales y la enfermedad periodontal, y cómo la presencia de una condición puede modificar la evolución o inducir la aparición de la otra. El objetivo del presente trabajo es hacer una revisión bibliográfica de las publicaciones cientí-ficas que evalúan los efectos de inducción recíproca que existe entre la enfermedad periodontal y la hi-posalivación. Trabajos de nuestro grupo y de otros autores demuestran que la hiposalivación reduce la capacidad del organismo para defenderse contra las bacterias patógenas, mantener un ambiente sa-ludable y facilitar la cicatrización en la cavidad bu-cal, promoviendo los procesos de inflamación y daño tisular gingivoperiodontal. A su vez, varios estudios reportan que la enfermedad periodontal induce cam-bios en las glándulas salivales y altera el volumen de secreción salival. Por su parte, el sistema endo-cannabinoide (SEC) muestra estar involucrado tanto en el proceso de secreción salival como en la infla-mación y la reabsorción ósea presentes en la enfer-medad periodontal, en tanto que la activación de los mecanismos del SEC emerge como una de las vías a través de las cuales se desarrollaría el fenómeno de inducción recíproca (AU)


Many investigations have focused on evaluating the link between oral conditions and other functions or conditions of the body. Some of these studies have set precedents about the mutual influence that may exist between the functionality of the salivary glands and periodontal disease, and how the presence of one condition can modify the evolution or induce the appearance of the other. The objective of this work is to carry out a bibliographic review of scientific publications that evaluate the reciprocal induction effects that exist between periodontal disease and hyposalivation. Studies by our group and other authors show that hyposalivation reduces the capacity of the organism to defend itself against pathogenic bacteria, maintain a healthy environment and facilitate healing in the oral cavity, promoting inflammation and gingivoperiodontal tissue damage. In turn, several studies report that periodontal disease induces changes in the salivary glands and alters the volume of salivary secretion. In turn, the endocannabinoid system (ECS) is shown to be involved in the salivary secretion process as well as in the inflammation and bone resorption present in periodontal disease, while the activation of ECS mechanisms emerges as one of the pathways through which the reciprocal induction phenomenon would develop (AU)


Subject(s)
Humans , Periodontitis/etiology , Xerostomia/etiology , Endocannabinoids , Salivary Glands/physiopathology , Oxidative Stress/physiology , Neuroinflammatory Diseases/physiopathology , Inflammation/physiopathology
18.
Glia ; 71(8): 1906-1920, 2023 08.
Article in English | MEDLINE | ID: mdl-37017183

ABSTRACT

Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1ß, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.


Subject(s)
Chronic Pain , Microglia , Neuroinflammatory Diseases , Prefrontal Cortex , Receptors, Opioid, mu , Ventral Tegmental Area , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Microglia/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiopathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology , Animals , Rats , Disease Models, Animal , Chronic Pain/metabolism , Chronic Pain/physiopathology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiopathology , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Male , Female , Rats, Sprague-Dawley
19.
Biomater Adv ; 139: 212971, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882128

ABSTRACT

Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like ß-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.


Subject(s)
Axons , Collagen , Cryogels , Graphite , Nerve Regeneration , Neuroinflammatory Diseases , Spinal Cord Injuries , Animals , Axons/physiology , Collagen/therapeutic use , Cryogels/therapeutic use , Graphite/therapeutic use , Neuroinflammatory Diseases/physiopathology , Neuroinflammatory Diseases/therapy , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy
20.
Yi Chuan ; 44(4): 289-299, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35437237

ABSTRACT

Neuroinflammation is a complex immune response in the central nervous system against various factors such as injury, infection and toxins which interfere with homeostasis, involving a variety of immune cells lingering in the central nervous system. Persistent neuroinflammation is a common denominator of the etiology and course of all neurological diseases, including neurodevelopmental, neurodegenerative and psychiatric disorders, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and depression. Th17 cells, known as an important subtpye of CD4 + T cells, mediate immune responses against extracellular bacteria and fungi in steady-state and maintain the defense function of the intestinal mucosal barrier. However, when the cytokine microenvironment in vivo undergoes inflammatory changes, Th17 cells can transform into a highly pro-inflammatory pathogenic phenotype, break through the blood-brain barrier and recruit more inflammatory cells to participate in neuroinflammation, ultimately leading to neurodegeneration. In this review, we summarize the differentiation regulation of pathogenic Th17 cells and their roles in neuroinflammation, which is informative for understanding the interactions between immune system and nervous system.


Subject(s)
Alzheimer Disease , Neuroinflammatory Diseases/physiopathology , Th17 Cells , Cell Differentiation , Central Nervous System/physiology , Humans , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL