Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.327
Filter
1.
Eur J Histochem ; 68(3)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963135

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder involving motor neuron (MN) loss in the motor cortex, brainstem and spinal cord leading to progressive paralysis and death. Due to the pathogenetic complexity, there are no effective therapies available. In this context the use of mesenchymal stem cells and their vesicular counterpart is an emerging therapeutic strategy to counteract neurodegeneration. The extracellular vesicles derived from adipose stem cells (ASC-EVs) recapitulate and ameliorate the neuroprotective effect of stem cells and, thanks to their small dimensions, makes their use suitable to develop novel therapeutic approaches for neurodegenerative diseases as ALS. Here we investigate a therapeutic regimen of ASC-EVs injection in SOD1(G93A) mice, the most widely used murine model of ALS. Repeated intranasal administrations of high doses of ASC-EVs were able to ameliorate motor performance of injected SOD1(G93A) mice at the early stage of the disease and produce a significant improvement at the end-stage in the lumbar MNs rescue. Moreover, ASC-EVs preserve the structure of neuromuscular junction without counteracting the muscle atrophy. The results indicate that the intranasal ASC-EVs administration acts in central nervous system sites rather than at peripheral level in SOD1(G93A) mice. These considerations allow us to identify future applications of ASC-EVs that involve different targets simultaneously to maximize the clinical and neuropathological outcomes in ALS in vivo models.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Mesenchymal Stem Cells , Superoxide Dismutase-1 , Animals , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Mice, Transgenic , Disease Models, Animal , Adipose Tissue/metabolism , Motor Neurons/metabolism , Neuromuscular Junction/metabolism
2.
Biol Open ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841912

ABSTRACT

Bazooka/Par-3 (Baz) is an evolutionarily conserved scaffold protein that functions as a master regulator for the establishment and maintenance of cell polarity in many different cell types. In the vast majority of published research papers Baz has been reported to localize at the cell cortex and at intercellular junctions. However, there have also been several reports showing localization and function of Baz at additional subcellular sites, in particular the nuclear envelope and the neuromuscular junction. In this study we have re-assessed the localization of Baz to these subcellular sites in a systematic manner. We used antibodies raised in different host animals against different epitopes of Baz for confocal imaging of Drosophila tissues. We tested the specificity of these antisera by mosaic analysis with null mutant baz alleles and tissue-specific RNAi against baz. In addition, we used a GFP-tagged gene trap line for Baz and a bacterial artificial chromosome (BAC) expressing GFP-tagged Baz under control of its endogenous promoter in a baz mutant background to compare the subcellular localization of the GFP-Baz fusion proteins to the staining with anti-Baz antisera. Together, these experiments did not provide evidence for specific localization of Baz to the nucleus or the neuromuscular junction.


Subject(s)
Cell Nucleus , Drosophila Proteins , Drosophila melanogaster , Neuromuscular Junction , Animals , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Neuromuscular Junction/metabolism , Protein Transport , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
3.
Mol Neurodegener ; 19(1): 50, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902734

ABSTRACT

BACKGROUND: The key pathological signature of ALS/ FTLD is the mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm. However, TDP-43 gain of function in the cytoplasm is still poorly understood since TDP-43 animal models recapitulating mis-localization of endogenous TDP-43 from the nucleus to the cytoplasm are missing. METHODS: CRISPR/Cas9 technology was used to generate a zebrafish line (called CytoTDP), that mis-locates endogenous TDP-43 from the nucleus to the cytoplasm. Phenotypic characterization of motor neurons and the neuromuscular junction was performed by immunostaining, microglia were immunohistochemically localized by whole-mount tissue clearing and muscle ultrastructure was analyzed by scanning electron microscopy. Behavior was investigated by video tracking and quantitative analysis of swimming parameters. RNA sequencing was used to identify mis-regulated pathways with validation by molecular analysis. RESULTS: CytoTDP fish have early larval phenotypes resembling clinical features of ALS such as progressive motor defects, neurodegeneration and muscle atrophy. Taking advantage of zebrafish's embryonic development that solely relys on yolk usage until 5 days post fertilization, we demonstrated that microglia proliferation and activation in the hypothalamus is independent from food intake. By comparing CytoTDP to a previously generated TDP-43 knockout line, transcriptomic analyses revealed that mis-localization of endogenous TDP-43, rather than TDP-43 nuclear loss of function, leads to early onset metabolic dysfunction. CONCLUSIONS: The new TDP-43 model mimics the ALS/FTLD hallmark of progressive motor dysfunction. Our results suggest that functional deficits of the hypothalamus, the metabolic regulatory center, might be the primary cause of weight loss in ALS patients. Cytoplasmic gain of function of endogenous TDP-43 leads to metabolic dysfunction in vivo that are reminiscent of early ALS clinical non-motor metabolic alterations. Thus, the CytoTDP zebrafish model offers a unique opportunity to identify mis-regulated targets for therapeutic intervention early in disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Disease Models, Animal , Motor Neurons , Zebrafish Proteins , Zebrafish , Animals , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Motor Neurons/metabolism , Motor Neurons/pathology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Animals, Genetically Modified , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology
4.
Sheng Li Xue Bao ; 76(3): 376-384, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38939932

ABSTRACT

The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.


Subject(s)
Aging , Muscle, Skeletal , Neuromuscular Junction , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Male , Aging/metabolism , Aging/physiology , Rats , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiology , Muscle Proteins/metabolism , Resistance Training/methods , Forkhead Box Protein O1
5.
Development ; 151(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38738619

ABSTRACT

Synaptic development requires multiple signaling pathways to ensure successful connections. Transmembrane receptors are optimally positioned to connect the synapse and the rest of the neuron, often acting as synaptic organizers to synchronize downstream events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor that has been most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, identified emerging roles, but how LRP4 acts as a presynaptic organizer and the downstream mechanisms of LRP4 are not well understood. Here, we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motoneurons to instruct pre- and postsynaptic development. Loss of presynaptic LRP4 results in multiple defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. These data demonstrate a function for presynaptic LRP4 as a peripheral synaptic organizer, highlight a downstream mechanism conserved with its CNS function in Drosophila, and underscore previously unappreciated but important developmental roles for LRP4 in cytoskeletal organization, synapse maturation and active zone organization.


Subject(s)
Cytoskeleton , Drosophila Proteins , Neuromuscular Junction , Synapses , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Neuromuscular Junction/metabolism , Synapses/metabolism , Cytoskeleton/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Motor Neurons/metabolism , Drosophila , Neurons/metabolism , Neurons/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction
6.
Int J Mol Sci ; 25(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732204

ABSTRACT

The extraocular muscles (EOMs) possess unique characteristics that set them apart from other skeletal muscles. These muscles, responsible for eye movements, exhibit remarkable resistance to various muscular dystrophies and aging, presenting a significant contrast to the vulnerability of skeletal muscles to these conditions. In this review, we delve into the cellular and molecular underpinnings of the distinct properties of EOMs. We explore their structural complexity, highlighting differences in fiber types, innervation patterns, and developmental origins. Notably, EOM fibers express a diverse array of myosin heavy-chain isoforms, retaining embryonic forms into adulthood. Moreover, their motor innervation is characterized by a high ratio of nerve fibers to muscle fibers and the presence of unique neuromuscular junctions. These features contribute to the specialized functions of EOMs, including rapid and precise eye movements. Understanding the mechanisms behind the resilience of EOMs to disease and aging may offer insights into potential therapeutic strategies for treating muscular dystrophies and myopathies affecting other skeletal muscles.


Subject(s)
Aging , Oculomotor Muscles , Humans , Oculomotor Muscles/physiology , Aging/physiology , Animals , Muscular Dystrophies , Neuromuscular Junction/physiology , Neuromuscular Junction/metabolism , Muscle, Skeletal/physiology , Muscle, Skeletal/metabolism
7.
Commun Biol ; 7(1): 640, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796645

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Neuromuscular Junction , Nuclear Envelope , Spliceosomes , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Nuclear Envelope/metabolism , Nuclear Envelope/genetics , Spliceosomes/metabolism , Spliceosomes/genetics , Neuromuscular Junction/metabolism , Neuromuscular Junction/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation
8.
Respir Physiol Neurobiol ; 326: 104282, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782084

ABSTRACT

Duchenne muscular dystrophy (DMD) is the most common X-linked disease. DMD is caused by a lack of dystrophin, a critical structural protein in striated muscle. Dystrophin deficiency leads to inflammation, fibrosis, and muscle atrophy. Boys with DMD have progressive muscle weakness within the diaphragm that results in respiratory failure in the 2nd or 3rd decade of life. The most common DMD mouse model - the mdx mouse - is not sufficient for evaluating genetic medicines that specifically target the human DMD (hDMD) gene sequence. Therefore, a novel transgenic mouse carrying the hDMD gene with an exon 52 deletion was created (hDMDΔ52;mdx). We characterized the respiratory function and pathology in this model using whole body plethysmography, histology, and immunohistochemistry. At 6-months-old, hDMDΔ52;mdx mice have reduced maximal respiration, neuromuscular junction pathology, and fibrosis throughout the diaphragm, which worsens at 12-months-old. In conclusion, the hDMDΔ52;mdx exhibits moderate respiratory pathology, and serves as a relevant animal model to study the impact of novel genetic therapies, including gene editing, on respiratory function.


Subject(s)
Disease Models, Animal , Mice, Transgenic , Muscular Dystrophy, Duchenne , Animals , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Mice , Humans , Male , Dystrophin/genetics , Dystrophin/deficiency , Mice, Inbred mdx , Diaphragm/physiopathology , Diaphragm/pathology , Respiratory Insufficiency/etiology , Neuromuscular Junction/pathology , Neuromuscular Junction/metabolism , Mice, Inbred C57BL
9.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734896

ABSTRACT

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Neuromuscular Junction , Receptor Protein-Tyrosine Kinases , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Longevity/drug effects , Motor Neurons/metabolism , Motor Neurons/drug effects , Agrin/metabolism , Agrin/genetics , Mice, Transgenic , Antibodies/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics
10.
Skelet Muscle ; 14(1): 10, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760872

ABSTRACT

Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice. We found fewer muscle fibers in juvenile and adult Megf10 KO mice, supporting published studies that MEGF10 regulates myogenesis by affecting satellite cell differentiation. Interestingly, muscle fibers do not exhibit morphological hallmarks of atrophy in either young adult or middle-aged Megf10 KO mice. We next examined the neuromuscular junction (NMJ), in which MEGF10 has been shown to concentrate postnatally, using light and electron microscopy. We found early and progressive degenerative features at the NMJs of Megf10 KO mice that include increased postsynaptic fragmentation and presynaptic regions not apposed by postsynaptic nicotinic acetylcholine receptors. We also found perisynaptic Schwann cells intruding into the NMJ synaptic cleft. These findings strongly suggest that the NMJ is a site of postnatal pathology in MEGF10-related myopathy. In support of these cellular observations, RNA-seq analysis revealed genes and pathways associated with myogenesis, skeletal muscle health, and NMJ stability dysregulated in Megf10 KO mice compared to wild-type mice. Altogether, these data provide new and valuable cellular and molecular insights into MEGF10-related myopathy.


Subject(s)
Disease Models, Animal , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Diseases/genetics , Muscular Diseases/pathology , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Schwann Cells/metabolism , Schwann Cells/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Male
11.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769542

ABSTRACT

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Disease Models, Animal , Muscle, Skeletal , Myotonic Dystrophy , Neuromuscular Junction , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/physiopathology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Neuromuscular Junction/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Mice , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , Male , Mice, Inbred C57BL
12.
Eur J Cell Biol ; 103(2): 151409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579603

ABSTRACT

Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.


Subject(s)
Cortactin , Dystrophin-Associated Proteins , Mice, Knockout , Neuromuscular Junction , Animals , Neuromuscular Junction/metabolism , Cortactin/metabolism , Cortactin/genetics , Mice , Dystrophin-Associated Proteins/metabolism , Dystrophin-Associated Proteins/genetics , Muscle, Skeletal/metabolism , Humans , Phosphorylation
13.
Nat Aging ; 4(5): 727-744, 2024 May.
Article in English | MEDLINE | ID: mdl-38622407

ABSTRACT

Skeletal muscle aging is a key contributor to age-related frailty and sarcopenia with substantial implications for global health. Here we profiled 90,902 single cells and 92,259 single nuclei from 17 donors to map the aging process in the adult human intercostal muscle, identifying cellular changes in each muscle compartment. We found that distinct subsets of muscle stem cells exhibit decreased ribosome biogenesis genes and increased CCL2 expression, causing different aging phenotypes. Our atlas also highlights an expansion of nuclei associated with the neuromuscular junction, which may reflect re-innervation, and outlines how the loss of fast-twitch myofibers is mitigated through regeneration and upregulation of fast-type markers in slow-twitch myofibers with age. Furthermore, we document the function of aging muscle microenvironment in immune cell attraction. Overall, we present a comprehensive human skeletal muscle aging resource ( https://www.muscleageingcellatlas.org/ ) together with an in-house mouse muscle atlas to study common features of muscle aging across species.


Subject(s)
Aging , Muscle, Skeletal , Humans , Aging/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Animals , Mice , Adult , Aged , Sarcopenia/pathology , Sarcopenia/metabolism , Male , Neuromuscular Junction/metabolism , Middle Aged , Female
14.
Eur J Neurosci ; 59(12): 3292-3308, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38650308

ABSTRACT

Muscle-specific kinase myasthenia gravis (MuSK MG) is caused by autoantibodies against MuSK in the neuromuscular junction (NMJ). MuSK MG patients have fluctuating, fatigable skeletal muscle weakness, in particular of bulbar muscles. Severity differs greatly between patients, in spite of comparable autoantibody levels. One explanation for inter-patient and inter-muscle variability in sensitivity might be variations in compensatory muscle responses. Previously, we developed a passive transfer mouse model for MuSK MG. In preliminary ex vivo experiments, we observed that muscle contraction of some mice, in particular those with milder myasthenia, had become partially insensitive to inhibition by µ-Conotoxin-GIIIB, a blocker of skeletal muscle NaV1.4 voltage-gated sodium channels. We hypothesised that changes in NaV channel expression profile, possibly co-expression of (µ-Conotoxin-GIIIB insensitive) NaV1.5 type channels, might lower the muscle fibre's firing threshold and facilitate neuromuscular synaptic transmission. To test this hypothesis, we here performed passive transfer in immuno-compromised mice, using 'high', 'intermediate' and 'low' dosing regimens of purified MuSK MG patient IgG4. We compared myasthenia levels, µ-Conotoxin-GIIIB resistance and muscle fibre action potential characteristics and firing thresholds. High- and intermediate-dosed mice showed clear, progressive myasthenia, not seen in low-dosed animals. However, diaphragm NMJ electrophysiology demonstrated almost equal myasthenic severities amongst all regimens. Nonetheless, low-dosed mouse diaphragms showed a much higher degree of µ-Conotoxin-GIIIB resistance. This was not explained by upregulation of Scn5a (the NaV1.5 gene), lowered muscle fibre firing thresholds or histologically detectable upregulated NaV1.5 channels. It remains to be established which factors are responsible for the observed µ-Conotoxin-GIIIB insensitivity and whether the NaV repertoire change is compensatory beneficial or a bystander effect.


Subject(s)
Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Humans , Myasthenia Gravis/metabolism , Myasthenia Gravis/physiopathology , Myasthenia Gravis/immunology , Disease Models, Animal , Female , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/immunology , Voltage-Gated Sodium Channels/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Autoantibodies , Male , Conotoxins/pharmacology , Immunization, Passive
15.
Proc Natl Acad Sci U S A ; 121(16): e2315958121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588427

ABSTRACT

The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood, as neurodevelopment and structural plasticity are tightly linked. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity and synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We report that while both synapse development and activity-induced synaptic remodeling at the fly NMJ require macroautophagy (hereafter referred to as autophagy), bifurcation in the autophagy pathway differentially impacts development and synaptic plasticity. We demonstrate that neuronal activity enhances autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a transsynaptic signaling mechanism modulating synaptic plasticity.


Subject(s)
Drosophila Proteins , Neuromuscular Junction , Animals , Humans , Neuromuscular Junction/metabolism , Synapses/metabolism , Drosophila/physiology , Neurons/metabolism , Autophagy/genetics , Neuronal Plasticity/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Synaptic Transmission/physiology , GTP Phosphohydrolases/metabolism
16.
Elife ; 122024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661532

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible 'response biomarkers' in pre-clinical and clinical studies.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Neuromuscular Junction , Satellite Cells, Skeletal Muscle , Transcriptome , Animals , Neuromuscular Junction/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Mice , Satellite Cells, Skeletal Muscle/metabolism , Mice, Transgenic , Oculomotor Muscles/innervation , Oculomotor Muscles/metabolism
17.
Dev Cell ; 59(9): 1210-1230.e9, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38569548

ABSTRACT

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.


Subject(s)
Drosophila melanogaster , Larva , Motor Neurons , Animals , Larva/genetics , Larva/metabolism , Motor Neurons/metabolism , Motor Neurons/cytology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Neuroglia/metabolism , Neuroglia/cytology , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , RNA-Seq/methods , Single-Cell Gene Expression Analysis
18.
Commun Biol ; 7(1): 507, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678127

ABSTRACT

Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins. In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth, and cell survival. However, the upstream regulatory mechanisms of Dprs and DIPs are not clear. On the other hand, while transcription factors have been implicated in target recognition, their downstream cell surface proteins remain mostly unknown. We conduct an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We identify huckebein (hkb), a transcription factor previously implicated in target recognition of the dorsal Is motor neuron. We show that hkb genetically interacts with DIP-α and loss of hkb leads to complete removal of DIP-α expression specifically in dorsal Is motor neurons. We then confirm that this specificity is through the dorsal Is motor neuron specific transcription factor, even-skipped (eve), which acts downstream of hkb. Analysis of the genetic interaction between hkb and eve reveals that they act in the same pathway to regulate dorsal Is motor neuron connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.


Subject(s)
Drosophila Proteins , Transcription Factors , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
19.
Methods Mol Biol ; 2761: 97-120, 2024.
Article in English | MEDLINE | ID: mdl-38427233

ABSTRACT

Neuronal synapse dysfunction is a key characteristic of several neurodegenerative disorders, such as Alzheimer's disease, spinocerebellar ataxias, and Huntington's disease. Modeling these disorders to study synaptic dysfunction requires a robust and reproducible method for assaying the subtle changes associated with synaptopathies in terms of structure and function of the synapses. Drosophila melanogaster neuromuscular junctions (NMJs) serve as good models to study such alterations. Further, modifications in the microenvironment of synapses can sometimes reflect in the behavior of the animal, which can also be assayed in a high-throughput manner. The methods outlined in this chapter highlight assays to study the behavioral changes associated with synaptic dysfunction in a spinocerebellar ataxia type 3 (SCA3) model. Further, molecular assessment of alterations in NMJ structure and function is also summarized, followed by effects of autophagy pathway upregulation in providing neuroprotection. These methods can be further extended and modified to study the therapeutic effects of drugs or small molecules in providing neuroprotection for any synaptopathy models.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Neuromuscular Junction/metabolism , Synapses/metabolism , Autophagy
20.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474321

ABSTRACT

The appropriate expression and localization of cell surface cell adhesion molecules must be tightly regulated for optimal synaptic growth and function. How neuronal plasma membrane proteins, including cell adhesion molecules, cycle between early endosomes and the plasma membrane is poorly understood. Here we show that the Drosophila homolog of the chromatin remodeling enzymes CHD7 and CHD8, Kismet, represses the synaptic levels of several cell adhesion molecules. Neuroligins 1 and 3 and the integrins αPS2 and ßPS are increased at kismet mutant synapses but Kismet only directly regulates transcription of neuroligin 2. Kismet may therefore regulate synaptic CAMs indirectly by activating transcription of gene products that promote intracellular vesicle trafficking including endophilin B (endoB) and/or rab11. Knock down of EndoB in all tissues or neurons increases synaptic FasII while knock down of EndoB in kis mutants does not produce an additive increase in FasII. In contrast, neuronal expression of Rab11, which is deficient in kis mutants, leads to a further increase in synaptic FasII in kis mutants. These data support the hypothesis that Kis influences the synaptic localization of FasII by promoting intracellular vesicle trafficking through the early endosome.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Neuromuscular Junction/metabolism , Synapses/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...