Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.798
Filter
1.
Magnes Res ; 36(4): 69-81, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38953416

ABSTRACT

Pathogenic mechanisms implicated in the development of Parkinson disease (PD) are multifaceted and include alpha synuclein aggregation, oxidative stress due to generation of reactive oxygen species (ROS), mitochondrial dysfunction, apoptosis, imbalance of trace elements as well as endoplasmic reticulum stress, and inflammation. Alteration in the homeostasis of bivalent cations, such as iron, magnesium and calcium, has been implicated in the pathogenesis of PD. Low levels of magnesium have been associated with accelerated dopaminergic cell loss in animal PD models, and magnesium has been shown to have a neuroprotective effect in PD models. Evidence of a low magnesium level in the brain of PD individuals, with a low magnesium level in the diet, increasing the risk of PD, further strengthens the role of magnesium deficiency in the pathogenesis of PD. The presence of low-level magnesium in brain tissue and high level in CSF and serum support the possibility of dysfunctional magnesium transporters in PD. Indeed, variants in magnesium transport channels, such as TRPM7 and SLC41A1, have been recently detected in PD individuals. Magnesium, being an NMDA antagonist, could also have a therapeutic role in levodopa-induced dyskinesia. There are no clinical studies indicating a neuroprotective role of magnesium in PD, however, the Mediterranean diet and variants of the diet have been associated with a lower risk of PD, which may be due to the magnesium-rich constituents of the diet. Further clinical trials encompassing therapeutic models to optimize channel function, coupled with a high magnesium diet, may pave the way for promising neuroprotective intervention for PD.


Subject(s)
Magnesium , Neuroprotective Agents , Parkinson Disease , Humans , Magnesium/metabolism , Magnesium/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Animals
2.
J Biochem Mol Toxicol ; 38(7): e23760, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953502

ABSTRACT

Cyclophosphamide (CP) is an antineoplastic drug widely used in chemotherapy. Curcumin (CUR) and piperine (PP) show a protective effect on neurodegenerative and neurological diseases. This research was designed to measure several biochemical parameters in the brain tissue of CP-applied rats to investigate the impact of combined CUR-PP administration. The study evaluated six groups of eight rats: Group 1 was the control; Groups 2 and 3 were administered 200 or 300 mg/kg CUR-PP via oral gavage; Group 4 received only 200 mg/kg CP on day 1; Groups 5 and 6 received CP + CUR-PP for 7 days. Data from all parameters indicated that CP caused brain damage. Phosphorylated TAU (pTAU), amyloid-beta peptide 1-42 (Aß1-42), glutamate (GLU), and gamma amino butyric acid (GABA) parameters were the same in Groups 4, 5, and 6. On the other hand, 8-hydroxy-2-deoxyguanosine (8-OHdG), nitric oxide (NO), interleukin-6 (IL-6), nuclear factor kappa beta (NF-kß), malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-α) levels in the CP + CUR-PP groups were lower than those in the CP group (p < 0.05). However, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) parameters were higher in the CP + CUR-PP groups compared to the CP group (p < 0.05). It is thought that the similarity of Groups 5 and 6 with Group 4 in Aß1-42, pTAU, GLU, and GABA parameters hinder the determination of treatment protection however, they might have a therapeutic effect if the applied dose or study duration were changed. This study attempted to evaluate the effects of a CUR-PP combination on CP-induced brain damage in rats by measuring biochemical parameters and performing histopathological examinations. Based on the findings, this CUR-PP combination could be considered an alternative medicine option in cases with conditions similar to those evaluated in this study.


Subject(s)
Alkaloids , Benzodioxoles , Brain Injuries , Curcumin , Cyclophosphamide , Piperidines , Polyunsaturated Alkamides , Animals , Polyunsaturated Alkamides/pharmacology , Benzodioxoles/pharmacology , Curcumin/pharmacology , Piperidines/pharmacology , Alkaloids/pharmacology , Rats , Cyclophosphamide/toxicity , Cyclophosphamide/adverse effects , Male , Brain Injuries/chemically induced , Brain Injuries/drug therapy , Brain Injuries/metabolism , Brain Injuries/pathology , Brain Injuries/prevention & control , Rats, Wistar , Brain/metabolism , Brain/drug effects , Brain/pathology , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology
3.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954224

ABSTRACT

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides , Mice, Inbred BALB C , Neuroprotective Agents , Peptide Fragments , Silybin , Animals , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Mice , Silybin/pharmacology , Silybin/administration & dosage , Peptide Fragments/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Brain/drug effects , Brain/metabolism , Brain/pathology , Particle Size , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Disease Models, Animal , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism
4.
J Mol Neurosci ; 74(3): 61, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954245

ABSTRACT

Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/ß-catenin pathway which was associated with activation of glycogen synthase kinase 3ß (GSK3ß). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.


Subject(s)
Anxiety , Brain-Derived Neurotrophic Factor , Caffeic Acids , Diet, High-Fat , Glycogen Synthase Kinase 3 beta , Hippocampus , Neuroprotective Agents , Stress, Psychological , Animals , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Glycogen Synthase Kinase 3 beta/metabolism , Anxiety/drug therapy , Anxiety/etiology , Male , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Hippocampus/drug effects , Stress, Psychological/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Rats, Wistar , beta Catenin/metabolism , Wnt Signaling Pathway/drug effects , Cognition/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/drug therapy , Nitric Oxide Synthase Type II/metabolism
5.
Sci Rep ; 14(1): 15153, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956206

ABSTRACT

Durian (Durio zibethinus L.) fruit pulp is a rich source of γ-glutamylcysteine (γ-EC), a direct precursor to the antioxidant glutathione (GSH). This study elucidated the in vitro neuroprotective potential of unripe durian fruit pulp extract (UDE) against H2O2-induced neurotoxicity in SH-SY5Y cells and neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Treatments with γ-EC, GSH standards, or UDE exhibited no cytotoxicity in SH-SY5Y and BV-2 cells, except at high concentrations. A 4-h pretreatment with 100 µM γ-EC or UDE containing 100 µM γ-EC significantly increased SH-SY5Y cell viability post H2O2 induction. Moreover, a similar pretreatment reduced LPS-stimulated production of proinflammatory cytokines in BV-2 cells. The neuroprotective effect of UDE is primarily attributed to γ-EC provision and the promotion of GSH synthesis, which in turn elevates intracellular GSH levels and reduces proinflammatory cytokines. This study identifies γ-EC in UDE as a potential neuroprotective biomarker boosting intracellular GSH levels, providing insights into UDE's therapeutic potential.


Subject(s)
Fruit , Glutathione , Neuroprotective Agents , Oxidative Stress , Plant Extracts , Glutathione/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Neuroprotective Agents/pharmacology , Humans , Fruit/chemistry , Animals , Inflammation/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Neuroprotection/drug effects , Mice , Cell Survival/drug effects , Hydrogen Peroxide/metabolism , Antioxidants/pharmacology , Cell Line, Tumor , Cell Line , Cytokines/metabolism , Dipeptides/pharmacology
6.
Sci Rep ; 14(1): 15175, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956251

ABSTRACT

In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.


Subject(s)
Copper , Disulfiram , Homeostasis , Inflammation , Mice, Inbred C57BL , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Disulfiram/pharmacology , Mice , Copper/metabolism , Homeostasis/drug effects , Male , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Down-Regulation/drug effects , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Disease Models, Animal , Iron-Sulfur Proteins/metabolism , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Toll-Like Receptor 4/metabolism
7.
CNS Neurosci Ther ; 30(7): e14840, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973202

ABSTRACT

BACKGROUND: Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. ß-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS: An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS: Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1ß, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1ß) in mouse BV2 cells. CONCLUSION: ß-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.


Subject(s)
3-Hydroxybutyric Acid , Brain-Gut Axis , Disease Models, Animal , Endoplasmic Reticulum Stress , Gastrointestinal Microbiome , Mice, Inbred C57BL , Neuroinflammatory Diseases , Animals , Mice , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/physiology , Brain-Gut Axis/physiology , Brain-Gut Axis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/drug therapy , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Male , 3-Hydroxybutyric Acid/pharmacology , Heat Stress Disorders/metabolism , Endoplasmic Reticulum Chaperone BiP , Neuroprotective Agents/pharmacology , Heat-Shock Response/physiology , Heat-Shock Response/drug effects
10.
Neuroreport ; 35(12): 753-762, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38980926

ABSTRACT

We aimed to study the reparative effects of orientin against spinal cord injury (SCI) in rats and explore its potential mechanisms. Sprague-Dawley rats were divided into Sham, SCI, Orientin, and SB203580 [an inhibitor of p38 mitogen-activated protein kinase (p38MAPK)] groups. In the SCI group, rats underwent Allen's beat. SCI animals in Orientin and SB203580 groups were respectively treated with 40 mg kg-1 orientin and 3 mg kg-1 SB203580 once daily. Functional recovery was evaluated based on Basso, Beattie, and Bresnahan scoring. Histopathological analysis was performed using hematoxylin-eosin and Nissl staining. Cell apoptosis was examined by TUNEL staining. The relative quantity of apoptosis-related proteins, glial fibrillary acidic protein (GFAP), neurofilament 200 (NF200), and brain derived neurotrophic factor (BDNF) was detected via western blotting. The indices related to inflammation and oxidation were measured using agent kits. The p38MAPK/inducible nitric oxide synthase (iNOS) signaling activity was detected using real-time quantitative PCR, western blotting, and immunohistochemical staining. Orientin was revealed to effectively mitigate cell apoptosis, neuroinflammation, and oxidative stress in impaired tissues. Meanwhile, orientin exerted great neuroprotective effects by abating GFAP expression, and up-regulating the expression of NF200 and BDNF, and significantly suppressed the p38MAPK/iNOS signaling. Orientin application could promote the repair of secondary SCI through attenuating oxidative stress and inflammatory response, reducing cell apoptosis and suppressing p38MAPK/iNOS signaling.


Subject(s)
Apoptosis , Flavonoids , Glucosides , Neuroprotective Agents , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neuroprotective Agents/pharmacology , Flavonoids/pharmacology , Rats , Apoptosis/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Male , p38 Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Recovery of Function/drug effects , Recovery of Function/physiology , Imidazoles/pharmacology , Pyridines
11.
Yale J Biol Med ; 97(2): 205-224, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947104

ABSTRACT

Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aß formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.


Subject(s)
Alzheimer Disease , Microalgae , Seaweed , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Microalgae/chemistry , Microalgae/metabolism , Seaweed/chemistry , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Biological Products/isolation & purification , Antioxidants/pharmacology
12.
J Neuroimmune Pharmacol ; 19(1): 34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949694

ABSTRACT

Amorfrutin B is a selective PPARγ modulator that we demonstrated to be a promising neuroprotective compound in cellular models of stroke and perinatal asphyxia. Although neuronal mechanisms of amorfrutin B-evoked neuroprotection have been identified, none of them reflects the actions of the compound on microglia, which play a pivotal role in brain response to hypoxia/ischemia. Here, we provide evidence for amorfrutin B-induced effects on human microglia subjected to hypoxia/ischemia; the compound counteracts inflammation, and influences mitochondrial status and proliferation potential in a PPARγ-dependent manner. Post-treatment with amorfrutin B decreased the IBA1 fluorescence intensity, reduced caspase-1 activity, and downregulated IL1B/IL-1ß and TNFA but not IL10/IL-10 expression, which was upregulated. Amorfrutin B also stimulated PPARγ signaling, as evidenced by increased mRNA and/or protein levels of PPARγ and PGC1α. In addition, amorfrutin B reversed the hypoxia/ischemia-evoked effects on mitochondria-related parameters, such as mitochondrial membrane potential, BCL2/BCL2 expression and metabolic activity, which were correlated with diminished proliferation potential of microglia. Interestingly, the inhibitory effect of amorfrutin B on the proliferation potential and mitochondrial function of microglia is opposite to the stimulatory effect of amorfrutin B on mouse neuronal survival, as evidenced by increased neuronal viability and reduced neurodegeneration. In summary, this study showed for the first time that amorfrutin B compromises hypoxia/ischemia-induced activation of human microglia in a PPARγ-dependent manner, which involves inhibiting inflammation, normalizing mitochondrial status, and controlling proliferation potential. These data extend the protective potential of amorfrutin B in the pharmacotherapy of hypoxic/ischemic brain injury, targeting not only neurons but also activated microglia.


Subject(s)
Cell Proliferation , Hypoxia-Ischemia, Brain , Microglia , Mitochondria , PPAR gamma , PPAR gamma/metabolism , Humans , Microglia/drug effects , Microglia/metabolism , Cell Proliferation/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Inflammation/metabolism , Inflammation/drug therapy , Cells, Cultured , Neuroprotective Agents/pharmacology
13.
Stem Cell Res Ther ; 15(1): 200, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971770

ABSTRACT

BACKGROUND: Neural stem cell (NSC) proliferation and differentiation in the mammalian brain decreases to minimal levels postnatally. Nevertheless, neurogenic niches persist in the adult cortex and hippocampus in rodents, primates and humans, with adult NSC differentiation sharing key regulatory mechanisms with development. Adult neurogenesis impairments have been linked to Alzheimer's disease (AD) pathology. Addressing these impairments by using neurotrophic factors is a promising new avenue for therapeutic intervention based on neurogenesis. However, this possibility has been hindered by technical difficulties of using in-vivo models to conduct screens, including working with scarce NSCs in the adult brain and differences between human and mouse models or ethical limitations. METHODS: Here, we use a combination of mouse and human stem cell models for comprehensive in-vitro characterization of a novel neurogenic compound, focusing on the brain-derived neurotrophic factor (BDNF) pathway. The ability of ENT-A011, a steroidal dehydroepiandrosterone derivative, to activate the tyrosine receptor kinase B (TrkB) receptor was tested through western blotting in NIH-3T3 cells and its neurogenic and neuroprotective action were assessed through proliferation, cell death and Amyloid-ß (Aß) toxicity assays in mouse primary adult hippocampal NSCs, mouse embryonic cortical NSCs and neural progenitor cells (NPCs) differentiated from three human induced pluripotent stem cell lines from healthy and AD donors. RNA-seq profiling was used to assess if the compound acts through the same gene network as BDNF in human NPCs. RESULTS: ENT-A011 was able to increase proliferation of mouse primary adult hippocampal NSCs and embryonic cortical NSCs, in the absence of EGF/FGF, while reducing Aß-induced cell death, acting selectively through TrkB activation. The compound was able to increase astrocytic gene markers involved in NSC maintenance, protect hippocampal neurons from Αß toxicity and prevent synapse loss after Aß treatment. ENT-A011 successfully induces proliferation and prevents cell death after Aß toxicity in human NPCs, acting through a core gene network shared with BDNF as shown through RNA-seq. CONCLUSIONS: Our work characterizes a novel BDNF mimetic with preferable pharmacological properties and neurogenic and neuroprotective actions in Alzheimer's disease via stem cell-based screening, demonstrating the promise of stem cell systems for short-listing competitive candidates for further testing.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Neurogenesis , Neuroprotective Agents , Receptor, trkB , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Neurogenesis/drug effects , Receptor, trkB/metabolism , Receptor, trkB/agonists , Receptor, trkB/genetics , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neuroprotective Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Amyloid beta-Peptides/metabolism , Hippocampus/drug effects , Hippocampus/metabolism
14.
Bull Exp Biol Med ; 177(1): 51-56, 2024 May.
Article in English | MEDLINE | ID: mdl-38954302

ABSTRACT

The effectiveness of ethylmethylhydroxypyridine succinate (EMHPS) in acute alcohol intoxication was tested in a study on SPF male outbred ICR mice. Ethanol (concentration 40%) was administered to animals once intraperitoneally at a dose of 4 g/kg. Control animals were injected with saline in an equivalent volume. In 15 min after the administration of alcohol, the animals were injected intravenously or intramuscularly with EMHPS at a dose of 50 or 100 mg/kg or with saline via the same route in an equivalent volume. Animal behavior was tested 3 and 24 h later after administration of the substances. After 3 and 24 h, mice in the pathological control groups developed semiptosis, the gait and the turning over reflex were impaired, the strength of the hind limbs decreased and the distance between the hind limbs increased when landing; in the open-field test, the latency of the first movement increased, and the number of rearing postures decreased. Intravenous and intramuscular administration of EMHPS in doses of 50 and 100 mg/kg had a pronounced antitoxic and neuroprotective effect in acute alcohol intoxication: all studied parameters did not differ significantly from the control.


Subject(s)
Alcoholic Intoxication , Ethanol , Mice, Inbred ICR , Pyridines , Animals , Male , Alcoholic Intoxication/drug therapy , Mice , Pyridines/pharmacology , Pyridines/therapeutic use , Injections, Intramuscular , Behavior, Animal/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
15.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999182

ABSTRACT

An optimal balance between excitatory and inhibitory transmission in the central nervous system provides essential neurotransmission for good functioning of the neurons. In the neurology field, a disturbed balance can lead to neurological diseases like epilepsy, Alzheimer's, and Autism. One of the critical agents mediating excitatory neurotransmission is α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, which are concerned with synaptic plasticity, memory, and learning. An imbalance in neurotransmission finally results in excitotoxicity and neurological pathologies that should be corrected through specific compounds. Hence, the current study will prove to be an evaluation of new thiazole-carboxamide derivatives concerning AMPAR-modulating activity and extended medicinal potential. In the current project, five previously synthesized thiazole-carboxamide derivatives, i.e., TC-1 to TC-5, were used to interact with the AMPARs expressed in HEK293T cells, which overexpress different subunits of the AMPAR. Patch-clamp analysis was carried out while the effect of the drugs on AMPAR-mediated currents was followed with a particular emphasis on the kinetics of inhibition, desensitization, and deactivation. All tested TC compounds, at all subunits, showed potent inhibition of AMPAR-mediated currents, with TC-2 being the most powerful for all subunits. These compounds shifted the receptor kinetics efficiently, mainly enhancing the deactivation rates, and hence acted as a surrogate for their neuroprotective potentials. Additionally, recently published structure-activity relationship studies identified particular substituent groups as necessary for improving the pharmacologic profiles of these compounds. In this regard, thiazole-carboxamide derivatives, particularly those classified as TC-2, have become essential negative allosteric modulators of AMPAR function and potential therapeutics in neurological disturbances underlain by the dysregulation of excitatory neurotransmission. Given their therapeutic effectiveness and safety profiles, these in vivo studies need to be further validated, although computational modeling can be further developed for drug design and selectivity. This will open possibilities for new drug-like AMPAR negative allosteric modulators with applications at the clinical level toward neurology.


Subject(s)
Neuroprotective Agents , Receptors, AMPA , Thiazoles , Humans , Receptors, AMPA/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Thiazoles/chemistry , Thiazoles/pharmacology , HEK293 Cells , Structure-Activity Relationship
16.
Nutrients ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999824

ABSTRACT

Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.


Subject(s)
NF-E2-Related Factor 2 , Neuroprotective Agents , Parkinson Disease , Polyphenols , Rotenone , NF-E2-Related Factor 2/metabolism , Animals , Polyphenols/pharmacology , Humans , Neuroprotective Agents/pharmacology , Mice , Male , Parkinson Disease/metabolism , Parkinson Disease/prevention & control , Parkinson Disease/drug therapy , Antioxidant Response Elements/drug effects , Signal Transduction/drug effects , Disease Models, Animal , Cell Line, Tumor , Antioxidants/pharmacology , Mice, Inbred C57BL , Plant Extracts/pharmacology , NAD(P)H Dehydrogenase (Quinone)/metabolism
17.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999927

ABSTRACT

Docosahexaenoic acid (DHA, C22:6 ω3) may be involved in various neuroprotective mechanisms that could prevent Alzheimer's disease (AD). Its influence has still been little explored regarding the dysfunction of the endolysosomal pathway, known as an early key event in the physiopathological continuum triggering AD. This dysfunction could result from the accumulation of degradation products of the precursor protein of AD, in particular the C99 fragment, capable of interacting with endosomal proteins and thus contributing to altering this pathway from the early stages of AD. This study aims to evaluate whether neuroprotection mediated by DHA can also preserve the endolysosomal function. AD-typical endolysosomal abnormalities were recorded in differentiated human SH-SY5Y neuroblastoma cells expressing the Swedish form of human amyloid precursor protein. This altered phenotype included endosome enlargement, the reduced secretion of exosomes, and a higher level of apoptosis, which confirmed the relevance of the cellular model chosen for studying the associated deleterious mechanisms. Second, neuroprotection mediated by DHA was associated with a reduced interaction of C99 with the Rab5 GTPase, lower endosome size, restored exosome production, and reduced neuronal apoptosis. Our data reveal that DHA may influence protein localization and interactions in the neuronal membrane environment, thereby correcting the dysfunction of endocytosis and vesicular trafficking associated with AD.


Subject(s)
Alzheimer Disease , Docosahexaenoic Acids , Endosomes , Lysosomes , Neurons , rab5 GTP-Binding Proteins , Humans , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , rab5 GTP-Binding Proteins/metabolism , Endosomes/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Lysosomes/metabolism , Cell Line, Tumor , Amyloid beta-Protein Precursor/metabolism , Apoptosis , Neuroprotective Agents/pharmacology , Cell Survival/drug effects
18.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000427

ABSTRACT

The amyloid-beta peptide (Aß) is the neurotoxic component in senile plaques of Alzheimer's disease (AD) brains. Previously we have reported that Aß toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aß toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aß25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aß25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aß25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aß neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.


Subject(s)
Amyloid beta-Peptides , Apoptosis , Cell Cycle , Hedgehog Proteins , Neurons , Polysaccharides , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Hedgehog Proteins/metabolism , Animals , Neurons/drug effects , Neurons/metabolism , Apoptosis/drug effects , Rats , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cell Cycle/drug effects , Peptide Fragments , Cell Survival/drug effects , Neuroprotective Agents/pharmacology
19.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000492

ABSTRACT

Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 µM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.


Subject(s)
Apoptosis , Cell Differentiation , Hydrogen Peroxide , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cell Differentiation/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neurons/drug effects , Neurons/metabolism , Antioxidants/pharmacology , Cell Survival/drug effects , Pyrones/pharmacology
20.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000550

ABSTRACT

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Subject(s)
Mitochondria , Potassium Channels , Rotenone , Uridine , Animals , Uridine/pharmacology , Uridine/metabolism , Rats , Potassium Channels/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Male , Disease Models, Animal , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Parkinson Disease/pathology , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Neuroprotective Agents/pharmacology , Oxidative Phosphorylation/drug effects , Rats, Wistar , Decanoic Acids/pharmacology , Hydroxy Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...