Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
Results Probl Cell Differ ; 73: 229-247, 2024.
Article in English | MEDLINE | ID: mdl-39242382

ABSTRACT

The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.


Subject(s)
Cell Communication , Retina , Animals , Humans , Retina/physiology , Cell Communication/physiology , Pericytes/physiology , Nanotubes , Mice , Neurovascular Coupling/physiology , Retinal Vessels/physiology , Cell Membrane Structures
2.
Nat Commun ; 15(1): 7635, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223128

ABSTRACT

Neurovascular coupling (NVC), which mediates rapid increases in cerebral blood flow in response to neuronal activation, is commonly used to map brain activation or dysfunction. Here we tested the reemerging hypothesis that CO2 generated by neuronal metabolism contributes to NVC. We combined functional ultrasound and two-photon imaging in the mouse barrel cortex to specifically examine the onsets of local changes in vessel diameter, blood flow dynamics, vascular/perivascular/intracellular pH, and intracellular calcium signals along the vascular arbor in response to a short and strong CO2 challenge (10 s, 20%) and whisker stimulation. We report that the brief hypercapnia reversibly acidifies all cells of the arteriole wall and the periarteriolar space 3-4 s prior to the arteriole dilation. During this prolonged lag period, NVC triggered by whisker stimulation is not affected by the acidification of the entire neurovascular unit. As it also persists under condition of continuous inflow of CO2, we conclude that CO2 is not involved in NVC.


Subject(s)
Carbon Dioxide , Cerebrovascular Circulation , Hypercapnia , Neurovascular Coupling , Vibrissae , Animals , Carbon Dioxide/metabolism , Neurovascular Coupling/physiology , Mice , Cerebrovascular Circulation/physiology , Hypercapnia/metabolism , Hypercapnia/physiopathology , Vibrissae/physiology , Male , Mice, Inbred C57BL , Hydrogen-Ion Concentration , Neurons/metabolism , Neurons/physiology , Somatosensory Cortex/physiology , Somatosensory Cortex/blood supply , Somatosensory Cortex/metabolism , Arterioles/physiology , Arterioles/metabolism
4.
J Neurophysiol ; 132(4): 1231-1234, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39258772

ABSTRACT

The blood oxygenation level-dependent (BOLD) activation reflects hemodynamic events mediated by neurovascular coupling. During task performance, the BOLD hemodynamic response in a relevant area is mainly driven by the high levels of synaptic activity (reflected in local field potentials, LFPs) but, in contrast, during a task-free, resting state, the contribution to BOLD of such neural events is small, as expected by the comparatively (to the task state) low level of neural events. Concomitant recording of BOLD and LFP at rest in animal experiments has estimated the neural contribution to BOLD to ∼10%. Such experiments have not been performed in humans. As an approximation, we recorded (in the same subject, n = 57 healthy participants) at a task-free, resting state the BOLD signal and, in a different session, the magnetoencephalographic (MEG) signal, which reflects purely neural (synaptic) events. We then calculated the turnover of these signals by computing the successive moment-to-moment difference in the BOLD and MEG time series and retaining the median of the absolute value of the differenced series (BOLD and TMEG, respectively). The correlation between normalized turnovers of BOLD (TBOLD) and turnovers of MEG (TMEG) was r = 0.336 (r2 = 0.113; P = 0.011). These results estimate that 11.3% of the variance in TBOLD can be explained by the variance in TMEG. This estimate is close to the aforementioned estimate obtained by direct recordings in animal experiments. NEW & NOTEWORTHY Here, we report on a weak positive association between turnovers of blood oxygenation level-dependent (TBOLD) and magnetoencephalographic (TMEG) signals in 57 healthy human subjects in a resting, task-free state. More specifically, we found that the purely neural TMEG accounted for 11.1% of the TBOLD, a percentage remarkably close to that found between resting-state local field potentials (LFPs) and BOLD recorded concurrently in animal experiments.


Subject(s)
Magnetic Resonance Imaging , Magnetoencephalography , Neurovascular Coupling , Rest , Humans , Neurovascular Coupling/physiology , Male , Adult , Female , Rest/physiology , Brain/physiology , Brain/diagnostic imaging , Young Adult
5.
Physiol Rep ; 12(17): e70031, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39218618

ABSTRACT

Previous studies report contradicting age-related neurovascular coupling (NVC). Few studies assess postural effects, but less investigate relationships between age and NVC within different postures. Therefore, this study investigated the effect of age on NVC in different postures with varying cognitive stimuli. Beat-to-beat blood pressure, heart rate and end-tidal carbon dioxide were assessed alongside middle and posterior cerebral artery velocities (MCAv and PCAv, respectively) using transcranial Doppler ultrasonography in 78 participants (31 young-, 23 middle- and 24 older-aged) with visuospatial (VST) and attention tasks (AT) in various postures at two timepoints (T2 and T3). Between-group significance testing utilized one-way analysis-of-variance (ANOVA) (Tukey post-hoc). Mixed three-way/one-way ANOVAs explored task, posture, and age interactions. Significant effects of posture on NVC were driven by a 3.8% increase from seated to supine. For AT, mean supine %MCAv increase was greatest in younger (5.44%) versus middle (0.12%) and older-age (0.09%) at T3 (p = 0.005). For VST, mean supine %PCAv increase was greatest at T2 and T3 in middle (10.99%/10.12%) and older-age (17.36%/17.26%) versus younger (9.44%/8.89%) (p = 0.004/p = 0.002). We identified significant age-related NVC effects with VST-induced hyperactivation. This may reflect age-related compensatory processes in supine. Further work is required, using complex stimuli while standing/walking, examining NVC, aging and falls.


Subject(s)
Aging , Neurovascular Coupling , Posture , Humans , Male , Female , Neurovascular Coupling/physiology , Adult , Middle Aged , Aged , Posture/physiology , Aging/physiology , Young Adult , Attention/physiology , Ultrasonography, Doppler, Transcranial/methods , Blood Pressure/physiology , Cerebrovascular Circulation/physiology , Blood Flow Velocity/physiology , Heart Rate/physiology , Middle Cerebral Artery/physiology , Middle Cerebral Artery/diagnostic imaging
6.
Exp Neurol ; 381: 114942, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222766

ABSTRACT

Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.


Subject(s)
Ischemic Stroke , Humans , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Animals , Neurovascular Coupling/physiology , Neurons/pathology , Endothelial Cells/pathology
7.
Eur J Neurosci ; 60(6): 5413-5427, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39223860

ABSTRACT

Working memory (WM) involves the capacity to maintain and manipulate information over short periods. Previous research has suggested that fronto-parietal activities play a crucial role in WM. However, there remains no agreement on the effect of working memory load (WML) on neural activities and haemodynamic responses. Here, our study seeks to examine the effect of WML through simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). In this study, a delay change detection task was conducted on 23 healthy volunteers. The task included three levels: one item, three items and five items. The EEG and fNIRS were simultaneously recorded during the task. Neural activities and haemodynamic responses at prefrontal and parietal regions were analysed using time-frequency analysis and weighted phase-lag index (wPLI). We observed a significant enhancement in prefrontal and parietal ß suppression as WML increased. Furthermore, as WML increased, there was a notable enhancement in fronto-parietal connectivity (FPC), as evidenced by both EEG and fNIRS. Correlation analysis indicated that as WML increased, there was a potential for enhancement of neurovascular coupling (NVC) of FPC.


Subject(s)
Electroencephalography , Memory, Short-Term , Parietal Lobe , Spectroscopy, Near-Infrared , Humans , Memory, Short-Term/physiology , Spectroscopy, Near-Infrared/methods , Male , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Female , Electroencephalography/methods , Adult , Young Adult , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Neurovascular Coupling/physiology
8.
J Integr Neurosci ; 23(8): 149, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39207065

ABSTRACT

Hypoxic hypoxia arises from an inadequate oxygen supply to the blood, resulting in reduced arterial oxygen partial pressure and a consequent decline in oxygen diffusion into tissue cells for utilization. This condition is characterized by diminished oxygen content in the blood, while the supply of other nutrients within the blood remains normal. The brain is particularly sensitive to oxygen deficiency, with varying degrees of hypoxic hypoxia resulting in different levels of neural functional disorder. Since the brain has a specific threshold range for the perception of hypoxic hypoxia, mild hypoxic hypoxia can trigger compensatory protective responses in the brain without affecting neural function. These hypoxic compensatory responses enable the maintenance of an adequate oxygen supply and energy substrates for neurons, thereby ensuring normal physiological functions. To further understand the hypoxic compensatory mechanisms of the central nervous system (CNS), this article explores the structural features of the brain's neurovascular unit model, hypoxic signal transduction, and compensatory mechanisms.


Subject(s)
Brain , Neurovascular Coupling , Signal Transduction , Humans , Signal Transduction/physiology , Animals , Brain/metabolism , Neurovascular Coupling/physiology , Hypoxia/physiopathology , Hypoxia/metabolism , Hypoxia, Brain/metabolism , Hypoxia, Brain/physiopathology
10.
Int J Mol Sci ; 25(16)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39201757

ABSTRACT

Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.


Subject(s)
Cerebrovascular Circulation , Nitric Oxide Synthase Type III , Nitric Oxide , Humans , Nitric Oxide Synthase Type III/metabolism , Cerebrovascular Circulation/physiology , Animals , Nitric Oxide/metabolism , Neuronal Plasticity , Endothelial Cells/metabolism , Brain/blood supply , Brain/metabolism , Neurons/metabolism , Neurovascular Coupling/physiology
11.
Alzheimers Dement ; 20(8): 5590-5606, 2024 08.
Article in English | MEDLINE | ID: mdl-38958537

ABSTRACT

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS: Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS: Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION: NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS: Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors.


Subject(s)
Biomarkers , Cognitive Dysfunction , Extracellular Vesicles , Neurovascular Coupling , Humans , Cognitive Dysfunction/physiopathology , Extracellular Vesicles/metabolism , Female , Male , Aged , Biomarkers/blood , Neurovascular Coupling/physiology , Magnetic Resonance Imaging , Spectroscopy, Near-Infrared , Middle Aged
12.
Article in English | MEDLINE | ID: mdl-39074027

ABSTRACT

Although three-dimensional visual training (3DVT) has been used for myopia intervention, its neural mechanisms remain largely unknown. In this study, visual function was examined before and after 3DVT, while resting-state EEG-fNIRS signals were recorded from 38 myopic participants. A graph theoretical analysis was applied to compute the neurovascular properties, including static brain networks (SBNs), dynamic brain networks (DBNs), and dynamic neurovascular coupling (DNC). Correlations between the changes in neurovascular properties and the changes in visual functions were calculated. After 3DVT, the local efficiency and node efficiency in the frontal lobes increased in the SBNs constructed from EEG δ -band; the global efficiency and node efficiency in the frontal-parietal lobes decreased in the DBNs variability constructed from EEG δ -band. For the DNC constructed with EEG α -band and oxyhemoglobin (HbO), the local efficiency decreased, for EEG α -band and deoxyhemoglobin (HbR), the node efficiency in the frontal-occipital lobes decreased. For the SBNs constructed from HbO, the functional connectivity (FC) between the frontal-occipital lobes increased. The DNC constructed between the FC of the frontal-parietal lobes from EEG ß -band and the FC of the frontal-occipital lobes from HbO increased, and between the FC of the frontal-occipital lobes from EEG ß -band and the FC of the inter-frontal lobes from HbR increased. The neurovascular properties were significantly correlated with the amplitude of accommodation and accommodative facility. The result indicated the positive effects of 3DVT on myopic participants, including improved efficiency of brain networks, increased FC of SBNs and DNC, and enhanced binocular accommodation functions.


Subject(s)
Accommodation, Ocular , Electroencephalography , Myopia , Spectroscopy, Near-Infrared , Vision, Binocular , Humans , Male , Female , Myopia/physiopathology , Myopia/rehabilitation , Vision, Binocular/physiology , Accommodation, Ocular/physiology , Young Adult , Adult , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Neurovascular Coupling/physiology , Oxyhemoglobins/metabolism , Nerve Net/physiopathology , Hemoglobins/metabolism , Hemoglobins/analysis , Adaptation, Physiological , Brain/physiopathology , Brain/diagnostic imaging , Occipital Lobe/physiopathology
13.
Nat Commun ; 15(1): 6398, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080289

ABSTRACT

Aging is frequently associated with compromised cerebrovasculature and pericytes. However, we do not know how normal aging differentially impacts vascular structure and function in different brain areas. Here we utilize mesoscale microscopy methods and in vivo imaging to determine detailed changes in aged murine cerebrovascular networks. Whole-brain vascular tracing shows an overall ~10% decrease in vascular length and branching density with ~7% increase in vascular radii in aged brains. Light sheet imaging with 3D immunolabeling reveals increased arteriole tortuosity of aged brains. Notably, vasculature and pericyte densities show selective and significant reductions in the deep cortical layers, hippocampal network, and basal forebrain areas. We find increased blood extravasation, implying compromised blood-brain barrier function in aged brains. Moreover, in vivo imaging in awake mice demonstrates reduced baseline and on-demand blood oxygenation despite relatively intact neurovascular coupling. Collectively, we uncover regional vulnerabilities of cerebrovascular network and physiological changes that can mediate cognitive decline in normal aging.


Subject(s)
Aging , Brain , Cerebrovascular Circulation , Pericytes , Animals , Aging/physiology , Brain/blood supply , Brain/physiology , Mice , Cerebrovascular Circulation/physiology , Male , Pericytes/physiology , Blood-Brain Barrier/metabolism , Mice, Inbred C57BL , Neurovascular Coupling/physiology , Vascular Remodeling/physiology
14.
J Appl Physiol (1985) ; 137(2): 445-459, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38961823

ABSTRACT

Prior studies have identified variable effects of aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states during cognitive paradigms. Seventy-eight participants (18-78 yr), with well-controlled comorbidities, underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation), and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) was used to stimulate NVC. Peak percentage and absolute change in MCAv/PCAv, were compared between CO2 conditions and age groups (≤30, 31-60, and >60 yr). For the VS task, in poikilocapnia, younger adults had a lower NVC response compared with older adults [mean difference (MD): -7.92% (standard deviation (SD): 2.37), P = 0.004], but comparable between younger and middle-aged groups. In hypercapnia, both younger [MD: -4.75% (SD: 1.56), P = 0.009] and middle [MD: -4.58% (SD: 1.69), P = 0.023] age groups had lower NVC responses compared with older adults. Finally, in hypocapnia, both older [MD: 5.92% (SD: 2.21), P = 0.025] and middle [MD: 5.44% (SD: 2.27), P = 0.049] age groups had greater NVC responses, compared with younger adults. In conclusion, the magnitude of NVC response suppression from baseline during hyper- and hypocapnia, did not differ significantly between age groups. However, the middle age group demonstrated a different NVC response while under hypercapnic conditions, compared with hypocapnia.NEW & NOTEWORTHY This study describes the effects of age on neurovascular coupling under altered CO2 conditions. We demonstrated that both hypercapnia and hypocapnia suppress neurovascular coupling (NVC) responses. Furthermore, that middle age exhibits an NVC response comparable with younger adults under hypercapnia, and older adults under hypocapnia.


Subject(s)
Aging , Carbon Dioxide , Cerebrovascular Circulation , Hypercapnia , Hypocapnia , Neurovascular Coupling , Humans , Adult , Male , Middle Aged , Carbon Dioxide/metabolism , Aged , Female , Neurovascular Coupling/physiology , Hypercapnia/physiopathology , Hypercapnia/metabolism , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/drug effects , Aging/physiology , Young Adult , Hypocapnia/physiopathology , Adolescent , Blood Flow Velocity/physiology , Blood Pressure/physiology
15.
Sensors (Basel) ; 24(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39001186

ABSTRACT

INTRODUCTION: Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. METHOD: The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type II disorder, mild attention-deficit hyperactivity disorder, and a history of migraines/headaches. The case was medicated with Valproic Acid and Escitalopram. Sensor-based baseline data were collected within six months of his injury and on days 1-5, 10, and 14 post-injury. Symptom reporting, heart rate variability (HRV), neurovascular coupling (NVC), and dynamic cerebral autoregulation (dCA) assessments were completed using numerous biomedical devices (i.e., transcranial Doppler ultrasound, 3-lead electrocardiography, finger photoplethysmography). RESULTS: Total symptom and symptom severity scores were higher for the first-week post-injury, with physical and emotional symptoms being the most impacted. The NVC response showed lowered activation in the first three days post-injury, while autonomic (HRV) and autoregulation (dCA) were impaired across all testing visits occurring in the first 14 days following his concussion. CONCLUSIONS: Despite symptom resolution, the case demonstrated ongoing autonomic and autoregulatory dysfunction. Larger samples examining individuals with an extensive history of concussion are warranted to understand the chronic physiological changes that occur following cumulative concussions through biosensing devices.


Subject(s)
Brain Concussion , Heart Rate , Humans , Male , Adult , Brain Concussion/physiopathology , Brain Concussion/diagnostic imaging , Heart Rate/physiology , Autonomic Nervous System/physiopathology , Electrocardiography/methods , Neurovascular Coupling/physiology , Photoplethysmography/methods , Ultrasonography, Doppler, Transcranial/methods
16.
Geroscience ; 46(5): 5061-5073, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38888875

ABSTRACT

Growing evidence indicates an important role of neurovascular unit (NVU) dysfunction in the pathophysiology of cerebral small vessel disease (cSVD). Individually measurable functions of the NVU have been correlated with cognitive function, but a combined analysis is lacking. We aimed to perform a unified analysis of NVU function and its relation with cognitive performance. The relationship between NVU function in the white matter and cognitive performance (both latent variables composed of multiple measurable variables) was investigated in 73 patients with cSVD (mean age 70 ± 10 years, 41% women) using canonical correlation analysis. MRI-based NVU function measures included (1) the intravoxel incoherent motion derived perfusion volume fraction (f) and microvascular diffusivity (D*), reflecting cerebral microvascular flow; (2) the IVIM derived intermediate volume fraction (fint), indicative of the perivascular clearance system; and (3) the dynamic contrast-enhanced MRI derived blood-brain barrier (BBB) leakage rate (Ki) and leakage volume fraction (VL), reflecting BBB integrity. Cognitive performance was composed of 13 cognitive test scores. Canonical correlation analysis revealed a strong correlation between the latent variables NVU function and cognitive performance (r 0.73; p = 0.02). For the NVU, the dominating variables were D*, fint, and Ki. Cognitive performance was driven by multiple cognitive tests comprising different cognitive domains. The functionality of the NVU is correlated with cognitive performance in cSVD. Instead of focusing on individual pathophysiological mechanisms, future studies should target NVU dysfunction as a whole to acquire a coherent understanding of the complex disease mechanisms that occur in the NVU in cSVD.Trial registration: NTR3786 (Dutch Trial Register).


Subject(s)
Cerebral Small Vessel Diseases , Cognition , Magnetic Resonance Imaging , Humans , Cerebral Small Vessel Diseases/physiopathology , Cerebral Small Vessel Diseases/diagnostic imaging , Female , Male , Aged , Cognition/physiology , Magnetic Resonance Imaging/methods , Middle Aged , Blood-Brain Barrier/physiopathology , Blood-Brain Barrier/diagnostic imaging , Cerebrovascular Circulation/physiology , White Matter/diagnostic imaging , White Matter/pathology , White Matter/physiopathology , White Matter/blood supply , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Neurovascular Coupling/physiology , Aged, 80 and over , Neuropsychological Tests
17.
Brain Behav ; 14(6): e3598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923330

ABSTRACT

PURPOSE: To assess changes in neurovascular coupling (NVC) by evaluating the relationship between cerebral perfusion and brain connectivity in patients with end-stage renal disease (ESRD) undergoing hemodialysis versus in healthy control participants. And by exploring brain regions with abnormal NVC associated with cognitive deficits in patients, we aim to provide new insights into potential preventive and therapeutic interventions. MATERIALS AND METHODS: A total of 45 patients and 40 matched healthy controls were prospectively enrolled in our study. Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. Arterial spin labeling (ASL) was used to calculate cerebral blood flow (CBF), and graph theory-based analysis of results from resting-state functional magnetic resonance imaging (rs-fMRI) was used to calculate brain network topological parameters (node betweenness centrality [BC], node efficiency [Ne], and node degree centrality [DC]). Three NVC biomarkers (CBF-BC, CBF-Ne, and CBF-DC coefficients) at the whole brain level and 3 NVC biomarkers (CBF/BC, CBF/Ne, and CBF/DC ratios) at the local brain region level were used to assess NVC. Mann-Whitney U tests were used to compare the intergroup differences in NVC parameters. Spearman's correlation analysis was used to evaluate the relationship among NVC dysfunctional pattern, cognitive impairment, and clinical characteristics multiple comparisons were corrected using a voxel-wise false-discovery rate (FDR) method (p < .05). RESULTS: Patients showed significantly reduced global coupling coefficients for CBF-Ne (p = .023) and CBF-BC (p = .035) compared to healthy controls. Coupling ratios at the local brain region level were significantly higher in patients in 33 brain regions (all p values < .05). Coupling ratio changes alone or accompanied by changes in CBF, node properties, or both CBF and node properties were identified. In patients, negative correlations were seen between coupling ratios and MoCA scores in many brain regions, including the left dorsolateral superior frontal gyrus, the bilateral median cingulate and paracingulate gyri, and the right superior parietal gyrus. The correlations remained even after adjusting for hemoglobin and hematocrit levels. CONCLUSION: Disrupted NVC may be one mechanism underlying cognitive impairment in dialysis patients.


Subject(s)
Brain , Cognitive Dysfunction , Kidney Failure, Chronic , Magnetic Resonance Imaging , Neurovascular Coupling , Humans , Male , Female , Middle Aged , Neurovascular Coupling/physiology , Kidney Failure, Chronic/physiopathology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/diagnostic imaging , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnostic imaging , Brain/diagnostic imaging , Brain/physiopathology , Adult , Cerebrovascular Circulation/physiology , Renal Dialysis , Neuroimaging/methods , Aged , Prospective Studies , Mental Status and Dementia Tests , Nerve Net/diagnostic imaging , Nerve Net/physiopathology
18.
J Cogn Neurosci ; 36(9): 1995-2010, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38820561

ABSTRACT

Neurovascular coupling (NVC) is the tight relationship between changes in cerebral blood flow and neural activation. NVC can be evaluated non-invasively using transcranial Doppler ultrasound (TCD)-measured changes in brain activation (cerebral blood velocity [CBv]) using different cognitive tasks and stimuli. This study used a novel approach to analyzing CBv changes occurring in response to 20 tasks from the Addenbrooke's Cognitive Examination III in 40 healthy individuals. The novel approach compared various information entropy families (permutation, Tsallis, and Rényi entropy) and statistical complexity measures based on disequilibrium. Using this approach, we found the majority of the attention, visuospatial, and memory tasks from the Addenbrooke's Cognitive Examination III that showed lower statistical complexity values when compared with the resting state. On the entropy-complexity (HC) plane, a receiver operating characteristic curve was used to distinguish between baseline and cognitive tasks using the area under the curve. Best area under the curve values were 0.91 ± 0.04, p = .001, to distinguish between resting and cognitively active states. Our findings show that brain hemodynamic signals captured with TCD can be used to distinguish between resting state (baseline) and cognitive effort (stimulation paradigms) using entropy and statistical complexity as an alternative method to traditional techniques such as coherent averaging of CBv signals. Further work should directly compare these analysis methods to identify the optimal method for analyzing TCD-measured changes in NVC.


Subject(s)
Cerebrovascular Circulation , Cognition , Neurovascular Coupling , Ultrasonography, Doppler, Transcranial , Humans , Neurovascular Coupling/physiology , Male , Adult , Female , Young Adult , Cerebrovascular Circulation/physiology , Cognition/physiology , Attention/physiology , Brain/physiology , Brain/blood supply , Brain/diagnostic imaging , Healthy Volunteers
19.
Article in English | MEDLINE | ID: mdl-38717876

ABSTRACT

Neurovascular coupling (NVC) provides important insights into the intricate activity of brain functioning and may aid in the early diagnosis of brain diseases. Emerging evidences have shown that NVC could be assessed by the coupling between electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). However, this endeavor presents significant challenges due to the absence of standardized methodologies and reliable techniques for coupling analysis of these two modalities. In this study, we introduced a novel method, i.e., the collaborative multi-output variational Gaussian process convergent cross-mapping (CMVGP-CCM) approach to advance coupling analysis of EEG and fNIRS. To validate the robustness and reliability of the CMVGP-CCM method, we conducted extensive experiments using chaotic time series models with varying noise levels, sequence lengths, and causal driving strengths. In addition, we employed the CMVGP-CCM method to explore the NVC between EEG and fNIRS signals collected from 26 healthy participants using a working memory (WM) task. Results revealed a significant causal effect of EEG signals, particularly the delta, theta, and alpha frequency bands, on the fNIRS signals during WM. This influence was notably observed in the frontal lobe, and its strength exhibited a decline as cognitive demands increased. This study illuminates the complex connections between brain electrical activity and cerebral blood flow, offering new insights into the underlying NVC mechanisms of WM.


Subject(s)
Algorithms , Electroencephalography , Memory, Short-Term , Neurovascular Coupling , Spectroscopy, Near-Infrared , Humans , Electroencephalography/methods , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Normal Distribution , Neurovascular Coupling/physiology , Young Adult , Memory, Short-Term/physiology , Healthy Volunteers , Reproducibility of Results , Multivariate Analysis , Frontal Lobe/physiology , Frontal Lobe/diagnostic imaging , Brain Mapping/methods , Theta Rhythm/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Nonlinear Dynamics , Delta Rhythm/physiology , Alpha Rhythm/physiology
20.
Nat Commun ; 15(1): 3526, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664419

ABSTRACT

Large-scale imaging of brain activity with high spatio-temporal resolution is crucial for advancing our understanding of brain function. The existing neuroimaging techniques are largely limited by restricted field of view, slow imaging speed, or otherwise do not have the adequate spatial resolution to capture brain activities on a capillary and cellular level. To address these limitations, we introduce fluorescence localization microscopy aided with sparsely-labeled red blood cells for cortex-wide morphological and functional cerebral angiography with 4.9 µm spatial resolution and 1 s temporal resolution. When combined with fluorescence calcium imaging, the proposed method enables extended recordings of stimulus-evoked neuro-vascular changes in the murine brain while providing simultaneous multiparametric readings of intracellular neuronal activity, blood flow velocity/direction/volume, and vessel diameter. Owing to its simplicity and versatility, the proposed approach will become an invaluable tool for deciphering the regulation of cortical microcirculation and neurovascular coupling in health and disease.


Subject(s)
Erythrocytes , Microscopy, Fluorescence , Animals , Erythrocytes/metabolism , Erythrocytes/cytology , Microscopy, Fluorescence/methods , Mice , Cerebral Cortex/blood supply , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Male , Mice, Inbred C57BL , Cerebral Angiography/methods , Calcium/metabolism , Cerebrovascular Circulation/physiology , Fluorescent Dyes/chemistry , Neurovascular Coupling/physiology , Neurons/metabolism , Neurons/physiology , Microcirculation
SELECTION OF CITATIONS
SEARCH DETAIL