Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.063
Filter
1.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38950330

ABSTRACT

Activating mutations of FLT3 contribute to deregulated hematopoietic stem and progenitor cell (HSC/Ps) growth and survival in patients with acute myeloid leukemia (AML), leading to poor overall survival. AML patients treated with investigational drugs targeting mutant FLT3, including Quizartinib and Crenolanib, develop resistance to these drugs. Development of resistance is largely due to acquisition of cooccurring mutations and activation of additional survival pathways, as well as emergence of additional FLT3 mutations. Despite the high prevalence of FLT3 mutations and their clinical significance in AML, there are few targeted therapeutic options available. We have identified 2 novel nicotinamide-based FLT3 inhibitors (HSN608 and HSN748) that target FLT3 mutations at subnanomolar concentrations and are potently effective against drug-resistant secondary mutations of FLT3. These compounds show antileukemic activity against FLT3ITD in drug-resistant AML, relapsed/refractory AML, and in AML bearing a combination of epigenetic mutations of TET2 along with FLT3ITD. We demonstrate that HSN748 outperformed the FDA-approved FLT3 inhibitor Gilteritinib in terms of inhibitory activity against FLT3ITD in vivo.


Subject(s)
Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute , Niacinamide , fms-Like Tyrosine Kinase 3 , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Mice , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mutation , Mice, SCID , Mice, Inbred NOD
2.
Invest Ophthalmol Vis Sci ; 65(8): 1, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949632

ABSTRACT

Purpose: Glucocorticoid-induced glaucoma (GIG) is a prevalent complication associated with glucocorticoids (GCs), resulting in irreversible blindness. GIG is characterized by the abnormal deposition of extracellular matrix (ECM) in the trabecular meshwork (TM), elevation of intraocular pressure (IOP), and loss of retinal ganglion cells (RGCs). The objective of this study is to investigate the effects of nicotinamide riboside (NR) on TM in GIG. Methods: Primary human TM cells (pHTMs) and C57BL/6J mice responsive to GCs were utilized to establish in vitro and in vivo GIG models, respectively. The study assessed the expression of ECM-related proteins in TM and the functions of pHTMs to reflect the effects of NR. Mitochondrial morphology and function were also examined in the GIG cell model. GIG progression was monitored through IOP, RGCs, and mitochondrial morphology. Intracellular nicotinamide adenine dinucleotide (NAD+) levels of pHTMs were enzymatically assayed. Results: NR significantly prevented the expression of ECM-related proteins and alleviated dysfunction in pHTMs after dexamethasone treatment. Importantly, NR protected damaged ATP synthesis, preventing overexpression of mitochondrial reactive oxygen species (ROS), and also protect against decreased mitochondrial membrane potential induced by GCs in vitro. In the GIG mouse model, NR partially prevented the elevation of IOP and the loss of RGCs. Furthermore, NR effectively suppressed the excessive expression of ECM-associated proteins and mitigated mitochondrial damage in vivo. Conclusions: Based on the results, NR effectively enhances intracellular levels of NAD+, thereby mitigating abnormal ECM deposition and TM dysfunction in GIG by attenuating mitochondrial damage induced by GCs. Thus, NR has promising potential as a therapeutic candidate for GIG treatment.


Subject(s)
Disease Models, Animal , Extracellular Matrix , Glaucoma , Glucocorticoids , Intraocular Pressure , Mice, Inbred C57BL , Mitochondria , Niacinamide , Pyridinium Compounds , Trabecular Meshwork , Animals , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Pyridinium Compounds/pharmacology , Glucocorticoids/toxicity , Mitochondria/metabolism , Mitochondria/drug effects , Mice , Glaucoma/metabolism , Glaucoma/drug therapy , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Intraocular Pressure/drug effects , Humans , Trabecular Meshwork/metabolism , Trabecular Meshwork/drug effects , Trabecular Meshwork/pathology , Cells, Cultured , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Reactive Oxygen Species/metabolism , Dexamethasone/pharmacology , Male
3.
CNS Neurosci Ther ; 30(7): e14826, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973179

ABSTRACT

AIM: We aimed to confirm the inhibitory effect of nicotinamide on fibrotic scar formation following spinal cord injury in mice using functional metabolomics. METHODS: We proposed a novel functional metabolomics strategy to establish correlations between gene expression changes and metabolic phenotypes using integrated multi-omics analysis. Through the integration of quantitative metabolites analysis and assessments of differential gene expression, we identified nicotinamide as a functional metabolite capable of inhibiting fibrotic scar formation and confirmed the effect in vivo using a mouse model of spinal cord injury. Furthermore, to mimic fibrosis models in vitro, primary mouse embryonic fibroblasts and spinal cord fibroblasts were stimulated by TGFß, and the influence of nicotinamide on TGFß-induced fibrosis-associated genes and its underlying mechanism were examined. RESULTS: Administration of nicotinamide led to a reduction in fibrotic lesion area and promoted functional rehabilitation following spinal cord injury. Nicotinamide effectively downregulated the expression of fibrosis genes, including Col1α1, Vimentin, Col4α1, Col1α2, Fn1, and Acta2, by repressing the TGFß/SMADs pathway. CONCLUSION: Our functional metabolomics strategy identified nicotinamide as a metabolite with the potential to inhibit fibrotic scar formation following SCI by suppressing the TGFß/SMADs signaling. This finding provides new therapeutic strategies and new ideas for clinical treatment.


Subject(s)
Cicatrix , Fibrosis , Mice, Inbred C57BL , Niacinamide , Spinal Cord Injuries , Animals , Niacinamide/pharmacology , Niacinamide/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/complications , Cicatrix/drug therapy , Cicatrix/pathology , Cicatrix/metabolism , Cicatrix/prevention & control , Mice , Fibrosis/drug therapy , Transforming Growth Factor beta/metabolism , Metabolomics , Fibroblasts/drug effects , Fibroblasts/metabolism , Cells, Cultured , Disease Models, Animal , Female
4.
Parasit Vectors ; 17(1): 288, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971783

ABSTRACT

BACKGROUND: Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS: In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS: Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid ß-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS: Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.


Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Lipid Metabolism , Liver , Mice, Inbred BALB C , Niacinamide , Spleen , Animals , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Mice , Lipid Metabolism/drug effects , Liver/parasitology , Liver/drug effects , Liver/pathology , Leishmania infantum/drug effects , Spleen/parasitology , Spleen/drug effects , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use
5.
J Agric Food Chem ; 72(26): 14984-14992, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38907719

ABSTRACT

Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 µM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 µM) or boscalid (EC50 = 2.01 µM) and fluxapyroxad (EC50 = 4.35 µM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.


Subject(s)
Botrytis , Fungicides, Industrial , Botrytis/drug effects , Botrytis/growth & development , Structure-Activity Relationship , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Plant Diseases/microbiology , Niacinamide/chemistry , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Microbial Sensitivity Tests , Molecular Structure , Biphenyl Compounds
6.
ACS Chem Biol ; 19(6): 1339-1350, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38829020

ABSTRACT

N-Pyridinylthiophene carboxamide (compound 21) displays activity against peripheral nerve sheath cancer cells and mouse xenografts by an unknown mechanism. Through medicinal chemistry, we identified a more active derivative, compound 9, and found that only analogues with structures similar to nicotinamide retained activity. Genetic screens using compound 9 found that both NAMPT and NMNAT1, enzymes in the NAD salvage pathway, are necessary for activity. Compound 9 is metabolized by NAMPT and NMNAT1 into an adenine dinucleotide (AD) derivative in a cell-free system, cultured cells, and mice, and inhibition of this metabolism blocked compound activity. AD analogues derived from compound 9 inhibit IMPDH in vitro and cause cell death by inhibiting IMPDH in cells. These findings nominate these compounds as preclinical candidates for the development of tumor-activated IMPDH inhibitors to treat neuronal cancers.


Subject(s)
NAD , Niacinamide , Thiophenes , Animals , NAD/metabolism , Humans , Mice , Niacinamide/analogs & derivatives , Niacinamide/metabolism , Niacinamide/pharmacology , Niacinamide/chemistry , Thiophenes/pharmacology , Thiophenes/chemistry , Thiophenes/metabolism , Cell Line, Tumor , IMP Dehydrogenase/antagonists & inhibitors , IMP Dehydrogenase/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/metabolism , Nerve Sheath Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/antagonists & inhibitors
7.
J Eur Acad Dermatol Venereol ; 38 Suppl 4: 15-22, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38881445

ABSTRACT

Skin aging has long been considered a purely cosmetic problem. However, as life expectancy increases, skin aging is taking on a functional dimension that goes beyond cosmetics and appearance. Preventive or therapeutic strategies are needed to target cellular senescence, a key process underlying the alterations in skin function and appearance that occur with aging, as well as to address the age-related skin changes associated with 'dermatoporosis' and chronic skin insufficiency/fragility syndrome. Thus, given the need for effective anti-aging products that improve both the appearance and function of the skin, it is essential to distinguish active ingredients that have been proven to be effective, among the large number of available over-the-counter cosmeceuticals. This brief review focuses on a core group of topical actives, describing their clinical effects on senescence and aging, and their molecular mechanisms of action. These actives include hyaluronic acid, which has hydrating and viscoelastic properties and has been shown to reduce skin atrophy; retinaldehyde, which activates retinoid receptors and increases cutaneous elasticity; vitamins C and E, which provide stable oxidative protection; and niacinamide, which reduces inflammation and mitigates the effects of senescence.


Subject(s)
Cellular Senescence , Skin Aging , Skin Aging/drug effects , Skin Aging/physiology , Humans , Cellular Senescence/drug effects , Hyaluronic Acid/pharmacology , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Niacinamide/pharmacology , Niacinamide/therapeutic use , Vitamin E/pharmacology , Cosmeceuticals/pharmacology , Skin/pathology , Skin/drug effects
8.
Biochem Pharmacol ; 225: 116272, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723719

ABSTRACT

Chronic cerebral hypoperfusion (CCH) is an enduring inadequate blood flow to the brain, resulting in vascular dementia (VaD). However, the effective treatment strategies are lacking. Supplementing with nicotinamide adenine dinucleotide (NAD+) has shown neuroprotective benefits in other neurodegenerative disorders. Nicotinamide riboside (NR), as a precursor of NAD+, is believed to hold promise in improving mitochondrial health, autophagy, and cognitive function. Meanwhile, NR has unique oral bioavailability, good tolerability, and minimal side effects, and it is the most promising for clinical translation. However, the effectiveness of NR in treating CCH-related VaD is still uncertain. The present study examined the neuroprotective effects of NR supplementation and its underlying mechanisms in a CCH rat model. The rats with CCH were given NR at a daily dosage of 400 mg/kg for 3 months. NR supplementation increased blood and brain NAD+ levels and improved brain function in CCH rats, including cognitive function and oxygenation capacity. It also reduced hippocampal neuronal loss and abnormalities and mitigated the decrease in dendritic spine density. The analysis of RNA sequencing in hippocampal tissue supports these findings. Electron microscopy and protein detection results suggest that NR may maintain mitochondrial structural integrity and exert a protective role by attenuating mitochondrial fission and impaired autophagy flux caused by CCH. In conclusion, these findings offer evidence for the neuroprotective potential of NR supplementation in ameliorating cognitive impairment induced by CCH.


Subject(s)
Mitochondria , Neuroprotective Agents , Niacinamide , Pyridinium Compounds , Animals , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Male , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Pyridinium Compounds/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/pathology , Chronic Disease , Cerebrovascular Circulation/drug effects
9.
Front Endocrinol (Lausanne) ; 15: 1282231, 2024.
Article in English | MEDLINE | ID: mdl-38756999

ABSTRACT

Introduction: Cigarettes containing nicotine (Nic) are a risk factor for the development of cardiovascular and metabolic diseases. We reported that Nic delivered via injections or e-cigarette vapor led to hepatic steatosis in mice fed with a high-fat diet. High-fructose corn syrup (HFCS) is the main sweetener in sugar-sweetened beverages (SSBs) in the US. Increased consumption of SSBs with HFCS is associated with increased risks of non-alcoholic fatty liver disease (NAFLD). Nicotinamide riboside (NR) increases mitochondrial nicotinamide adenine dinucleotide (NAD+) and protects mice against hepatic steatosis. This study evaluated if Nic plus Coca-Cola™ (Coke) with HFCS can cause hepatic steatosis and that can be protected by NR. Methods: C57BL/6J mice received twice daily intraperitoneal (IP) injections of Nic or saline and were given Coke (HFCS), or Coke with sugar, and NR supplementation for 10 weeks. Results: Our results show that Nic+Coke caused increased caloric intake and induced hepatic steatosis, and the addition of NR prevented these changes. Western blot analysis showed lipogenesis markers were activated (increased cleavage of the sterol regulatory element-binding protein 1 [SREBP1c] and reduction of phospho-Acetyl-CoA Carboxylase [p-ACC]) in the Nic+Coke compared to the Sal+Water group. The hepatic detrimental effects of Nic+Coke were mediated by decreased NAD+ signaling, increased oxidative stress, and mitochondrial damage. NR reduced oxidative stress and prevented mitochondrial damage by restoring protein levels of Sirtuin1 (Sirt1) and peroxisome proliferator-activated receptor coactivator 1-alpha (PGC1) signaling. Conclusion: We conclude that Nic+Coke has an additive effect on producing hepatic steatosis, and NR is protective. This study suggests concern for the development of NAFLD in subjects who consume nicotine and drink SSBs with HFCS.


Subject(s)
Mice, Inbred C57BL , Niacinamide , Nicotine , Pyridinium Compounds , Animals , Pyridinium Compounds/pharmacology , Mice , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Male , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/etiology , Fatty Liver/prevention & control , Fatty Liver/metabolism , Fatty Liver/chemically induced , High Fructose Corn Syrup/adverse effects , Liver/metabolism , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects
10.
Biomed Pharmacother ; 175: 116689, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703508

ABSTRACT

Ischemic heart disease invariably leads to devastating damage to human health. Nicotinamide ribose (NR), as one of the precursors of NAD+ synthesis, has been discovered to exert a protective role in various neurological and cardiovascular disorders. Our findings demonstrated that pretreatment with 200 mg/kg NR for 3 h significantly reduced myocardial infarct area, decreased levels of CK-MB and LDH in serum, and improved cardiac function in the rats during myocardial ischemia-reperfusion (I/R) injury. Meanwhile, 0.5 mM NR also effectively increased the viability and decreased the LDH release of H9c2 cells during OGD/R. We had provided evidence that NR pretreatment could decrease mitochondrial reactive oxygen species (mtROS) production and MDA content, and enhance SOD activity, thereby mitigating mitochondrial damage and inhibiting apoptosis during myocardial I/R injury. Further investigations revealed that NR increased NAD+ content and upregulated SIRT3 protein expression in myocardium. Through using of SIRT3 small interfering RNA and the SIRT3 deacetylase activity inhibitor 3-TYP, we had confirmed that the cardioprotective effect of NR on cardiomyocytes was largely dependent on the inhibition of mitochondrial oxidative stress via SIRT3-SOD2 axis. Overall, our study suggested that exogenous supplementation with NR mitigated mitochondrial damage and inhibited apoptosis during myocardial I/R injury by reducing mitochondrial oxidative stress via SIRT3-SOD2-mtROS pathway.


Subject(s)
Apoptosis , Myocardial Reperfusion Injury , Niacinamide , Oxidative Stress , Pyridinium Compounds , Rats, Sprague-Dawley , Signal Transduction , Sirtuin 3 , Superoxide Dismutase , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Sirtuin 3/metabolism , Signal Transduction/drug effects , Male , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Superoxide Dismutase/metabolism , Rats , Apoptosis/drug effects , Oxidative Stress/drug effects , Pyridinium Compounds/pharmacology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Cell Line , Cardiotonic Agents/pharmacology , Sirtuins
11.
Acta Neuropathol Commun ; 12(1): 79, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773545

ABSTRACT

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Subject(s)
Mice, Inbred C57BL , Neuroprotective Agents , Niacinamide , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Niacinamide/pharmacology , Niacinamide/administration & dosage , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Male , Mice , Administration, Oral , Intravitreal Injections , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Parkinsonian Disorders/drug therapy , MPTP Poisoning/pathology , MPTP Poisoning/metabolism , MPTP Poisoning/drug therapy
12.
Neuroscience ; 549: 76-83, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38734304

ABSTRACT

Stroke is one of the leading causes of disability worldwide, where the Hippocampus (HPC) is affected. HPC organizes memory, which is a cognitive domain compromised after a stroke, where cerebrolysin (CBL) and Nicotinamide (NAM) have been recognized as potentially therapeutic. In this study, we aimed to evaluate the efficacy of a combined administration of CBL and NAM in a rat stroke model. Male Sprague-Dawley rats (n = 36) were divided into four groups: saline (pMCAO - Saline), CBL (pMCAO + CBL), NAM (pMCAO + NAM), and experimental (pMCAO + CBL-NAM) (n = 9 per group). A permanent middle cerebral artery occlusion (pMCAO) was induced through electrocauterization of the middle cerebral artery, followed by the administration of CBL (2.5 ml/kg), NAM (500 mg/kg) or combined immediately after skin suture, as well as at 24, 48, and 72 h post-surgery. The rats were evaluated in the novel object recognition test; hippocampal infarct area measurement; reconstruction of neurons from CA1 for Sholl analysis; and, measurement of brain-derived neurotrophic factor (BDNF) levels near the infarct zone. Our findings revealed that the administration of CBL or NAM induced infarct reduction, improved cognition, and increased BDNF levels. Moreover, a combination of CBL and NAM increased dendritic intersection in CA1 pyramidal neurons. Thus, the combined administration of CBL and NAM can promote cognitive recovery after a stroke, with infarct reduction, cytoarchitectural changes in HPC CA1 neurons, and BDNF increase. Our findings suggest that this combination therapy could be a promising intervention strategy for stroke.


Subject(s)
Amino Acids , Cognition , Hippocampus , Infarction, Middle Cerebral Artery , Neurons , Neuroprotective Agents , Niacinamide , Rats, Sprague-Dawley , Animals , Male , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Amino Acids/pharmacology , Amino Acids/administration & dosage , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Niacinamide/pharmacology , Niacinamide/administration & dosage , Cognition/drug effects , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Rats , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/administration & dosage , Recovery of Function/drug effects , Recovery of Function/physiology , Drug Therapy, Combination , Disease Models, Animal
13.
Pak J Pharm Sci ; 37(1(Special)): 191-197, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747269

ABSTRACT

synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, 1H NMR and 13C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC50: 8.5µM) upon its evaluation against hepatocellular carcinoma cell line (HepG 2) compared to sorafenib (IC50: 4.51µM). Moreover, human skin fibroblast (HSF) was used to investigate the effect of KA5 on normal cell lines, (IC50: 5.53µM). The presented biological evaluations resulted in better understanding of structure-activity relationship for 1, 3, 4-trisubstituted pyrazoles and revealed a great opportunity for more investigations for novel pyrazole-containing anticancer agents.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Pyrazoles , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Hep G2 Cells , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Sorafenib/pharmacology , Fibroblasts/drug effects , Niacinamide/pharmacology , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/chemistry , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects
14.
Biomolecules ; 14(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786005

ABSTRACT

Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.


Subject(s)
Fibroblasts , Glucosides , Mitochondria , Mitochondrial Diseases , Niacinamide , Stilbenes , Unfolded Protein Response , Humans , Unfolded Protein Response/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Stilbenes/pharmacology , Glucosides/pharmacology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Niacinamide/pharmacology , Mutation , Phenotype , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Neurons/metabolism , Neurons/drug effects
15.
Anticancer Res ; 44(6): 2377-2392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821582

ABSTRACT

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC) is characterized by early metastasis, clinical resistance and poor prognosis. Recently, we showed that aggressive OSCC cells co-express endothelial cell markers and can form tube-like structures, known as vasculogenic mimicry (VM), a process associated with poor prognosis in head and neck cancers. Given the limited success of current antiangiogenic therapy in treating OSCC, this study sought to explore the efficiency of these drugs in targeting an ex vivo model of VM. MATERIALS AND METHODS: OSCC cell lines from the tongue and floor of the mouth in addition to human endothelial cells were used. The treatments comprised a set of clinically relevant antiangiogenic drugs: sorafenib, sunitinib, and axitinib, which were administered in different doses. Multiple ex vivo approaches including cell tubulogenesis, proliferation, apoptosis, and migration assays were used. RESULTS: Although these drugs inhibited the formation of endothelial cell capillaries, they showed clear differential effects on OSCC cell-derived VM and cell morphology. Sorafenib inhibited the tubulogenesis of aggressive OSCC cells compared with the limited effect of sunitinib and axitinib. Furthermore, our data consistently demonstrated a preferential efficacy of certain drugs over others. Sorafenib and sunitinib exhibited anti-cancer effects on tumor cell proliferation, apoptosis, and cell migration, compared with the limited effect of axitinib. CONCLUSION: The antiangiogenic drugs, except sorafenib, had limited effect on VM formation in vitro and exhibited varying anti-cancer effects on OSCC cells. These data support the notion that VM formation may in part explain the development of drug resistance in OSCC cells.


Subject(s)
Angiogenesis Inhibitors , Axitinib , Cell Movement , Cell Proliferation , Mouth Neoplasms , Neovascularization, Pathologic , Sorafenib , Sunitinib , Humans , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Mouth Neoplasms/blood supply , Mouth Neoplasms/metabolism , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Proliferation/drug effects , Cell Movement/drug effects , Axitinib/pharmacology , Apoptosis/drug effects , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/metabolism , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Niacinamide/therapeutic use
16.
Biomed Pharmacother ; 175: 116701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729053

ABSTRACT

Nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) have received considerable attention as anti-aging and anti-metabolic disease nutraceuticals. However, few studies have focused on their role in ameliorating hepatic metabolic disturbances. In the present study, the effects of NMN and NR on the liver of mice with nonalcoholic fatty liver disease (NAFLD) were investigated via transcriptome and metabolome analyses. NMN and NR reduced body weight gain, improved glucose homeostasis, regulated plasma lipid levels, and ameliorated liver injury, oxidative stress, and lipid accumulation in mice with HFD-induced NAFLD. Integrated transcriptome and metabolome analyses indicated that NMN and NR altered the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, and linoleic acid metabolism pathways, increased saturated fatty acid (palmitic acid, stearate, and arachidic acid) content, and increased polyunsaturated fatty acid (linoleic acid and eicosapentaenoic acid) content. Quantitative reverse transcription PCR (qRT-PCR) showed that NMN and NR primarily promoted arachidonic acid and linoleic acid catabolism via cytochrome P450 (CYP450) enzymes. This study established a theoretical foundation for the potential use of NMN and NR in future clinical settings.


Subject(s)
Liver , Metabolome , Mice, Inbred C57BL , Niacinamide , Nicotinamide Mononucleotide , Non-alcoholic Fatty Liver Disease , Pyridinium Compounds , Transcriptome , Animals , Niacinamide/pharmacology , Niacinamide/therapeutic use , Niacinamide/analogs & derivatives , Pyridinium Compounds/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/therapeutic use , Male , Transcriptome/drug effects , Metabolome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Diet, High-Fat/adverse effects
17.
Dermatology ; 240(3): 453-461, 2024.
Article in English | MEDLINE | ID: mdl-38599196

ABSTRACT

INTRODUCTION: Ultraviolet radiation (UVR) is the primary risk factor for keratinocyte carcinomas. Oral supplementation with nicotinamide (NAM) is reported to reduce the formation of new keratinocyte carcinomas. NAM's photoprotection is mediated by enhanced DNA repair. We wanted to explore whether NAM in combination with antiproliferative (metformin [Met]) or antioxidant (phloroglucinol [PG]) compounds could potentially enhance its photoprotective effects. METHODS: Hairless mice (C3.Cg-Hrhr/TifBomTac) were treated orally with either a standard dose of NAM monotherapy (NAM-mono; 600 mg/kg) or NAM (400 mg/kg) combined with Met (200 mg/kg) (NAM-Met) or PG (75 mg/kg) (NAM-PG). Mice were irradiated with 3.5 standard erythema doses of UVR three times per week to induce tumour development. Photoprotective effects were based on (i) tumour onset of the first three tumours, (ii) skin photodamage, and (iii) DNA damage (cyclobutane pyrimidine dimers [CPDs] and pyrimidine-pyrimidone (6-4) photoproducts [6-4PPs]). RESULTS: All mice treated with NAM demonstrated a delay in tumour onset and reduced tumour burden compared to the UV control group (NAM, NAM-Met, NAM-PG vs. UV control: p ≤ 0.015). NAM-mono and NAM-PG increased time until all three tumours with no difference between them, indicating a similar degree of photoprotection. NAM-mono had no effect on DNA damage compared to the UV control group (p > 0.05), whereas NAM-PG reduced 6-4PP lesions (p < 0.01) but not CPDs (p > 0.05) compared to NAM-mono. NAM-Met delayed the onset of the third tumour compared to the UV control but demonstrated a quicker onset compared to NAM-mono, suggesting inferior photoprotection compared to nicotinamide monotherapy. CONCLUSION: NAM-PG was as effective in delaying UVR-induced tumour onset as NAM-mono. The reduction in 6-4PP lesions may indicate that the mechanism of NAM-PG is better suited for photoprotection than NAM-mono. NAM-mono was superior to NAM-Met, indicating a dose dependency of NAM's photoprotection. These results highlight the potential for combining photoprotective compounds to enhance photoprotection.


Subject(s)
Metformin , Mice, Hairless , Niacinamide , Skin Neoplasms , Ultraviolet Rays , Animals , Niacinamide/therapeutic use , Niacinamide/pharmacology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , Mice , Metformin/pharmacology , Metformin/therapeutic use , Neoplasms, Radiation-Induced/prevention & control , Neoplasms, Radiation-Induced/etiology , Drug Therapy, Combination , Antioxidants/pharmacology , Antioxidants/therapeutic use , DNA Damage/drug effects , DNA Damage/radiation effects , Female , Vitamin B Complex/therapeutic use , Vitamin B Complex/pharmacology
18.
Pharm Res ; 41(5): 921-935, 2024 May.
Article in English | MEDLINE | ID: mdl-38684562

ABSTRACT

PURPOSE: This study examined the effects of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) on folliculogenesis and mitochondrial dynamics (fission and fusion mechanisms) in ovaries of middle-aged female rats. METHODS: Experimental groups were young, middle-aged (control), middle-aged + NMN and middle-aged + NR. NMN was administered at a concentration of 500 mg/kg intraperitoneally but NR at a concentration of 200 mg/kg by gavage. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were analyzed by ELISA. Hematoxylin-eosin staining sections were used for histopathological examination and follicles-counting. Expression levels of mitochondrial fission (Drp1, Mff and Fis1) and fusion (Mfn1, Mfn2, Opa1, Fam73a and Fam73b) genes as well as Sirt1 gene were analyzed by RT-PCR. Expression levels of fission-related proteins (DRP1, MFF, FIS1 and SIRT1) were analyzed by Western Blot. RESULTS: Higher ovarian index, more corpus luteum and antral follicles were detected in NMN and NR groups compared to the control. NMN or NR could rebalance LH/FSH ratio. The control group was determined to possess higher expression levels of fission genes and lower expression levels of fusion genes when compared the young group. In comparison with the control group, both NMN and NR group were found to exhibit less mitochondrial fission but more mitochondrial fussion. Higher gene and protein levels for Sirt1 were measured in NMN and NR groups compared to the control group. CONCLUSION: This study reveals that NMN alone or NR alone can rebalance mitochondrial dynamics by decreasing excessive fission in middle-aged rat ovaries, thus alleviating mitochondrial stress and correcting aging-induced folliculogenesis abnormalities.


Subject(s)
Aging , Mitochondrial Dynamics , Niacinamide , Nicotinamide Mononucleotide , Ovary , Pyridinium Compounds , Animals , Female , Mitochondrial Dynamics/drug effects , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Ovary/drug effects , Ovary/metabolism , Nicotinamide Mononucleotide/pharmacology , Nicotinamide Mononucleotide/metabolism , Rats , Pyridinium Compounds/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Luteinizing Hormone/metabolism , Luteinizing Hormone/blood , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Rats, Sprague-Dawley , Follicle Stimulating Hormone/metabolism , Dynamins
19.
Exp Eye Res ; 242: 109883, 2024 May.
Article in English | MEDLINE | ID: mdl-38561106

ABSTRACT

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Subject(s)
Cell Differentiation , Endothelium, Corneal , Human Embryonic Stem Cells , Niacinamide , Humans , Cell Differentiation/drug effects , Niacinamide/pharmacology , Endothelium, Corneal/metabolism , Endothelium, Corneal/cytology , Endothelium, Corneal/drug effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Cells, Cultured , Vitamin B Complex/pharmacology , Flow Cytometry , Cell Movement/drug effects , Antigens, CD/metabolism , Antigens, CD/genetics
20.
Phytomedicine ; 129: 155594, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614040

ABSTRACT

BACKGROUND: The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE: The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS: The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS: Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 µM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION: In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.


Subject(s)
Drugs, Chinese Herbal , Microglia , Neuralgia , Niacinamide , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Microglia/drug effects , Microglia/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Niacinamide/pharmacology , Mice, Inbred C57BL , Intestines/drug effects , Pain Threshold/drug effects , Analgesics/pharmacology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...