Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.346
Filter
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125600

ABSTRACT

Tobacco smoking has been highlighted as a major health challenge in modern societies. Despite not causing death directly, smoking has been associated with several health issues, such as cardiovascular diseases, respiratory disorders, and several cancer types. Moreover, exposure to nicotine during pregnancy has been associated with adverse neurological disorders in babies. Nicotine Replacement Therapy (NRT) is the most common strategy employed for smoking cessation, but despite its widespread use, NRT presents with low success and adherence rates. This is attributed partially to the rate of nicotine metabolism by cytochrome P450 2A6 (CYP2A6) in each individual. Nicotine addiction is correlated with the high rate of its metabolism, and thus, novel strategies need to be implemented in NRT protocols. Naturally derived products are a cost-efficient and rich source for potential inhibitors, with the main advantages being their abundance and ease of isolation. This systematic review aims to summarize the natural products that have been identified as CYP2A6 inhibitors, validated through in vitro and/or in vivo assays, and could be implemented as nicotine metabolism inhibitors. The scope is to present the different compounds and highlight their possible implementation in NRT strategies. Additionally, this information would provide valuable insight regarding CYP2A6 inhibitors, that can be utilized in drug development via the use of in silico methodologies and machine-learning models to identify new potential lead compounds for optimization and implementation in NRT regimes.


Subject(s)
Cytochrome P-450 CYP2A6 , Nicotine , Animals , Humans , Biological Products/pharmacology , Cytochrome P-450 CYP2A6/antagonists & inhibitors , Cytochrome P-450 CYP2A6/metabolism , Nicotine/metabolism
2.
J Agric Food Chem ; 72(30): 16594-16602, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-38953685

ABSTRACT

Cigarette smoking is the acknowledged major cause of cancers of the lung and oral cavity and is an established important risk factor for multiple other cancers. DNA addition products (DNA adducts) caused by cigarette smoking are critical factors in its mechanism of carcinogenesis. However, most DNA adducts detected to date in humans cannot be specifically ascribed to smoking but rather have multiple exogenous and endogenous sources. In the study reported here, we prepared [13C]-labeled tobacco to address this problem. We report for the first time the successful growth from seeds to flowering under hydroponic conditions of highly [13C]-labeled tobacco in a controlled 13CO2 environment. The standard growth procedure with optimized conditions is described in detail. The [13C]-enrichment rate was assessed by quantifying nicotine and sugars and their [13C]-isotopologues in this tobacco using high-resolution mass spectrometry, reaching >94% in the tobacco leaves. The [13C]-labeled leaves after curing will be used to make cigarettes, allowing investigation of the specific contributions of tobacco smoke carcinogens to identified DNA adducts in smokers.


Subject(s)
Carbon Isotopes , DNA Damage , Hydroponics , Nicotiana , Nicotiana/chemistry , Nicotiana/growth & development , Nicotiana/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Humans , DNA Adducts/metabolism , DNA Adducts/analysis , Smokers , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Nicotine/metabolism
3.
Plant Sci ; 347: 112174, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38960071

ABSTRACT

Common flue-cured tobacco (Nicotiana tabacum L.) primarily accumulates nicotine, and its flue-cured leaves exhibit a lemon appearance. In contrast, a spontaneous cherry-red variant (CR60) primarily accumulates nornicotine, accompanied by distinctive red dapples on the cured leaves. In this study, suppression of conversion of nicotine to nornicotine by genome editing resulted in decreased nornicotine and N-acyl nornicotines (NacNNs), and the subsequent disappearance of red dapples in CR60. Conversely, overexpression of CYP82E4 increased nornicotine and NacNNs accumulation, inducing a red dapple phenotype in common tobacco. Notably, nicotine conversion triggered significant alterations in leaf total sugars, alkaloids, and nitrogens. Metabolome analyses using 1352 identified compounds indicated nicotine conversion dramatically affected the entire metabolic network and induced unique metabolic responses across diverse genetic backgrounds. Further WGCNA analysis revealed that nicotine conversion caused substantial contents variation of alkaloids, flavonoids and amino acids and derivatives in cured leaves. Overall, this research provides valuable insights into the mechanisms underlying red dapple formation in cherry-red tobacco, elucidating profound influence of nicotine conversion on entire metabolic network.


Subject(s)
Nicotiana , Nicotine , Plant Leaves , Plant Proteins , Nicotiana/genetics , Nicotiana/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Nicotine/metabolism , Nicotine/analogs & derivatives , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Alkaloids/metabolism , Gene Expression Regulation, Plant
4.
J Chem Inf Model ; 64(13): 5253-5261, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973303

ABSTRACT

Psychoactive substances, including morphine and methamphetamine, have been shown to interact with the classic innate immune receptor Toll-like receptor 4 (TLR4) and its partner protein myeloid differentiation protein 2 (MD2) in a nonenantioselective manner. (-)-Nicotine, the primary alkaloid in tobacco and a key component of highly addictive cigarettes, targets the TLR4/MD2, influencing TLR4 signaling pathways. Existing as two enantiomers, the stereoselective recognition of nicotine by TLR4/MD2 in the context of the innate immune response remains unclear. In this study, we synthesized (+)-nicotine and investigated its effects alongside (-)-nicotine on lipopolysaccharide (LPS)-induced TLR4 signaling. (-)-Nicotine dose-dependently inhibited proinflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and cyclooxygenase-2 (COX-2). In contrast, (+)-nicotine showed no such inhibitory effects. Molecular dynamics simulations revealed that (-)-nicotine exhibited a stronger affinity with the TLR4 coreceptor MD2 than (+)-nicotine. Additionally, in silico simulations revealed that both nicotine enantiomers initially attach to the entrance of the MD2 cavity, creating a metastable state before they fully enter the cavity. In the metastable state, (-)-nicotine established more stable interactions with the surrounding residues at the entrance of the MD2 cavity compared to those of (+)-nicotine. This highlights the crucial role of the MD2 cavity entrance in the chiral recognition of nicotine. These findings provide valuable insights into the distinct interactions between nicotine enantiomers and the TLR4 coreceptor MD2, underscoring the enantioselective effect of nicotine on modulating TLR4 signaling.


Subject(s)
Lymphocyte Antigen 96 , Molecular Dynamics Simulation , Nicotine , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Nicotine/pharmacology , Nicotine/chemistry , Nicotine/analogs & derivatives , Nicotine/metabolism , Lymphocyte Antigen 96/metabolism , Lymphocyte Antigen 96/chemistry , Signal Transduction/drug effects , Stereoisomerism , Humans , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry
5.
Plant Physiol Biochem ; 214: 108916, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002305

ABSTRACT

Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation. Here, we identified NtCOP1, a COP1 homolog in Nicotiana tabacum, and demonstrated its ability to complement the cop1-4 mutant in Arabidopsis thaliana at molecular, morphological, and biochemical levels. Through the development of NtCOP1 overexpression (NtCOP1OX) plants, we observed a significant reduction in nicotine and flavonol content, inversely correlated with the down-regulation of nicotine and phenylpropanoid pathway. Conversely, CRISPR/Cas9-based knockout mutant plants (NtCOP1CR) exhibited an increase in nicotine levels. Further investigations, including yeast-two hybrid assays, grafting experiments, and Western blot analyses, revealed that NtCOP1 modulates nicotine biosynthesis by targeting NtHY5, thereby impeding its transport from shoot-to-root. We conclude that the interplay between HY5 and COP1 functions antagonistically in the light-dependent regulation of nicotine biosynthesis in tobacco.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana , Nicotine , Nicotiana/metabolism , Nicotiana/genetics , Nicotine/biosynthesis , Nicotine/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plants, Genetically Modified/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics
6.
Sci Rep ; 14(1): 14957, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942832

ABSTRACT

The tobacco alkaloid nicotine is known for its activation of neuronal nicotinic acetylcholine receptors. Nicotine is consumed in different ways such as through conventional smoking, e-cigarettes, snuff or nicotine pouches. The use of snuff has been associated with several adverse health effects, such as inflammatory reactions of the oral mucosa and oral cavity cancer. We performed a metabolomic analysis of nicotine-exposed THP-1 human monocytes. Cells were exposed to 5 mM of the alkaloid for up to 4 h, and cell extracts and medium subjected to untargeted liquid chromatography high-resolution mass spectrometry. Raw data processing revealed 17 nicotine biotransformation products. Among these, cotinine and nornicotine were identified as the two major cellular biotransformation products. The application of multi- and univariate statistical analyses resulted in the annotation, up to a certain level of identification, of 12 compounds in the cell extracts and 13 compounds in the medium that were altered by nicotine exposure. Of these, four were verified as methylthioadenosine, cytosine, uric acid, and L-glutamate. Methylthioadenosine levels were affected in both cells and the medium, while cytosine, uric acid, and L-glutamate levels were affected in the medium only. The effects of smoking on the pathways involving these metabolites have been previously demonstrated in humans. Most of the other discriminating compounds, which were merely tentatively or not fully identified, were amino acids or amino acid derivatives. In conclusion, our preliminary data suggest that some of the potentially adverse effects related to smoking may also be expected when nicotine is consumed via snuff or nicotine pouches.


Subject(s)
Mass Spectrometry , Metabolomics , Monocytes , Nicotine , Humans , Nicotine/metabolism , Nicotine/analogs & derivatives , Metabolomics/methods , Monocytes/metabolism , Monocytes/drug effects , Mass Spectrometry/methods , THP-1 Cells , Cotinine/analogs & derivatives , Cotinine/metabolism , Chromatography, Liquid/methods , Metabolome/drug effects , Glutamic Acid/metabolism
7.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1935-1949, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914502

ABSTRACT

Plant synthetic biology has significant theoretical advantages in exploration and production of plant natural products. However, its contribution to the field of biosynthesis is currently limited due to the lack of efficient chassis systems and related enabling technologies. Synthetic biologists often avoid tobacco as a chassis system because of its long operation cycle, difficulties in genetic and metabolic modification, complex metabolism and purification background, nicotine toxicity, and challenges in accurately controlling for agricultural production. Nevertheless, the tobacco suspension cell chassis system offers a viable solution to these challenges. The objective of this research was to develop a tobacco suspension cell chassis with high scientific and industrial potential. This chassis should exhibit rapid growth, high biomass, excellent dispersion, high transformation efficiency, and minimal nicotine content. Nicotiana benthamiana, which has high applicability in molecular technology, was used to induce suspension cells. The induced suspension cells, named NBS-1, exhibited rapid growth, excellent dispersion, and high biomass, reaching a maximum biomass of 476.39 g/L (fresh weight), which was significantly higher than that of BY-2. The transformation efficiency of the widely utilized pEAQ-HT transient expression system in NBS-1 reached 81%, which was substantially elevated compared to BY-2. The metabolic characteristics and bias of BY-2 and NBS-1 were analyzed using transcriptome data. It was found that the gene expression of pathways related to biosynthesis of flavonoids and their derivatives in NBS-1 was significantly higher, while the pathways related to alkaloid biosynthesis were significantly lower compared to BY-2. These findings were further validated by the total content of flavonoid and alkaloid. In summary, our research demonstrates NBS-1 possesses minimal nicotine content and provides valuable guidance for selecting appropriate chassis for specific products. In conclusion, this study developed NBS-1, a tobacco suspension cell chassis with excellent growth and transformation, high flavonoid content and minimal nicotine content, which has important guiding significance for the development of tobacco suspension cell chassis.


Subject(s)
Nicotiana , Nicotiana/metabolism , Nicotiana/genetics , Synthetic Biology , Plants, Genetically Modified/metabolism , Metabolic Engineering/methods , Cell Culture Techniques/methods , Nicotine/metabolism , Nicotine/biosynthesis , Biomass
8.
J Environ Manage ; 365: 121568, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936024

ABSTRACT

Adding fruit tree branches to the compost pile in appropriate proportions is one of the methods used to address the challenge of tobacco waste recycling. However, the effects of different proportions of fruit tree branches on nicotine concentration and microbial diversity during tobacco waste composting have not been reported. In this study, a composting system with tobacco waste, cow dung, and fruit tree branches was established in a laboratory fermenter to assess the impact of adding 10%, 20%, and 30% fruit tree branches on quantity changes. In addition, the relationships between nicotine degradation, compost properties, enzyme activities, and microbial diversities were determined using biochemical assay methods and high-throughput sequencing. The results showed that adding appropriate proportions of fruit branch segments affected changes in physical and chemical properties during composting and promoted tobacco waste compost maturity. Aerobic composting effectively degraded nicotine in tobacco waste. Increased proportions of fruit branch segments led to elevations in nicotine degradation rates and enzyme activities related to lignocellulose degradation. The addition of fruit branches influenced the relative abundance and species of dominant bacteria and fungi at the phylum and genus levels. However, it did not significantly affect the relative abundance of the main bacterial genera involved in nicotine degradation. Nevertheless, it reduced the sensitivity of enzyme activity to nicotine content within heaps, increasing reliance on total nitrogen changes. The results of this study provide a theoretical basis for the utilization of tobacco waste in composting systems and indicate that fruit tree branches can enhance nicotine degradation efficiency during tobacco waste composting.


Subject(s)
Composting , Nicotiana , Nicotine , Nicotiana/metabolism , Nicotine/metabolism , Nicotine/analysis , Fruit , Soil Microbiology , Trees
9.
Appl Microbiol Biotechnol ; 108(1): 395, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918238

ABSTRACT

Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users.


Subject(s)
Bacteria , Metagenomics , Microbiota , Nitrosamines , Tobacco, Smokeless , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Nitrosamines/metabolism , India , Nicotine/metabolism , Humans
10.
Arch Microbiol ; 206(7): 316, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904699

ABSTRACT

Cotinine, the primary metabolite of nicotine in the human body, is an emerging pollutant in aquatic environments. It causes environmental problems and is harmful to the health of humans and other mammals; however, the mechanisms of its biodegradation have been elucidated incompletely. In this study, a novel Gram-negative strain that could degrade and utilize cotinine as a sole carbon source was isolated from municipal wastewater samples, and its cotinine degradation characteristics and kinetics were determined. Pseudomonas sp. JH-2 was able to degrade 100 mg/L (0.56 mM) of cotinine with high efficiency within 5 days at 30 ℃, pH 7.0, and 1% NaCl. Two intermediates, 6-hydroxycotinine and 6-hydroxy-3-succinoylpyridine (HSP), were identified by high-performance liquid chromatography and liquid chromatograph mass spectrometer. The draft whole genome sequence of strain JH-2 was obtained and analyzed to determine genomic structure and function. No homologs of proteins predicted in Nocardioides sp. JQ2195 and reported in nicotine degradation Pyrrolidine pathway were found in strain JH-2, suggesting new enzymes that responsible for cotinine catabolism. These findings provide meaningful insights into the biodegradation of cotinine by Gram-negative bacteria.


Subject(s)
Biodegradation, Environmental , Cotinine , Pseudomonas , Wastewater , Pseudomonas/metabolism , Pseudomonas/genetics , Pseudomonas/isolation & purification , Pseudomonas/classification , Cotinine/metabolism , Cotinine/analogs & derivatives , Wastewater/microbiology , Nicotine/metabolism , Nicotine/analogs & derivatives , Pyridines/metabolism , Genome, Bacterial , Phylogeny , Succinates
11.
J Phys Chem B ; 128(19): 4577-4589, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38696590

ABSTRACT

The binding affinity of nicotinoids to the binding residues of the α4ß2 variant of the nicotinic acetylcholine receptor (nAChR) was identified as a strong predictor of the nicotinoid's addictive character. Using ab initio calculations for model binding pockets of increasing size composed of 3, 6, and 14 amino acids (3AA, 6AA, and 14AA) that are derived from the crystal structure, the differences in binding affinity of 6 nicotinoids, namely, nicotine (NIC), nornicotine (NOR), anabasine (ANB), anatabine (ANT), myosmine (MYO), and cotinine (COT) were correlated to their previously reported doses required for increases in intracranial self-stimulation (ICSS) thresholds, a metric for their addictive function. By employing the many-body decomposition, the differences in the binding affinities of the various nicotinoids could be attributed mainly to the proton exchange energy between the pyridine and non-pyridine rings of the nicotinoids and the interactions between them and a handful of proximal amino acids, namely Trp156, Trpß57, Tyr100, and Tyr204. Interactions between the guest nicotinoid and the amino acids of the binding pocket were found to be mainly classical in nature, except for those between the nicotinoid and Trp156. The larger pockets were found to model binding structures more accurately and predicted the addictive character of all nicotinoids, while smaller models, which are more computationally feasible, would only predict the addictive character of nicotinoids that are similar to nicotine. The present study identifies the binding affinity of the guest nicotinoid to the host binding pocket as a strong descriptor of the nicotinoid's addiction potential, and as such it can be employed as a fast-screening technique for the potential addiction of nicotine analogs.


Subject(s)
Brain , Receptors, Nicotinic , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Humans , Binding Sites , Brain/metabolism , Nicotine/chemistry , Nicotine/analogs & derivatives , Nicotine/metabolism , Anabasine/chemistry , Anabasine/metabolism , Anabasine/analogs & derivatives , Models, Molecular , Protein Binding , Pyridines/chemistry , Pyridines/metabolism , Cotinine/chemistry , Cotinine/metabolism , Cotinine/analogs & derivatives , Alkaloids
12.
Anal Methods ; 16(24): 3815-3830, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38738307

ABSTRACT

Nicotine crosses the blood-brain barrier and interacts with nicotinic acetylcholine receptors, initiating a cascade of neurotransmitter effects with potential therapeutic implications for neurodegenerative conditions such as Alzheimer's and Parkinson's disease. The hippocampus, pivotal for cognitive processes, plays a crucial role in nicotine-mediated cognitive enhancement due to its abundant expression of nicotinic acetylcholine receptors, particularly the α7 subtype, which is heavily implicated in hippocampus-related behavioral functions and dysfunctions. However, the intricate process of nicotine metabolism within the hippocampus remains poorly understood, impeding our comprehension of how nicotine and its metabolites modulate neurotransmitter dynamics. To address this gap, we have developed and validated a novel methodology combining microdialysis with UHPLC-MS/MS, enabling simultaneous detection of 12 neurotransmitters, nicotine, and its seven metabolites within the rat hippocampus. The linearity range of the targeted compounds is satisfactory (R2 > 0.9970), with intra-day and inter-day precision not exceeding 12.7%, and accuracy ranging from -12.4% to 13.7%. Our findings reveal differential pharmacokinetics of nicotine and its metabolites in the α7KO group compared to the control group, characterized by heightened nicotine absorption and slower elimination and distribution in the former. Notably, the pharmacokinetic parameters of cotinine exhibit similarity across both groups. Studies investigating the impact of nicotine on monoamine neurotransmitters have elucidated its capacity to augment the release of dopamine, serotonin, norepinephrine, glutamate, and acetylcholine in the rat hippocampus. This integrated approach facilitates a comprehensive analysis of neurotransmitter alterations within the hippocampal region following nicotine administration, thereby providing robust technical support and scientific rationale for understanding the neurochemical effects of nicotine and its metabolites. Further exploration into the pharmacokinetics and pharmacodynamics of nicotine holds promise for uncovering novel therapeutic avenues in the management of neurodegenerative diseases such as Alzheimer's.


Subject(s)
Hippocampus , Microdialysis , Neurotransmitter Agents , Nicotine , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Nicotine/pharmacokinetics , Nicotine/metabolism , Animals , Hippocampus/metabolism , Microdialysis/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/analysis , Rats , Male
13.
Biochem Pharmacol ; 225: 116263, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735444

ABSTRACT

Although α2 was the first neuronal nicotinic acetylcholine receptor (nAChR) receptor subunit to be cloned, due to its low level of expression in rodent brain, its study has largely been neglected. This study provides a comparison of the α2 and α4 structures and their functional similarities, especially in regard to the existence of low and high sensitivity forms based on subunit stoichiometry. We show that the pharmacological profiles of the low and high sensitivity forms of α2ß2 and α4ß2 receptors are very similar in their responses to nicotine, with high sensitivity receptors showing protracted responses. Sazetidine A, an agonist that is selective for the high sensitivity α4 receptors also selectively activates high sensitivity α2 receptors. Likewise, α2 receptors have similar responses as α4 receptors to the positive allosteric modulators (PAMs) desformylflustrabromine (dFBr) and NS9283. We show that the partial agonists for α4ß2 receptors, cytisine and varenicline are also partial agonists for α2ß2 receptors. Studies have shown that levels of α2 expression may be much higher in the brains of primates than those of rodents, suggesting a potential importance for human therapeutics. High-affinity nAChR have been studied in humans with PET ligands such as flubatine. We show that flubatine has similar activity with α2ß2 and α4ß2 receptors so that α2 receptors will also be detected in PET studies that have previously presumed to selectively detect α4ß2 receptors. Therefore, α2 receptors need more consideration in the development of therapeutics to manage nicotine addiction and declining cholinergic function in age and disease.


Subject(s)
Nicotinic Agonists , Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Animals , Nicotinic Agonists/pharmacology , Humans , Nicotine/pharmacology , Nicotine/metabolism , Xenopus laevis , Azetidines/pharmacology , Quinolizines/pharmacology , Varenicline/pharmacology , Azocines/pharmacology , Quinolizidine Alkaloids , Pyridines
14.
J Agric Food Chem ; 72(23): 12967-12974, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814790

ABSTRACT

Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.


Subject(s)
Hemiptera , Insect Proteins , Insecticides , Neonicotinoids , Receptors, Nicotinic , Animals , Insecticides/chemistry , Insecticides/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Hemiptera/chemistry , Hemiptera/genetics , Hemiptera/drug effects , Hemiptera/metabolism , Structure-Activity Relationship , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Neonicotinoids/chemistry , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Aplysia/chemistry , Aplysia/metabolism , Aplysia/genetics , Nicotine/chemistry , Nicotine/metabolism , Nicotine/analogs & derivatives , Nicotine/pharmacology
15.
Anal Chem ; 96(18): 7022-7029, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38669590

ABSTRACT

The utility of two novel laser-based methods, laser ablation electrospray ionization (LAESI) and laser desorption ionization (LDI) from silicon nanopost array (NAPA), is explored via local analysis and mass spectrometry imaging (MSI) of hard tissues (tooth and hair) for the detection and mapping of organic components. Complex mass spectra are recorded in local analysis mode from tooth dentin and scalp hair samples. Nicotine and its metabolites (cotinine, hydroxycotinine, norcotinine, and nicotine) are detected by LAESI-MS in the teeth of rats exposed to tobacco smoke. The intensities of the detected metabolite peaks are proportional to the degree of exposure. Incorporating ion mobility separation in the LAESI-MS analysis of scalp hair enables the detection of cotinine in smoker hair along with other common molecular species, including endogenous steroid hormones and some lipids. Single hair strands are imaged by MALDI-MSI and NAPA-LDI-MSI to explore longitudinal variations in the level of small molecules. Comparing spectra integrated from NAPA-LDI-MSI and MALDI-MSI images reveals that the two techniques provide complementary information. There were 105 and 82 sample-related peaks for MALDI and NAPA, respectively, with an overlap of only 16 peaks, indicating a high degree of complementarity. Enhanced molecular coverage and spatial resolution offered by LAESI-MS and NAPA-LDI-MSI can reveal the distributions of known and potential biomarkers in hard tissues, facilitating exposome research.


Subject(s)
Hair , Lasers , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Xenobiotics , Animals , Hair/chemistry , Rats , Xenobiotics/analysis , Xenobiotics/metabolism , Spectrometry, Mass, Electrospray Ionization , Tooth/chemistry , Tooth/metabolism , Nicotine/analysis , Nicotine/metabolism , Male
16.
Cells ; 13(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534318

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Receptors, Nicotinic , Humans , Parkinson Disease/metabolism , Receptors, Nicotinic/metabolism , Neurodegenerative Diseases/metabolism , Nicotine/metabolism , Dopamine/metabolism , Astrocytes/metabolism
17.
Exp Brain Res ; 242(4): 971-986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38430248

ABSTRACT

The gradual nature of age-related neurodegeneration causes Parkinson's disease (PD) and impairs movement, memory, intellectual ability, and social interaction. One of the most prevalent neurodegenerative conditions affecting the central nervous system (CNS) among the elderly is PD. PD affects both motor and cognitive functions. Degeneration of dopaminergic (DA) neurons and buildup of the protein α-synuclein (α-Syn) in the substantia nigra pars compacta (SNpc) are two major causes of this disorder. Both UPS and ALS systems serve to eliminate α-Syn. Autophagy and UPS deficits, shortened life duration, and lipofuscin buildup accelerate PD. This sickness has no cure. Innovative therapies are halting PD progression. Bioactive phytochemicals may provide older individuals with a natural substitute to help delay the onset of neurodegenerative illnesses. This study examines whether nicotine helps transgenic C. elegans PD models. According to numerous studies, nicotine enhances synaptic plasticity and dopaminergic neuronal survival. Upgrades UPS pathways, increases autophagy, and decreases oxidative stress and mitochondrial dysfunction. At 100, 150, and 200 µM nicotine levels, worms showed reduced α-Syn aggregation, repaired DA neurotoxicity after 6-OHDA intoxication, increased lifetime, and reduced lipofuscin accumulation. Furthermore, nicotine triggered autophagy and UPS. We revealed nicotine's potential as a UPS and autophagy activator to prevent PD and other neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Aged , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Nicotine/pharmacology , Nicotine/metabolism , Caenorhabditis elegans/metabolism , Lipofuscin/metabolism , Lipofuscin/pharmacology , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , Neurodegenerative Diseases/metabolism , Dopaminergic Neurons/metabolism , Autophagy
18.
Pediatrics ; 153(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38463008

ABSTRACT

BACKGROUND: Despite the increasing prevalence of vaping e-cigarettes among adolescents, there remains a lack of population-level assessments regarding the objective measurement of nicotine exposure. METHODS: This study analyzed a nationally representative sample of adolescents aged 13 to 17 years from Wave 5 of the Population Assessment of Tobacco and Health Study conducted between 2018 and 2019. Urinary nicotine metabolites, including cotinine and trans-3'-hydroxycotinine (3-HC), were assessed among exclusive nonnicotine e-cigarette users (n = 56), exclusive nicotine e-cigarette users (n = 200), and nonusers (n = 1059). We further examined nicotine exposure by past 30-day vaping frequency (ie, occasional [1-5 days], intermittent [6-19 days], and frequent [20+ days]) and flavor types among nicotine e-cigarette users. Multivariable linear regressions tested pairwise group effects, and biomarkers were normalized by the log transformation. RESULTS: Compared with nonusers, both nonnicotine and nicotine e-cigarette users exhibited higher levels of cotinine and 3-HC. Nicotine e-cigarette users had mean cotinine concentrations (61.3; 95% confidence interval, 23.8-158.0, ng/mg creatinine) approximately 146 times higher (P < .0001) than nonusers (0.4; 0.3-0.5), whereas nonnicotine users (4.9; 1.0-23.2) exhibited cotinine concentrations ∼12 times higher (P = .02). Among nicotine e-cigarette users, the levels of cotinine and 3-HC increased by vaping frequency, with cotinine increasing from 10.1 (2.5-40.1) among occasional users to 73.6 (31.8-170.6) among intermittent users and 949.1 (482.5-1866.9) among frequent users. Nicotine exposure was not significantly different by flavor type. CONCLUSIONS: E-cigarette use poses health-related risks resulting from nicotine exposure among adolescents. Comprehensive regulations of e-cigarette products and marketing, vaping prevention, cessation, and public policies are needed to prevent youth from developing nicotine addiction.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Vaping , Humans , Adolescent , Nicotine/metabolism , Cotinine/urine , Vaping/epidemiology , Vaping/urine , Biomarkers/urine
19.
Placenta ; 147: 42-51, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38308901

ABSTRACT

INTRODUCTION: Preterm birth (PTB) frequently results from the syndrome of preterm labor (PTL). PTL is linked to an atypical maternal inflammatory response, as well as intrauterine inflammation and/or infection. In this study, we explored the mechanisms involved in nicotine-mediated abnormal macrophage polarization and trophoblast invasion associated with PTL. METHODS: First, THP-1-M0 macrophages were generated by treating the human monocytic leukemia cell line (THP-1) with phorbol 12-myristate 13-acetate for a duration of 24 h. Afterward, nicotine treatment was administered, followed by coculturing with the HTR-8/SVneo trophoblast cell line (HTR-8) at a ratio of 1:1. Next, we transfected sh-α7nAChR and treated THP-1-M0 macrophages and HTR-8 cells with nicotine. In addition, we transfected THP-1-M0 macrophages with sh-NC or sh-SIRT1 or subjected them to 4 nM nicotinamide adenine dinucleotide (NAD) metabolic inhibitor FK866 treatment. Moreover, HTR-8 cells were treated with nicotine, after which THP-1-M0 macrophages were cocultured with HTR-8 cells. Finally, we constructed an in vivo RU486-induced PTL rat model to verify the effect of nicotine and the mechanisms involved. RESULTS: We found that nicotine affected polarization and α7nAChR expression in HTR-8 cocultured THP-1-M0 macrophages. Knocking down α7nAChR blocked the effect of nicotine on the proliferation and invasion of HTR-8 cells. Furthermore, nicotine activated the α7nAChR/SIRT1 axis to regulate THP-1-M0 macrophage polarization through the cholinergic anti-inflammatory pathway. Additionally, NAD metabolism mediated the role of the α7nAChR/SIRT1 axis in nicotine-induced polarization of HTR-8 cocultured THP-1-M0 macrophages. In vivo experiments demonstrated that nicotine alleviated inflammation in PTL rats, which involved the α7nAChR/SIRT1 axis. CONCLUSION: Nicotine regulated abnormal macrophage polarization and trophoblast invasion associated with PTL via the α7nAChR/SIRT1 axis.


Subject(s)
Nicotine , Premature Birth , Infant, Newborn , Female , Humans , Rats , Animals , Nicotine/pharmacology , Nicotine/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Sirtuin 1/metabolism , NAD/metabolism , NAD/pharmacology , Cell Movement , Premature Birth/metabolism , Trophoblasts/metabolism , Macrophages/metabolism , Inflammation/metabolism
20.
Appl Environ Microbiol ; 90(3): e0225523, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38415602

ABSTRACT

Flavoprotein monooxygenases catalyze reactions, including hydroxylation and epoxidation, involved in the catabolism, detoxification, and biosynthesis of natural substrates and industrial contaminants. Among them, the 6-hydroxy-3-succinoyl-pyridine (HSP) monooxygenase (HspB) from Pseudomonas putida S16 facilitates the hydroxylation and C-C bond cleavage of the pyridine ring in nicotine. However, the mechanism for biodegradation remains elusive. Here, we refined the crystal structure of HspB and elucidated the detailed mechanism behind the oxidative hydroxylation and C-C cleavage processes. Leveraging structural information about domains for binding the cofactor flavin adenine dinucleotide (FAD) and HSP substrate, we used molecular dynamics simulations and quantum/molecular mechanics calculations to demonstrate that the transfer of an oxygen atom from the reactive FAD peroxide species (C4a-hydroperoxyflavin) to the C3 atom in the HSP substrate constitutes a rate-limiting step, with a calculated reaction barrier of about 20 kcal/mol. Subsequently, the hydrogen atom was rebounded to the FAD cofactor, forming C4a-hydroxyflavin. The residue Cys218 then catalyzed the subsequent hydrolytic process of C-C cleavage. Our findings contribute to a deeper understanding of the versatile functions of flavoproteins in the natural transformation of pyridine and HspB in nicotine degradation.IMPORTANCEPseudomonas putida S16 plays a pivotal role in degrading nicotine, a toxic pyridine derivative that poses significant environmental challenges. This study highlights a key enzyme, HspB (6-hydroxy-3-succinoyl-pyridine monooxygenase), in breaking down nicotine through the pyrrolidine pathway. Utilizing dioxygen and a flavin adenine dinucleotide cofactor, HspB hydroxylates and cleaves the substrate's side chain. Structural analysis of the refined HspB crystal structure, combined with state-of-the-art computations, reveals its distinctive mechanism. The crucial function of Cys218 was never discovered in its homologous enzymes. Our findings not only deepen our understanding of bacterial nicotine degradation but also open avenues for applications in both environmental cleanup and pharmaceutical development.


Subject(s)
Mixed Function Oxygenases , Nicotine , Succinates , Mixed Function Oxygenases/metabolism , Nicotine/metabolism , Flavin-Adenine Dinucleotide/metabolism , Flavoproteins/metabolism , Hydroxylation , Pyridines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL