Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167478, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39173891

ABSTRACT

Niemann-Pick disease Type C (NPC) is a neurodegenerative disease mainly caused by the mutation in NPC1 gene, leading to massive accumulation of unesterified cholesterol in the late endosome/lysosome of cells. Impaired phenotype of microglia is a hallmark in Npc1 mutant mice (Npc1-/- mice). However, the mechanism of Npc1 in regulating microglial function is still unclear. Here, we showed that the reactive microglia in the neonatal Npc1-/- mice indicated by the increased lysosome protein CD68 and phagocytic activity were associated with disrupted TREM2-mTOR signaling in microglia. Furthermore, in Npc1-deficient BV2 cells, genetic deletion of Trem2 partially restored microglial function, probably via restored mTOR signaling. Taken together, our findings indicated that loss of Npc1 in microglia caused changes of their morphologies and the impairment of lysosomal function, which were linked to the TREM2-mTOR signaling pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins , Membrane Glycoproteins , Microglia , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Receptors, Immunologic , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , TOR Serine-Threonine Kinases/metabolism , Mice , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Microglia/metabolism , Microglia/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Mice, Knockout
2.
Lab Anim ; 58(4): 313-323, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102515

ABSTRACT

Niemann-Pick disease type C (NPC) is a lethal genetic disease with mutations in NPC1 or NPC2 gene. Npc1-deficient (Npc1-/-) mice have been used as a model for NPC pathogenesis to develop novel therapies for NPC. However, Npc1-/- mice are infertile; thus, securing sufficient numbers for translational research is difficult. Hence, we attempted reproductive engineering techniques such as in vitro fertilization (IVF) and sperm cryopreservation. For the first time, we succeeded in producing fertilized oocytes via IVF using male and female Npc1-/- mice. Fertilized oocytes were also obtained via IVF using cryopreserved sperm from Npc1-/- mice. The obtained fertilized oocytes normally developed into live pups via embryo transfer, and they eventually exhibited NPC pathogenesis. These findings are useful for generating an efficient breeding system that overcomes the reproductive challenges of Npc1-/- mice and will contribute to developing novel therapeutic methods using NPC model mice.


Subject(s)
Disease Models, Animal , Embryo Transfer , Fertilization in Vitro , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Animals , Female , Male , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/physiopathology , Niemann-Pick Disease, Type C/therapy , Mice , Intracellular Signaling Peptides and Proteins/genetics , Cryopreservation , Mice, Knockout , Infertility/genetics , Breeding
3.
Genes (Basel) ; 15(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39202426

ABSTRACT

Niemann-Pick disease type C (NPC) is a rare and fatal neurological disorder caused by mutations in Npc1 or Npc2, with Npc1 accounting for 95% of cases. These mutations result in the functional loss of their respective proteins, causing cellular abnormalities characterized by disrupted lipid dysregulation, calcium dysfunction, elevated damage associated molecular patterns (DAMPs), and a pro-inflammatory environment. This cellular pathology ultimately triggers neurodegeneration, with the cerebellum being the earliest and most affected region. We have recently shown atypical activation of interferon signaling in the presymptomatic Npc1-/- mouse cerebellum and, to a lesser extent, in the cerebral cortex. In addition, we reported that the Amyloid Precursor Protein (APP) is an NPC disease modifier. Loss of APP function leads to widespread neurodegeneration in the NPC brain, including exacerbated interferon signaling in the cerebellum. To better understand the role of APP as a disease modifier throughout the NPC brain, here we carried out a transcriptomic analysis of the cerebral cortex and cerebellum from 3-week-old Npc1-/- mice as well as age-matched controls in the presence and absence of APP. We report differential effects of APP loss of function in the cerebral cortex and cerebellum, including cholesterol and tau dysregulation, in both brain regions. Our findings demonstrate a novel link between APP loss and early pathogenic mechanisms in NPC.


Subject(s)
Amyloid beta-Protein Precursor , Cerebellum , Cholesterol , Homeostasis , Interferons , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Signal Transduction , tau Proteins , Animals , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice , tau Proteins/metabolism , tau Proteins/genetics , Cholesterol/metabolism , Phosphorylation , Cerebellum/metabolism , Cerebellum/pathology , Interferons/metabolism , Interferons/genetics , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Mice, Knockout , Disease Models, Animal
4.
Mol Biol Rep ; 51(1): 828, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033258

ABSTRACT

Niemann-Pick disease type C (NPC) is a rare neurodegenerative condition resulted from mutations in NPC1 and NPC2 genes. This cellular lipid transferring disorder mainly involves endocytosed cholesterol trafficking. The accumulation of cholesterol and glycolipids in late endosomes and lysosomes results in progressive neurodegeneration and death. Recently, genome editing technologies, particularly CRISPR/Cas9 have offered the opportunity to create disease models to screen novel therapeutic options for this disorder. Moreover, these methods have been used for the purpose of gene therapy. This review summarizes the studies that focused on the application of CRISPR/Cas9 technology for exploring the mechanism of intracellular cholesterol transferring, and screening of novel agents for treatment of NPC.


Subject(s)
CRISPR-Cas Systems , Cholesterol , Gene Editing , Genetic Therapy , Niemann-Pick Disease, Type C , CRISPR-Cas Systems/genetics , Humans , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Gene Editing/methods , Genetic Therapy/methods , Cholesterol/metabolism , Animals , Niemann-Pick C1 Protein , Disease Models, Animal
5.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715125

ABSTRACT

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Subject(s)
Genetic Therapy , Mutation , Niemann-Pick C1 Protein , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/therapy , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Diseases/genetics , Niemann-Pick Diseases/metabolism , Niemann-Pick Diseases/therapy , Niemann-Pick Diseases/pathology , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics
6.
J Lipid Res ; 65(6): 100556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719150

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.


Subject(s)
Autophagy , Niemann-Pick Disease, Type C , Sphingolipids , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/genetics , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Niemann-Pick C1 Protein , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/antagonists & inhibitors
7.
Cell Death Dis ; 15(5): 382, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821960

ABSTRACT

Impairment of autophagy leads to an accumulation of misfolded proteins and damaged organelles and has been implicated in plethora of human diseases. Loss of autophagy in actively respiring cells has also been shown to trigger metabolic collapse mediated by the depletion of nicotinamide adenine dinucleotide (NAD) pools, resulting in cell death. Here we found that the deficit in the autophagy-NAD axis underpins the loss of viability in cell models of a neurodegenerative lysosomal storage disorder, Niemann-Pick type C1 (NPC1) disease. Defective autophagic flux in NPC1 cells resulted in mitochondrial dysfunction due to impairment of mitophagy, leading to the depletion of both the reduced and oxidised forms of NAD as identified via metabolic profiling. Consequently, exhaustion of the NAD pools triggered mitochondrial depolarisation and apoptotic cell death. Our chemical screening identified two FDA-approved drugs, celecoxib and memantine, as autophagy activators which effectively restored autophagic flux, NAD levels, and cell viability of NPC1 cells. Of biomedical relevance, either pharmacological rescue of the autophagy deficiency or NAD precursor supplementation restored NAD levels and improved the viability of NPC1 patient fibroblasts and induced pluripotent stem cell (iPSC)-derived cortical neurons. Together, our findings identify the autophagy-NAD axis as a mechanism of cell death and a target for therapeutic interventions in NPC1 disease, with a potential relevance to other neurodegenerative disorders.


Subject(s)
Autophagy , Induced Pluripotent Stem Cells , NAD , Niemann-Pick Disease, Type C , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Humans , Autophagy/drug effects , NAD/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Mitochondria/metabolism , Mitochondria/drug effects , Memantine/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Cell Death/drug effects , Cell Survival/drug effects , Mitophagy/drug effects , Apoptosis/drug effects
8.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673803

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a lysosomal disorder due to impaired intracellular cholesterol transport out of the endolysosomal compartment.. Marked heterogeneity has been observed in individuals with the same NPC1 genotype, thus suggesting a significant effect of modifier genes. Prior work demonstrated that decreased SOAT1 activity decreased disease severity in an NPC1 mouse model. Thus, we hypothesized that a polymorphism associated with decreased SOAT1 expression might influence the NPC1 phenotype. Phenotyping and genomic sequencing of 117 individuals with NPC1 was performed as part of a Natural History trial. Phenotyping included determination of disease severity and disease burden. Significant clinical heterogeneity is present in individuals homozygous for the NPC1I1061T variant and in siblings. Analysis of the SOAT1 polymorphism, rs1044925 (A>C), showed a significant association of the C-allele with earlier age of neurological onset. The C-allele may be associated with a higher Annualized Severity Index Score as well as increased frequency of liver disease and seizures. A polymorphism associated with decreased expression of SOAT1 appears to be a genetic modifier of the NPC1 phenotype. This finding is consistent with prior data showing decreased phenotypic severity in Npc1-/-:Soat1-/- mice and supports efforts to investigate the potential of SOAT1 inhibitors as a potential therapy for NPC1.


Subject(s)
Niemann-Pick Disease, Type C , Sterol O-Acyltransferase , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Humans , Male , Female , Sterol O-Acyltransferase/genetics , Sterol O-Acyltransferase/metabolism , Niemann-Pick C1 Protein , Child , Polymorphism, Single Nucleotide , Animals , Mice , Phenotype , Adolescent , Child, Preschool , Genes, Modifier , Adult , Alleles , Severity of Illness Index , Genotype , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Young Adult
9.
J Proteome Res ; 23(8): 3174-3187, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38686625

ABSTRACT

NPC intracellular cholesterol transporter 1 (NPC1) is a multipass, transmembrane glycoprotein mostly recognized for its key role in facilitating cholesterol efflux. Mutations in the NPC1 gene result in Niemann-Pick disease, type C (NPC), a fatal, lysosomal storage disease. Due to the progressively expanding implications of NPC1-related disorders, we investigated endogenous NPC1 protein-protein interactions in the mouse cortex and human-derived iPSCs neuronal models of the disease through coimmunoprecipitation-coupled with LC-MS based proteomics. The current study investigated protein-protein interactions specific to the wild-type and the most prevalent NPC1 mutation (NPC1I1061T) while filtering out any protein interactor identified in the Npc1-/- mouse model. Additionally, the results were matched across the two species to map the parallel interactome of wild-type and mutant NPC1I1061T. Most of the identified wild-type NPC1 interactors were related to cytoskeleton organization, synaptic vesicle activity, and translation. We found many putative NPC1 interactors not previously reported, including two SCAR/WAVE complex proteins that regulate ARP 2/3 complex actin nucleation and multiple membrane proteins important for neuronal activity at synapse. Moreover, we identified proteins important in trafficking specific to wild-type and mutant NPC1I1061T. Together, the findings are essential for a comprehensive understanding of NPC1 biological functions in addition to its classical role in sterol efflux.


Subject(s)
Cerebral Cortex , Niemann-Pick C1 Protein , Protein Interaction Maps , Animals , Cerebral Cortex/metabolism , Mice , Humans , Proteomics/methods , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/genetics , Mutation , Mice, Knockout , Cholesterol/metabolism , Neurons/metabolism
10.
Redox Biol ; 72: 103150, 2024 06.
Article in English | MEDLINE | ID: mdl-38599016

ABSTRACT

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.


Subject(s)
Brain , Glutathione , Membrane Fluidity , Mitochondrial Membranes , Niemann-Pick Disease, Type C , S-Adenosylmethionine , Animals , Mice , S-Adenosylmethionine/metabolism , Mitochondrial Membranes/metabolism , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Glutathione/metabolism , Brain/metabolism , Mitochondria/metabolism , Niemann-Pick C1 Protein , Disease Models, Animal , Mice, Knockout , Phosphatidylcholines/metabolism
11.
Am J Med Genet A ; 194(8): e63595, 2024 08.
Article in English | MEDLINE | ID: mdl-38549495

ABSTRACT

Niemann-Pick disease type C (NPC) is one of the lysosomal storage disorders. It is caused by biallelic pathogenic variants in NPC1 or NPC2, which results in a defective cholesterol trafficking inside the late endosome and lysosome. There is a high clinical variability in the age of presentation and the phenotype of this disorder making the diagnosis challenging. Here, we report a patient with an infantile onset global developmental delay, microcephaly and dysmorphic features, homozygous for c.3560C>T (p.A1187V) variant in NPC1. His plasma oxysterol levels were normal on two occasions. His lyso-sphingomyelin-509 (lyso-SM 509) and urinary bile acid levels were normal. Based on the phenotype and biochemical features, the diagnosis of NPC was excluded in this patient. We emphasize the importance of functional characterization in the classification of novel variants to prevent a misdiagnosis. Matching the phenotype and biochemical evidence with the molecular genomic tests is crucial for the confirmation of genetic diagnoses.


Subject(s)
Exome Sequencing , Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Phenotype , Humans , Niemann-Pick C1 Protein/genetics , Male , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/pathology , Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Infant
12.
FEBS Lett ; 598(4): 477-484, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302739

ABSTRACT

Niemann-Pick type C disease (NPCD) is a rare neurodegenerative disorder most commonly caused by mutations in the lysosomal protein Niemann-Pick C1 (NPC1), which is implicated in cholesterol export. Mitochondrial insufficiency forms a significant feature of the pathology of this disease, yet studies attempting to address this are rare. The working hypothesis is that mitochondria become overloaded with cholesterol which renders them dysfunctional. We examined two potential protein targets-translocator protein (TSPO) and steroidogenic acute regulatory protein D1 (StARD1)-which are implicated in cholesterol transport to mitochondria, in addition to glucocerbrosidase 2 (GBA2), the target of miglustat, which is currently the only approved treatment for NPCD. However, inhibiting these proteins did not correct the mitochondrial defect in NPC1-deficient cells.


Subject(s)
Mitochondrial Diseases , Niemann-Pick Disease, Type C , Phosphoproteins , Humans , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Cholesterol/metabolism , Niemann-Pick C1 Protein/metabolism , Receptors, GABA/metabolism
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220388, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38368932

ABSTRACT

Niemann-Pick type C (NPC) disease is a rare progressive lysosomal lipid storage disorder that manifests with a heterogeneous spectrum of clinical syndromes, including visceral, neurological and psychiatric symptoms. This monogenetic autosomal recessive disease is largely caused by mutations in the NPC1 gene, which controls intracellular lipid homeostasis. Vesicle-mediated endo-lysosomal lipid trafficking and non-vesicular lipid exchange via inter-organelle membrane contact sites are both regulated by the NPC1 protein. Loss of NPC1 function therefore triggers intracellular accumulation of diverse lipid species, including cholesterol, glycosphingolipids, sphingomyelin and sphingosine. The NPC1-mediated dysfunction of lipid transport has severe consequences for all brain cells, leading to neurodegeneration. Besides the cell-autonomous contribution of neuronal NPC1, aberrant NPC1 signalling in other brain cells is critical for the pathology. We discuss here the importance of endo-lysosomal dysfunction and a tight crosstalk between neurons, oligodendrocytes, astrocytes and microglia in NPC pathology. We strongly believe that a cell-specific rescue may not be sufficient to counteract the severity of the NPC pathology, but targeting common mechanisms, such as endo-lysosomal and lipid trafficking dysfunction, may ameliorate NPC pathology. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Subject(s)
Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neurons , Cholesterol/metabolism , Lysosomes/metabolism , Lysosomes/pathology
14.
Genes (Basel) ; 15(1)2024 01 15.
Article in English | MEDLINE | ID: mdl-38254990

ABSTRACT

Niemann-Pick disease type C (NPC) is a fatal neurodegenerative condition caused by genetic mutations of the NPC1 or NPC2 genes that encode the NPC1 and NPC2 proteins, respectively, which are believed to be responsible for cholesterol efflux from late-endosomes/lysosomes. The pathogenic mechanisms that lead to neurodegeneration in NPC are not well understood. There are, however, well-defined spatiotemporal patterns of neurodegeneration that may provide insight into the pathogenic process. For example, the cerebellum is severely affected from early disease stages, compared with cerebral regions, which remain relatively spared until later stages. Using a genome-wide transcriptome analysis, we have recently identified an aberrant pattern of interferon activation in the cerebella of pre-symptomatic Npc1-/- mice. Here, we carried out a comparative transcriptomic analysis of cerebral cortices and cerebella of pre-symptomatic Npc1-/- mice and age-matched controls to identify differences that may help explain the pathological progression within the NPC brain. We report lower cerebral expression of genes within interferon signaling pathways, and significant differences in the regulation of oxidative stress, compared with the cerebellum. Our findings suggest that a delayed onset of interferon signaling, possibly linked to lower oxidative stress, may account for the slower onset of cerebral cortical pathology in the disease.


Subject(s)
Niemann-Pick Disease, Type C , Animals , Mice , Niemann-Pick Disease, Type C/genetics , Cerebellum , Cerebral Cortex , Oxidative Stress , Interferons/genetics
15.
BMC Infect Dis ; 24(1): 145, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291356

ABSTRACT

BACKGROUND: Niemann-Pick Disease type C is a fatal autosomal recessive lipid storage disorder caused by NPC1 or NPC2 gene mutations and characterized by progressive, disabling neurological deterioration and hepatosplenomegaly. Herein, we identified a novel compound heterozygous mutations of the NPC1 gene in a Chinese pedigree. CASE PRESENTATION: This paper describes an 11-year-old boy with aggravated walking instability and slurring of speech who presented as Niemann-Pick Disease type C. He had the maternally inherited c.3452 C > T (p. Ala1151Val) mutation and the paternally inherited c.3557G > A (p. Arg1186His) mutation using next-generation sequencing. The c.3452 C > T (p. Ala1151Val) mutation has not previously been reported. CONCLUSIONS: This study predicted that the c.3452 C > T (p. Ala1151Val) mutation is pathogenic. This data enriches the NPC1 gene variation spectrum and provides a basis for familial genetic counseling and prenatal diagnosis.


Subject(s)
Niemann-Pick Disease, Type C , Child , Humans , Male , Carrier Proteins/genetics , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , Prenatal Diagnosis
16.
N Engl J Med ; 390(5): 421-431, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38294974

ABSTRACT

BACKGROUND: Niemann-Pick disease type C is a rare lysosomal storage disorder. We evaluated the safety and efficacy of N-acetyl-l-leucine (NALL), an agent that potentially ameliorates lysosomal and metabolic dysfunction, for the treatment of Niemann-Pick disease type C. METHODS: In this double-blind, placebo-controlled, crossover trial, we randomly assigned patients 4 years of age or older with genetically confirmed Niemann-Pick disease type C in a 1:1 ratio to receive NALL for 12 weeks, followed by placebo for 12 weeks, or to receive placebo for 12 weeks, followed by NALL for 12 weeks. NALL or matching placebo was administered orally two to three times per day, with patients 4 to 12 years of age receiving weight-based doses (2 to 4 g per day) and those 13 years of age or older receiving a dose of 4 g per day. The primary end point was the total score on the Scale for the Assessment and Rating of Ataxia (SARA; range, 0 to 40, with lower scores indicating better neurologic status). Secondary end points included scores on the Clinical Global Impression of Improvement, the Spinocerebellar Ataxia Functional Index, and the Modified Disability Rating Scale. Crossover data from the two 12-week periods in each group were included in the comparisons of NALL with placebo. RESULTS: A total of 60 patients 5 to 67 years of age were enrolled. The mean baseline SARA total scores used in the primary analysis were 15.88 before receipt of the first dose of NALL (60 patients) and 15.68 before receipt of the first dose of placebo (59 patients; 1 patient never received placebo). The mean (±SD) change from baseline in the SARA total score was -1.97±2.43 points after 12 weeks of receiving NALL and -0.60±2.39 points after 12 weeks of receiving placebo (least-squares mean difference, -1.28 points; 95% confidence interval, -1.91 to -0.65; P<0.001). The results for the secondary end points were generally supportive of the findings in the primary analysis, but these were not adjusted for multiple comparisons. The incidence of adverse events was similar with NALL and placebo, and no treatment-related serious adverse events occurred. CONCLUSIONS: Among patients with Niemann-Pick disease type C, treatment with NALL for 12 weeks led to better neurologic status than placebo. A longer period is needed to determine the long-term effects of this agent in patients with Niemann-Pick disease type C. (Funded by IntraBio; ClinicalTrials.gov number, NCT05163288; EudraCT number, 2021-005356-10.).


Subject(s)
Central Nervous System Agents , Niemann-Pick Disease, Type C , Humans , Data Collection , Double-Blind Method , Leucine/analogs & derivatives , Leucine/therapeutic use , Niemann-Pick Disease, Type C/complications , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/genetics , Treatment Outcome , Cross-Over Studies , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Central Nervous System Agents/administration & dosage , Central Nervous System Agents/therapeutic use
17.
Nat Cell Biol ; 26(2): 219-234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253667

ABSTRACT

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.


Subject(s)
Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Lysosomes/metabolism , Immunity, Innate , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
18.
J Proteome Res ; 23(1): 84-94, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37999680

ABSTRACT

Niemann-Pick disease, type C (NPC) is a neurodegenerative, lysosomal storage disorder in individuals carrying two mutated copies of either the NPC1 or NPC2 gene. Consequently, impaired cholesterol recycling and an array of downstream events occur. Interestingly, in NPC, the hippocampus displays lysosomal lipid storage but does not succumb to progressive neurodegeneration as significantly as other brain regions. Since defining the neurodegeneration mechanisms in this disease is still an active area of research, we use mass spectrometry to analyze the overall proteome and phosphorylation pattern changes in the hippocampal region of a murine model of NPC. Using 3 week old mice representing an early disease time point, we observed changes in the expression of 47 proteins, many of which are consistent with the previous literature. New to this study, changes in members of the SNARE complex, including STX7, VTI1B, and VAMP7, were identified. Furthermore, we identified that phosphorylation of T286 on CaMKIIα and S1303 on NR2B increased in mutant animals, even at the late stage of the disease. These phosphosites are crucial to learning and memory and can trigger neuronal death by altering protein-protein interactions.


Subject(s)
Niemann-Pick Disease, Type C , Proteome , Animals , Mice , Proteome/genetics , Proteome/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/metabolism , Niemann-Pick Disease, Type C/genetics , Hippocampus/metabolism
19.
J Med Genet ; 61(4): 332-339, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37989569

ABSTRACT

INTRODUCTION: NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS: All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS: We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3ß,5α,6ß-triol. DISCUSSION: We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Niemann-Pick Disease, Type C , Oxysterols , Humans , Alzheimer Disease/genetics , Mutation , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/genetics , Niemann-Pick C1 Protein/genetics
20.
Anim Genet ; 55(1): 99-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087834

ABSTRACT

Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.


Subject(s)
Niemann-Pick C1 Protein , Niemann-Pick Disease, Type C , Animals , Mice , Fibrosis , Kidney/metabolism , Kidney/pathology , Mutation , Niemann-Pick C1 Protein/genetics , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/metabolism , Niemann-Pick Disease, Type C/pathology
SELECTION OF CITATIONS
SEARCH DETAIL