Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.591
Filter
1.
BMC Ecol Evol ; 24(1): 90, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38956464

ABSTRACT

BACKGROUND: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa. Moreover, there are currently no retrospective stable isotopic studies on various other ecological and taxonomic groups of Arctic biota. To test whether climate-driven shifts in marine ecosystems are reflected in the ecology of short-living mesopredators, ontogenetic changes in stable isotope signatures in chitinous hard body structures were analysed in two abundant squids (Gonatus fabricii and Todarodes sagittatus) from the low latitude Arctic and adjacent waters, collected between 1844 and 2023. RESULTS: We detected a temporal increase in diet and habitat-use generalism (= opportunistic choice rather than specialization), trophic position and niche width in G. fabricii from the low latitude Arctic waters. These shifts in trophic ecology matched with the Atlantification of the Arctic ecosystems, which includes increased generalization of food webs and higher primary production, and the influx of boreal species from the North Atlantic as a result of climate change. The Atlantification is especially marked since the late 1990s/early 2000s. The temporal patterns we found in G. fabricii's trophic ecology were largely unreported in previous Arctic retrospective isotopic ecology studies. Accordingly, T. sagittatus that occur nowadays in the high latitude North Atlantic have a more generalist diet than in the XIXth century. CONCLUSIONS: Our results suggest that abundant opportunistic mesopredators with short life cycles (such as squids) are good candidates for retrospective ecology studies in the marine ecosystems, and to identify ecosystem shifts driven by climate change. Enhanced generalization of Arctic food webs is reflected in increased diet generalism and niche width in squids, while increased abundance of boreal piscivorous fishes is reflected in squids' increased trophic position. These findings support opportunism and adaptability in squids, which renders them as potential winners of short-term shifts in Arctic ecosystems.


Subject(s)
Climate Change , Decapodiformes , Ecosystem , Food Chain , Animals , Arctic Regions , Climate Change/history , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Diet/history
2.
Ecol Appl ; 34(5): e3002, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38840322

ABSTRACT

Direct exploitation through fishing is driving dramatic declines of wildlife populations in ocean environments, particularly for predatory and large-bodied taxa. Despite wide recognition of this pattern and well-established consequences of such trophic downgrading on ecosystem function, there have been few empirical studies examining the effects of fishing on whole system trophic architecture. Understanding these kinds of structural impacts is especially important in coral reef ecosystems-often heavily fished and facing multiple stressors. Given the often high dietary flexibility and numerous functional redundancies in diverse ecosystems such as coral reefs, it is important to establish whether web architecture is strongly impacted by fishing pressure or whether it might be resilient, at least to moderate-intensity pressure. To examine this question, we used a combination of bulk and compound-specific stable isotope analyses measured across a range of predatory and low-trophic-level consumers between two coral reef ecosystems that differed with respect to fishing pressure but otherwise remained largely similar. We found that even in a high-diversity system with relatively modest fishing pressure, there were strong reductions in the trophic position (TP) of the three highest TP consumers examined in the fished system but no effects on the TP of lower-level consumers. We saw no evidence that this shortening of the affected food webs was being driven by changes in basal resource consumption, for example, through changes in the spatial location of foraging by consumers. Instead, this likely reflected internal changes in food web architecture, suggesting that even in diverse systems and with relatively modest pressure, human harvest causes significant compressions in food chain length. This observed shortening of these food webs may have many important emergent ecological consequences for the functioning of ecosystems impacted by fishing or hunting. Such important structural shifts may be widespread but unnoticed by traditional surveys. This insight may also be useful for applied ecosystem managers grappling with choices about the relative importance of protection for remote and pristine areas and the value of strict no-take areas to protect not just the raw constituents of systems affected by fishing and hunting but also the health and functionality of whole systems.


Subject(s)
Coral Reefs , Fishes , Food Chain , Animals , Fishes/physiology , Fisheries , Carbon Isotopes/analysis , Conservation of Natural Resources , Nitrogen Isotopes/analysis
3.
Sci Rep ; 14(1): 14559, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914616

ABSTRACT

Understanding the nitrogen isotopic variations of individual amino acids (AAs) is essential for utilizing the nitrogen isotope values of individual amino acids (δ15N-AA) as source indicators to identify proteinaceous matter originating from biomass combustion processes. However, the nitrogen isotope effects (ε) associated with the degradation of individual amino acids during combustion processes have not been previously explored. In this study, we measured the nitrogen isotope values of residual free amino acids -following a series of controlled combustion experiments at temperatures of 160-240 °C and durations of 2 min to 8 h, as described in Part 1. δ15N values of proline, aspartate, alanine, valine, glycine, leucine, and isoleucine are more positive than their initial δ15N values after prolonged combustion. Variations in δ15N values of the most AAs conform to the Rayleigh fractionation during combustion and their nitrogen isotope effects (ε) are greatly impacted by their respective combustion degradation pathways. This is the first time the ε values associated with the degradation pathways of AAs during combustion have been characterized. Only the ε values associated with Pathway 1 (dehydration to form dipeptide) and 2 (simultaneous deamination and decarboxylation) are found to be significant and temperature-dependent, ranging from + 2.9 to 6.4‰ and + 0.9‰ to + 3.8‰, respectively. Conversely, ε values associated with other pathways are minor. This improves the current understanding on the degradation mechanisms of protein nitrogen during biomass burning.


Subject(s)
Amino Acids , Nitrogen Isotopes , Amino Acids/metabolism , Nitrogen Isotopes/analysis , Kinetics , Biomass , Temperature
4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38849295

ABSTRACT

The differential soil microbial assimilation of common nitrogen (N) fertilizer compounds into the soil organic N pool is revealed using novel compound-specific amino acid (AA) 15N-stable isotope probing. The incorporation of fertilizer 15N into individual AAs reflected the known biochemistry of N assimilation-e.g. 15N-labelled ammonium (15NH4+) was assimilated most quickly and to the greatest extent into glutamate. A maximum of 12.9% of applied 15NH4+, or 11.7% of 'retained' 15NH4+ (remaining in the soil) was assimilated into the total hydrolysable AA pool in the Rowden Moor soil. Incorporation was lowest in the Rowden Moor 15N-labelled nitrate (15NO3-) treatment, at 1.7% of applied 15N or 1.6% of retained 15N. Incorporation in the 15NH4+ and 15NO3- treatments in the Winterbourne Abbas soil, and the 15N-urea treatment in both soils was between 4.4% and 6.5% of applied 15N or 5.2% and 6.4% of retained 15N. This represents a key step in greater comprehension of the microbially mediated transformations of fertilizer N to organic N and contributes to a more complete picture of soil N-cycling. The approach also mechanistically links theoretical/pure culture derived biochemical expectations and bulk level fertilizer immobilization studies, bridging these different scales of understanding.


Subject(s)
Fertilizers , Nitrogen Isotopes , Nitrogen , Soil Microbiology , Fertilizers/analysis , Nitrogen/metabolism , Nitrogen Isotopes/metabolism , Nitrogen Isotopes/analysis , Soil/chemistry , Bacteria/metabolism , Amino Acids/metabolism , Nitrates/metabolism , Ammonium Compounds/metabolism
5.
Ying Yong Sheng Tai Xue Bao ; 35(4): 877-885, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884222

ABSTRACT

The natural abundance of stable carbon and nitrogen isotopes (δ13C and δ15N) in leaves can provide comprehensive information on the physiological and ecological processes of plants and has been widely used in ecological research. However, recent studies on leaf δ13C and δ15N have focused mainly on woody species, few studies have been conducted on herbs in different vegetation types, and their differences and driving factors are still unclear. In this study, we focused on the herbs in subalpine coniferous forests, alpine shrublands, and alpine mea-dows on the eastern Qinghai-Tibet Plateau, and investigated the differences in leaf δ13C and δ15N of herbs and the driving factors. The results showed that there were significant differences in leaf δ13C and δ15N values of herbs among different vegetation types, with the highest δ13C and δ15N values in alpine meadows, followed by alpine shrublands, and the lowest in subalpine coniferous forests. Using variation partitioning analysis, we revealed that differences in leaf δ13C and δ15N of herbs among various vegetation types were driven by both leaf functional traits and climate factors, with the contribution of leaf functional traits being relatively higher than that of climate factors. Hierarchical partitioning results indicated that mean annual temperature (MAT), chlorophyll content index, leaf nitrogen content per unit area (Narea), and leaf mass per area were the main drivers of leaf δ13C variations of herbs across different vegetation types, while the relative importance of Narea and MAT for variation in leaf δ15N of herbs was much higher than those other variables. There was a strong coupling relationship between leaf δ13C and δ15N as indicated by the result of the ordinary least squares regression. Our findings could provide new insights into understanding the key drivers of leaf δ13C and δ15N variations in herbs across different vegetation types.


Subject(s)
Carbon Isotopes , Ecosystem , Nitrogen Isotopes , Plant Leaves , Plant Leaves/chemistry , Plant Leaves/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Tibet , China , Forests , Altitude , Trees/growth & development , Trees/metabolism , Trees/chemistry , Tracheophyta/growth & development , Tracheophyta/chemistry , Tracheophyta/metabolism , Grassland , Poaceae/growth & development , Poaceae/chemistry , Poaceae/metabolism
6.
PeerJ ; 12: e17457, 2024.
Article in English | MEDLINE | ID: mdl-38854793

ABSTRACT

For many species, the relationship between space use and diet composition is complex, with individuals adopting varying space use strategies such as territoriality to facilitate resource acquisition. Coyotes (Canis latrans) exhibit two disparate types of space use; defending mutually exclusive territories (residents) or moving nomadically across landscapes (transients). Resident coyotes have increased access to familiar food resources, thus improved foraging opportunities to compensate for the energetic costs of defending territories. Conversely, transients do not defend territories and are able to redirect energetic costs of territorial defense towards extensive movements in search of mates and breeding opportunities. These differences in space use attributed to different behavioral strategies likely influence foraging and ultimately diet composition, but these relationships have not been well studied. We investigated diet composition of resident and transient coyotes in the southeastern United States by pairing individual space use patterns with analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope values to assess diet. During 2016-2017, we monitored 41 coyotes (26 residents, 15 transients) with GPS radio-collars along the Savannah River area in the southeastern United States. We observed a canopy effect on δ13C values and little anthropogenic food in coyote diets, suggesting 13C enrichment is likely more influenced by reduced canopy cover than consumption of human foods. We also observed other land cover effects, such as agricultural cover and road density, on δ15N values as well as reduced space used by coyotes, suggesting that cover types and localized, resident-like space use can influence the degree of carnivory in coyotes. Finally, diets and niche space did not differ between resident and transient coyotes despite differences observed in the proportional contribution of potential food sources to their diets. Although our stable isotope mixing models detected differences between the diets of resident and transient coyotes, both relied mostly on mammalian prey (52.8%, SD = 15.9 for residents, 42.0%, SD = 15.6 for transients). Resident coyotes consumed more game birds (21.3%, SD = 11.6 vs 13.7%, SD = 8.8) and less fruit (10.5%, SD = 6.9 vs 21.3%, SD = 10.7) and insects (7.2%, SD = 4.7 vs 14.3%, SD = 8.5) than did transients. Our findings indicate that coyote populations fall on a feeding continuum of omnivory to carnivory in which variability in feeding strategies is influenced by land cover characteristics and space use behaviors.


Subject(s)
Coyotes , Nitrogen Isotopes , Coyotes/physiology , Animals , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis , Carnivory , Diet , Territoriality , Southeastern United States , Feeding Behavior/physiology
7.
Methods Mol Biol ; 2796: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38856893

ABSTRACT

Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.


Subject(s)
Ammonium Compounds , Ion Channels , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Ammonium Compounds/chemistry , Ammonium Compounds/analysis , Ion Channels/metabolism , Ion Channels/chemistry , Ions/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods
8.
Sci Rep ; 14(1): 13334, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858480

ABSTRACT

The Namib Desert is a hyperarid coastal desert where fog is a major moisture source. We hypothesized that the fog-harvesting grass Stipagrostis sabulicola establishes an important ecological niche, termed the "Fog-Plant-Oases" (FPOs), and serves as the primary carbon source for the invertebrate community. To determine this, we measured the natural variations of the stable carbon and nitrogen isotopes (δ13C and δ15N) of invertebrates as well as that of plant biomass and belowground detritus and estimated the contributions of the fog plants in their diets. Our findings revealed a complex trophic structure and demonstrated that S. sabulicola fuels carbon flow from lower to higher trophic levels in the aboveground food web. The distinct δ13C values of bacterial- and fungal-feeding nematodes indicated however the separation of the aboveground niche, which is primarily sustained by S. sabulicola, from the belowground niche, where wind-blown sediments may serve as the main energy source for the soil biota. Our findings further accentuate the critical role of S. sabulicola FPOs in establishing complex trophic dynamics and a distinctive food web within the hyperarid Namib dunes.


Subject(s)
Ecosystem , Food Chain , Animals , Namibia , Poaceae/metabolism , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Carbon Isotopes/analysis , Biomass , Desert Climate , Soil/chemistry , Carbon/metabolism , Invertebrates
9.
PLoS One ; 19(6): e0301775, 2024.
Article in English | MEDLINE | ID: mdl-38865323

ABSTRACT

One of the largest isotopic datasets of the ancient Eastern Mediterranean region is evaluated, based on plants (n = 410), animals (n = 210) and humans (n = 16) from Tell Tweini (Syria). Diachronic analysis of plant and faunal specimens from four main periods of occupation: Early Bronze Age (2600-2000 BC), Middle Bronze Age (2000-1600 BC), Late Bronze Age (1600-1200 BC) and Iron Age (1200-333 BC) were investigated. Mean Δ13C results from seven plant species reveal emmer and free threshing wheat, olives, bitter vetch, rye grass and barley were adequately or well-watered during all periods of occupation. The grape Δ13C results suggest excellent growing conditions and particular care for its cultivation. The δ15N results indicate that especially the emmer and free threshing wheats received some manure inputs throughout the occupation sequence, while these were likely further increased during the Iron Age, encompassing also the olive groves and grape vineyards. Generally, domestic animals (cattle, sheep, goats) had C3 terrestrial diets and were kept together in similar environments. However, some animals consumed significant amounts of marine or C4 plants, possibly from disturbed habitats due to land use pressure or salt tolerant grasses and shrubs from wetland environments, which were recorded in the direct vicinity of the site. Middle Bronze Age humans consumed a C3 terrestrial diet with no measurable input from C4, freshwater or marine protein sources. Interestingly, the human diet was relatively low in animal protein and appears comparable to what is considered today a typical Mediterranean diet consisting of bread (wheat/barley), olives, grapes, pulses, dairy products and small amounts of meat. The combined isotopic analysis of plants, animals and humans from Tell Tweini represents unbroken links in the food chain which create unparalleled opportunities to enhance our current understanding of environmental conditions, climate change and lifeways in past populations from the Eastern Mediterranean.


Subject(s)
Plants , Humans , Animals , Plants/chemistry , History, Ancient , Diet/history , Climate Change , Archaeology , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Agriculture/history
10.
Mar Pollut Bull ; 204: 116528, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833950

ABSTRACT

Anthropogenic input of excess nutrients stimulates massive nitrous oxide (N2O) production in estuaries with distinct seasonal variations. Here, nitrogen isotopic and isotopomeric signatures were utilized to investigate the seasonal dynamics of N2O production and nitrification at the middle reach of the eutrophic Pearl River Estuary in the south of China. Elevated N2O production primarily via ammonia oxidation (> 1 nM-N d-1) occurred from April to November, along with increased temperature and decreased dissolved oxygen concentration. This consistently oxygenated water column showed active denitrification, contributing 20-40 % to N2O production. The water column microbial N2O production generally constituted a minor fraction (10-15 %) of the estuarine water-air interface efflux, suggesting that upstream transport and tidal dilution regulated the dissolved N2O inventory in the middle reach of the estuary. Nitrification (up to 3000 nM-N d-1) played a critical role in bioavailable nitrogen conversion and N2O production, albeit with N2O yields below 0.05 %.


Subject(s)
Environmental Monitoring , Estuaries , Nitrogen Isotopes , Nitrous Oxide , Seasons , Nitrous Oxide/analysis , China , Nitrogen Isotopes/analysis , Nitrification , Eutrophication , Rivers/chemistry
11.
Mar Pollut Bull ; 204: 116537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838391

ABSTRACT

Procellariiform seabirds can accumulate high levels of plastic in their gastrointestinal tracts, which can cause physical damage and potentially provides a contamination route for trace elements. We examined plastic ingestion and trace element contamination of fledgling Manx shearwaters Puffinus puffinus that were harvested for human consumption in 2003 and 2018 on Skúvoy, Faroe Islands (North Atlantic Ocean). Overall, 88% of fledglings contained plastic in their gastrointestinal tracts, with a mean (± SD) of 7.2 ± 6.6 items weighing 0.007 ± 0.016 g. Though the incidence was similar, fledglings ingested significantly more plastic in 2018 compared to 2003. Hepatic trace element concentrations were unrelated to plastic ingestion. Hepatic carbon (δ13C) and nitrogen (δ15N) stable isotope values were significantly lower in birds sampled in 2018 versus 2003, potentially reflecting further offshore feeding at lower trophic levels. Future research is needed to understand the extent of plastic ingestion by Faroe Islands seabirds.


Subject(s)
Birds , Environmental Monitoring , Plastics , Trace Elements , Water Pollutants, Chemical , Animals , Trace Elements/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Nitrogen Isotopes/analysis , Eating , Islands , Carbon Isotopes/analysis
12.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822559

ABSTRACT

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Subject(s)
Droughts , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , China , Nitrogen/analysis , Nitrogen/metabolism , Desert Climate
13.
Rapid Commun Mass Spectrom ; 38(16): e9848, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38890542

ABSTRACT

RATIONALE: Concerns exist over observed shifts in value and variance of nitrogen isotopes following physicochemical extraction of lipids from organic matter. The mechanisms behind these apparent changes in bulk tissue δ15N values are not fully understood yet have major implications for analytical costs and integrity of data interpretations. METHODS: Changes in proximate analysis, amino acid composition, C:N ratios, bulk tissue and amino acid δ13C and δ15N values, and resulting isotope-based food web metrics were compared between lipid-intact and lipid-extracted muscle tissue of fishes spanning <1% to >20% muscle fat content to identify mechanisms of nitrogen isotope fractionation associated with physicochemical lipid extraction. RESULTS: Bulk δ13C and δ15N values increased and %N, C:N ratios and crude protein content decreased following lipid extraction. Resulting bulk isotope niche spacing and overlap varied significantly between lipid-intact and lipid-extracted tissues. While amino acid composition significantly changed during lipid extraction, particularly for lipid-associated amino acids (e.g., Glu, Lys, Ser), individual amino acid δ13C and δ15N values, and their associated compound-specific isotope analysis of amino acids (CSIA-AA)-based food web metrics, did not. CONCLUSIONS: Physicochemical lipid extraction caused significant tissue composition changes (e.g., leaching of amino acids and 15N-deplete nitrogenous waste) that affected δ13C and δ15N values and tissue %C and %N beyond simply removing lipids. However, lipid extraction did not alter individual amino acid δ13C or δ15N values or their associated CSIA-AA-based food web metrics.


Subject(s)
Amino Acids , Carbon Isotopes , Fishes , Lipids , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Amino Acids/analysis , Amino Acids/chemistry , Animals , Carbon Isotopes/analysis , Lipids/analysis , Lipids/chemistry , Fishes/metabolism , Mass Spectrometry/methods , Muscles/chemistry
14.
Sci Rep ; 14(1): 14746, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926400

ABSTRACT

The determination of δ13C and δ15N values is a common method in archaeological isotope analysis-in studying botanical and human remains, dietary practices, and less typically soils (to understand methods of agricultural cultivation, including fertilization). Stable isotope measurements are also commonly used in ecological studies to distinguish different ecosystems and to trace diachronic processes and biogeochemical mechanisms, however, the application of this method in geochemical prospection, for determining historic land-use impact, remains unexplored. The study at hand focuses on a deserted site of a Cistercian manor, dating from the thirteenth to fifteenth centuries. Isotopic measurements of anthropogenically influenced soils have been compared to approximately 400 archaeobotanical, soil, and sediment samples collected globally. The results reveal the potential of isotope measurements in soil to study the impact of past land use as isotope measurements identify specific types of agricultural activities, distinguishing crop production or grazing. δ13C and δ15N ratios also likely reflect fertilization practices and-in this case-the results indicate the presence of cereal cultivation (C3 cycle plants) and fertilization and that the site of the medieval manor was primarily used for grain production rather than animal husbandry.


Subject(s)
Carbon Isotopes , Forests , Nitrogen Isotopes , Soil , Carbon Isotopes/analysis , Czech Republic , History , Nitrogen Isotopes/analysis , Soil/chemistry
15.
Sci Rep ; 14(1): 14102, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38890338

ABSTRACT

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers. However, theoretical considerations predict both higher and lower trophic position with increasing body size. Nitrogen stable isotope values (δ15N) are increasingly replacing stomach contents or behavioral observations to assess trophic position and it is often assumed that ontogenetic dietary shifts result in higher trophic positions. Intraspecific studies based on δ15N values found a positive relationship between size and inferred trophic position. Here, we use datasets of predatory vertebrate ectotherms (crocodilians, turtles, lizards and fishes) to show that, although there are positive intraspecific relationships between size and δ15N values, relationships between stomach-content-based trophic level (TPdiet) and size are undetectable or negative. As there is usually no single value for 15N trophic discrimination factor (TDF) applicable to a predator species or its prey, estimates of trophic position based on δ15N in ectotherm vertebrates with large size ranges, may be inaccurate and biased. We urge a reconsideration of the sole use of δ15N values to assess trophic position and encourage the combined use of isotopes and stomach contents to assess diet and trophic level.


Subject(s)
Body Size , Food Chain , Nitrogen Isotopes , Predatory Behavior , Vertebrates , Animals , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Predatory Behavior/physiology , Lizards/physiology , Lizards/metabolism , Fishes/physiology , Gastrointestinal Contents/chemistry , Turtles/physiology , Turtles/metabolism
16.
PLoS One ; 19(6): e0304495, 2024.
Article in English | MEDLINE | ID: mdl-38875228

ABSTRACT

Discerning assimilated diets of wild animals using stable isotopes is well established where potential dietary items in food webs are isotopically distinct. With the advent of mixing models, and Bayesian extensions of such models (Bayesian Stable Isotope Mixing Models, BSIMMs), statistical techniques available for these efforts have been rapidly increasing. The accuracy with which BSIMMs quantify diet, however, depends on several factors including uncertainty in tissue discrimination factors (TDFs; Δ) and identification of appropriate error structures. Whereas performance of BSIMMs has mostly been evaluated with simulations, here we test the efficacy of BSIMMs by raising domestic broiler chicks (Gallus gallus domesticus) on four isotopically distinct diets under controlled environmental conditions, ideal for evaluating factors that affect TDFs and testing how BSIMMs allocate individual birds to diets that vary in isotopic similarity. For both liver and feather tissues, δ13C and δ 15N values differed among dietary groups. Δ13C of liver, but not feather, was negatively related to the rate at which individuals gained body mass. For Δ15N, we identified effects of dietary group, sex, and tissue type, as well as an interaction between sex and tissue type, with females having higher liver Δ15N relative to males. For both tissues, BSIMMs allocated most chicks to correct dietary groups, especially for models using combined TDFs rather than diet-specific TDFs, and those applying a multiplicative error structure. These findings provide new information on how biological processes affect TDFs and confirm that adequately accounting for variability in consumer isotopes is necessary to optimize performance of BSIMMs. Moreover, results demonstrate experimentally that these models reliably characterize consumed diets when appropriately parameterized.


Subject(s)
Bayes Theorem , Carbon Isotopes , Chickens , Nitrogen Isotopes , Animals , Chickens/growth & development , Female , Carbon Isotopes/analysis , Male , Nitrogen Isotopes/analysis , Diet/veterinary , Liver/metabolism , Feathers/chemistry , Feathers/metabolism , Food Chain , Models, Biological
17.
PLoS One ; 19(6): e0305089, 2024.
Article in English | MEDLINE | ID: mdl-38923938

ABSTRACT

The volume of human carbon (δ13C) and nitrogen (δ15N) isotope data produced in archaeological research has increased markedly in recent years. However, knowledge of bone remodelling, its impact on isotope variation, and the temporal resolution of isotope data remains poorly understood. Varied remodelling rates mean different elements (e.g., femur and rib) produce different temporal signals but little research has examined intra-element variability. This study investigates human bone remodelling using osteon population density and the relationship with carbon and nitrogen isotope data at a high resolution, focusing on variation through femoral cross-sections, from periosteal to endosteal surfaces. Results demonstrate considerable differences in isotope values between cross-sectional segments of a single fragment, by up to 1.3‰ for carbon and 1.8‰ for nitrogen, illustrating the need for standardised sampling strategies. Remodelling also varies between bone sections, occurring predominantly within the endosteal portion, followed by the midcortical and periosteal. Therefore, the endosteal portion likely reflects a shorter period of life closer to the time of death, consistent with expectations. By contrast, the periosteal surface provides a longer average, though there were exceptions to this. Results revealed a weak negative correlation between osteon population density and δ15N or δ13C, confirming that remodelling has an effect on isotope values but is not the principal driver. However, a consistent elevation of δ15N and δ13C (0.5‰ average) was found between the endosteal and periosteal regions, which requires further investigation. These findings suggest that, with further research, there is potential for single bone fragments to reconstruct in-life dietary change and mobility, thus reducing destructive sampling.


Subject(s)
Bone Remodeling , Carbon Isotopes , Femur , Nitrogen Isotopes , Humans , Femur/anatomy & histology , Femur/chemistry , Femur/metabolism , Bone Remodeling/physiology , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Female , Male , Adult , Middle Aged
18.
Environ Res ; 256: 119223, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810830

ABSTRACT

Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.


Subject(s)
Amino Acids , Food Chain , Nitrogen Isotopes , Hydrolysis , Amino Acids/analysis , Amino Acids/chemistry , Animals , Nitrogen Isotopes/analysis , Hydrochloric Acid/chemistry , Tuna
19.
Mar Pollut Bull ; 203: 116469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754322

ABSTRACT

This paper reports the first record of total mercury (THg) concentrations in albacore (Thunnus alalunga), one of the main tuna species caught from the Western Equatorial Atlantic Ocean and presents a preliminary comparison with other regions and tuna species. Mean, standard deviation and range of concentrations in T. alalunga (515 ± 145 ng g-1 ww; 294-930 ng g-1 ww) with 92 % being of methyl-Hg, are higher than in albacore from other Atlantic Ocean subregions despite their smaller body size. These concentrations are similar to those from the Pacific and Indian oceans, but lower than in the Mediterranean. Compared to other sympatric tuna species, concentrations are higher than those in T. albacares and similar to T. obesus. These results are discussed considering the potential differences in stable isotope values (13C and 15N) of T. alalunga populations from multiple oceanic areas and compared to other tuna species worldwide.


Subject(s)
Carbon Isotopes , Environmental Monitoring , Mercury , Nitrogen Isotopes , Tuna , Water Pollutants, Chemical , Animals , Tuna/metabolism , Atlantic Ocean , Water Pollutants, Chemical/analysis , Mercury/analysis , Mercury/metabolism , Nitrogen Isotopes/analysis , Carbon Isotopes/analysis
20.
Chemosphere ; 359: 142356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761822

ABSTRACT

Ammonia (NH3) is the major constituent among all the reactive nitrogen species present in the atmosphere, and the most essential species for secondary inorganic aerosol formation. Recent satellite-based observations have identified the Indo-Gangetic Plain (IGP) as a major hotspot of global NH3 emission; however, the major sources and atmospheric processes affecting its abundance are poorly understood. The present study aims to understand the wintertime sources of NH3 over a semi-urban site (Patiala, 30.3°N, 76.4°E, 249 m amsl) located in the IGP using species specific δ15N in PM2.5. A distinct diurnal variation in the stable isotopic signature of total nitrogen (δ15N-TN) and ammonium (δ15N-NH4+) were observed; although, average day and night time concentrations of TN and NH4+ were similar. Mixing model results using δ15N-NH3 reveal the dominance of non-agricultural emissions (NH3 slip: 47 ± 24%) over agricultural emissions (24 ± 11%), combustion sources (19 ± 14 %), and biomass burning (10 ± 8%) for atmospheric NH3. Diurnal variability in source contributions to NH3 was insignificant. Further, significantly negative correlations of δ15N-NH4+ with ambient relative humidity (RH) and daytime NO3--N concentration were observed, and attributed to the possibility of NH4NO3 volatilization during day-time owing to lower RH and higher temperature, resulting in isotopic enrichment of the remaining NH4+ in aerosol phase. This study, a first of its type from India, highlights the importance of non-agricultural NH3 emissions over the agriculture dominated IGP region, and the role of local meteorology on the isotopic fractionation of δ15N in aerosol NH4+.


Subject(s)
Air Pollutants , Ammonia , Atmosphere , Environmental Monitoring , Air Pollutants/analysis , Atmosphere/chemistry , Ammonia/analysis , Aerosols/analysis , Seasons , Nitrogen Isotopes/analysis , Ammonium Compounds/analysis , Nitrogen/analysis , Agriculture , India , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...