Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 962
Filter
1.
Proc Natl Acad Sci U S A ; 121(28): e2408346121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968117

ABSTRACT

Xenopus embryos provide a favorable material to dissect the sequential steps that lead to dorsal-ventral (D-V) and anterior-posterior (A-P) cell differentiation. Here, we analyze the signaling pathways involved in this process using loss-of-function and gain-of-function approaches. The initial step was provided by Hwa, a transmembrane protein that robustly activates early ß-catenin signaling when microinjected into the ventral side of the embryo leading to complete twinned axes. The following step was the activation of Xenopus Nodal-related growth factors, which could rescue the depletion of ß-catenin and were themselves blocked by the extracellular Nodal antagonists Cerberus-Short and Lefty. During gastrulation, the Spemann-Mangold organizer secretes a cocktail of growth factor antagonists, of which the BMP antagonists Chordin and Noggin could rescue simultaneously D-V and A-P tissues in ß-catenin-depleted embryos. Surprisingly, this rescue occurred in the absence of any ß-catenin transcriptional activity as measured by ß-catenin activated Luciferase reporters. The Wnt antagonist Dickkopf (Dkk1) strongly synergized with the early Hwa signal by inhibiting late Wnt signals. Depletion of Sizzled (Szl), an antagonist of the Tolloid chordinase, was epistatic over the Hwa and Dkk1 synergy. BMP4 mRNA injection blocked Hwa-induced ectopic axes, and Dkk1 inhibited BMP signaling late, but not early, during gastrulation. Several unexpected findings were made, e.g., well-patterned complete embryonic axes are induced by Chordin or Nodal in ß-catenin knockdown embryos, dorsalization by Lithium chloride (LiCl) is mediated by Nodals, Dkk1 exerts its anteriorizing and dorsalizing effects by regulating late BMP signaling, and the Dkk1 phenotype requires Szl.


Subject(s)
Body Patterning , Intercellular Signaling Peptides and Proteins , Signal Transduction , Xenopus Proteins , beta Catenin , Animals , Body Patterning/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , beta Catenin/metabolism , beta Catenin/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Xenopus laevis/embryology , Gene Expression Regulation, Developmental , Gastrulation , Nodal Protein/metabolism , Nodal Protein/genetics , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology , Organizers, Embryonic/metabolism , Glycoproteins
2.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843334

ABSTRACT

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Subject(s)
Fundulidae , Morphogenesis , Nodal Protein , beta Catenin , Animals , beta Catenin/metabolism , Blastula/metabolism , Body Patterning , Cell Movement , Cell Nucleus/metabolism , Fundulidae/embryology , Fundulidae/metabolism , Germ Layers/metabolism , Nodal Protein/metabolism , Signal Transduction
3.
PLoS Biol ; 22(6): e3002701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38913712

ABSTRACT

In the highly regulative embryo of the sea urchin Paracentrotus lividus, establishment of the dorsal-ventral (D/V) axis critically depends on the zygotic expression of the TGF-ß nodal in the ventral ectoderm. nodal expression is first induced ubiquitously in the 32-cell embryo and becomes progressively restricted to the presumptive ventral ectoderm by the early blastula stage. This early spatial restriction of nodal expression is independent of Lefty, and instead relies on the activity of Panda, a maternally expressed TGF-ß ligand related to Lefty and Inhibins, which is required maternally for D/V axis specification. However, the mechanism by which Panda restricts the early nodal expression has remained enigmatic and it is not known if Panda works like a BMP ligand by opposing Nodal and antagonizing Smad2/3 signaling, or if it works like Lefty by sequestering an essential component of the Nodal signaling pathway. In this study, we report that Panda functions as an antagonist of the TGF-ß type II receptor ACVRII (Activin receptor type II), which is the only type II receptor for Nodal signaling in the sea urchin and is also a type II receptor for BMP ligands. Inhibiting translation of acvrII mRNA disrupted D/V patterning across all 3 germ layers and caused acvrII morphants to develop with a typical Nodal loss-of-function phenotype. In contrast, embryos overexpressing acvrII displayed strong ectopic Smad1/5/8 signaling at blastula stages and developed as dorsalized larvae, a phenotype very similar to that caused by over activation of BMP signaling. Remarkably, embryos co-injected with acvrII mRNA and panda mRNA did not show ectopic Smad1/5/8 signaling and developed with a largely normal dorsal-ventral polarity. Furthermore, using an axis induction assay, we found that Panda blocks the ability of ACVRII to orient the D/V axis when overexpressed locally. Using co-immunoprecipitation, we showed that Panda physically interacts with ACVRII, as well as with the Nodal co-receptor Cripto, and with TBR3 (Betaglycan), which is a non-signaling receptor for Inhibins in mammals. At the molecular level, we have traced back the antagonistic activity of Panda to the presence of a single proline residue, conserved with all the Lefty factors, in the ACVRII binding motif of Panda, instead of a serine as in most of TGF-ß ligands. Conversion of this proline to a serine converted Panda from an antagonist that opposed Nodal signaling and promoted dorsalization to an agonist that promoted Nodal signaling and triggered ventralization when overexpressed. Finally, using phylogenomics, we analyzed the emergence of the agonist and antagonist form of Panda in the course of evolution. Our data are consistent with the idea that the presence of a serine at that position, like in most TGF-ß, was the ancestral condition and that the initial function of Panda was possibly in promoting and not in antagonizing Nodal signaling. These results highlight the existence of key functional and structural elements conserved between Panda and Lefty, allow to draw an intriguing parallel between sea urchin Panda and mammalian Inhibin α and raise the unexpected possibility that the original function of Panda may have been in activation of the Nodal pathway rather than in its inhibition.


Subject(s)
Activin Receptors, Type II , Body Patterning , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Nodal Protein , Paracentrotus , Transforming Growth Factor beta , Animals , Transforming Growth Factor beta/metabolism , Body Patterning/genetics , Paracentrotus/embryology , Paracentrotus/metabolism , Paracentrotus/genetics , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/genetics , Nodal Protein/metabolism , Nodal Protein/genetics , Embryo, Nonmammalian/metabolism , Ligands , Signal Transduction
4.
Nat Commun ; 15(1): 5055, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871742

ABSTRACT

The anterior-posterior axis of the mammalian embryo is laid down by the anterior visceral endoderm (AVE), an extraembryonic signaling center that is specified within the visceral endoderm. Current models posit that AVE differentiation is promoted globally by epiblast-derived Nodal signals, and spatially restricted by a BMP gradient established by the extraembryonic ectoderm. Here, we report spatially restricted AVE differentiation in bilayered embryo-like aggregates made from mouse embryonic stem cells that lack an extraembryonic ectoderm. Notably, clusters of AVE cells also form in pure visceral endoderm cultures upon activation of Nodal signaling, indicating that tissue-intrinsic factors can restrict AVE differentiation. We identify ß-catenin activity as a tissue-intrinsic factor that antagonizes AVE-inducing Nodal signals. Together, our results show how an AVE-like population can arise through interactions between epiblast and visceral endoderm alone. This mechanism may be a flexible solution for axis patterning in a wide range of embryo geometries, and provide robustness to axis patterning when coupled with signal gradients.


Subject(s)
Body Patterning , Cell Differentiation , Endoderm , Nodal Protein , Signal Transduction , beta Catenin , Animals , Endoderm/cytology , Endoderm/metabolism , Endoderm/embryology , beta Catenin/metabolism , Mice , Nodal Protein/metabolism , Nodal Protein/genetics , Germ Layers/metabolism , Germ Layers/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Gene Expression Regulation, Developmental , Embryo, Mammalian/cytology
5.
Adv Exp Med Biol ; 1441: 167-183, 2024.
Article in English | MEDLINE | ID: mdl-38884711

ABSTRACT

Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.


Subject(s)
Body Patterning , Heart Defects, Congenital , Heart , Humans , Animals , Heart/embryology , Heart/physiology , Body Patterning/genetics , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Signal Transduction , Gene Expression Regulation, Developmental , Nodal Protein/metabolism , Nodal Protein/genetics
6.
J Cell Physiol ; 239(6): e31268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577903

ABSTRACT

Several members of the transforming growth factor beta (TGF-ß) superfamily regulate the proliferation, differentiation, and function of bone-forming osteoblasts and bone-resorbing osteoclasts. However, it is still unknown whether Nodal, a member of the TGF-ß superfamily, serves a function in bone cells. In this study, we found that Nodal did not have any function in osteoblasts but instead negatively regulated osteoclast differentiation. Nodal inhibited RANKL-induced osteoclast differentiation by downregulating the expression of pro-osteoclastogenic genes, including c-fos, Nfatc1, and Blimp1, and upregulating the expression of antiosteoclastogenic genes, including Bcl6 and Irf8. Nodal activated STAT1 in osteoclast precursor cells, and STAT1 downregulation significantly reduced the inhibitory effect of Nodal on osteoclast differentiation. These findings indicate that Nodal activates STAT1 to downregulate or upregulate the expression of pro-osteoclastogenic or antiosteoclastogenic genes, respectively, leading to the inhibition of osteoclast differentiation. Moreover, the inhibitory effect of Nodal on osteoclast differentiation contributed to the reduction of RANKL-induced bone loss in vivo.


Subject(s)
Cell Differentiation , Nodal Protein , Osteoclasts , STAT1 Transcription Factor , Animals , Mice , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , Phosphorylation , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , RANK Ligand/metabolism , Signal Transduction , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Male , Mice, Inbred ICR , Nodal Protein/genetics , Nodal Protein/metabolism , Nodal Protein/pharmacology
7.
Methods Mol Biol ; 2803: 13-33, 2024.
Article in English | MEDLINE | ID: mdl-38676882

ABSTRACT

The adept and systematic differentiation of embryonic stem cells (ESCs) and human-induced pluripotent stem cells (hiPSCs) to diverse lineage-prone cell types involves crucial step-by-step process that mimics the vital strategic commitment phase that is usually observed during the process of embryo development. The development of precise tissue-specific cell types from these stem cells indeed plays an important role in the advancement of imminent stem cell-based therapeutic strategies. Therefore, the usage of hiPSC-derived cell types for subsequent cardiovascular disease modeling, drug screening, and therapeutic drug development undeniably entails an in-depth understanding of each and every step to proficiently stimulate these stem cells into desired cardiomyogenic lineage. Thus, to accomplish this definitive and decisive fate, it is essential to efficiently induce the mesoderm or pre-cardiac mesoderm, succeeded by the division of cells into cardiovascular and ultimately ensuing with the cardiomyogenic lineage outcome. This usually commences from the earliest phases of pluripotent cell induction. In this chapter, we discuss our robust and reproducible step-wise protocol that will describe the subtype controlled, precise lineage targeted standardization of activin/nodal, and BMP signaling molecules/cytokines, for the efficient differentiation of ventricular cardiomyocytes from hiPSCs via the embryoid body method. In addition, we also describe techniques to dissociate hiPSCs, hiPSC-derived early cardiomyocytes for mesoderm and pre-cardiac mesoderm assessment, and hiPSC-derived cardiomyocytes for early and mature markers assessment.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Activins/pharmacology , Activins/metabolism , Bone Morphogenetic Proteins/metabolism , Cell Culture Techniques/methods , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nodal Protein/metabolism , Signal Transduction
8.
Development ; 151(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38372390

ABSTRACT

Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.


Subject(s)
Body Patterning , Zebrafish , Animals , Body Patterning/genetics , Nodal Protein/genetics , Nodal Protein/metabolism , Morphogenesis/genetics , Signal Transduction , Transforming Growth Factor beta/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Gene Expression Regulation, Developmental
9.
Front Immunol ; 14: 1276979, 2023.
Article in English | MEDLINE | ID: mdl-38022561

ABSTRACT

Pregnancy success is dependent on the establishment of maternal tolerance during the preimplantation period. The immunosuppressive function of regulatory T cells is critical to limit inflammation arising from implantation of the semi-allogeneic blastocyst. Insufficient maternal immune adaptations to pregnancy have been frequently associated with cases of female infertility and recurrent implantation failure. The role of Nodal, a secreted morphogen of the TGFß superfamily, was recently implicated during murine pregnancy as its conditional deletion (NodalΔ/Δ) in the female reproductive tract resulted in severe subfertility. Here, it was determined that despite normal preimplantation processes and healthy, viable embryos, NodalΔ/Δ females had a 50% implantation failure rate compared to NodalloxP/loxP controls. Prior to implantation, the expression of inflammatory cytokines MCP-1, G-CSF, IFN-γ and IL-10 was dysregulated in the NodalΔ/Δ uterus. Further analysis of the preimplantation leukocyte populations in NodalΔ/Δ uteri showed an overabundance of infiltrating, pro-inflammatory CD11bhigh Ly6C+ macrophages coupled with the absence of CD4+ FOXP3+ regulatory T cells. Therefore, it is proposed that uterine Nodal expression during the preimplantation period has a novel role in the establishment of maternal immunotolerance, and its dysregulation should be considered as a potential contributor to cases of female infertility and recurrent implantation failure.


Subject(s)
Infertility, Female , Nodal Protein , T-Lymphocytes, Regulatory , Animals , Female , Mice , Pregnancy , Embryo Implantation , Forkhead Transcription Factors , Infertility, Female/genetics , Uterus , Nodal Protein/genetics
10.
Dev Cell ; 58(16): 1447-1461.e6, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37413993

ABSTRACT

Left-dominant [Ca2+]i elevation on the left margin of the ventral node furnishes the initial laterality of mouse embryos. It depends on extracellular leftward fluid flow (nodal flow), fibroblast growth factor receptor (FGFR)/sonic hedgehog (Shh) signaling, and the PKD1L1 polycystin subunit, of which interrelationship is still elusive. Here, we show that leftward nodal flow directs PKD1L1-containing fibrous strands and facilitates Nodal-mediated [Ca2+]i elevation on the left margin. We generate KikGR-PKD1L1 knockin mice in order to monitor protein dynamics with a photoconvertible fluorescence protein tag. By imaging those embryos, we have identified fragile meshwork being gradually transferred leftward involving pleiomorphic extracellular events. A portion of the meshwork finally bridges over the left nodal crown cells in an FGFR/Shh-dependent manner. As PKD1L1 N-term is predominantly associated with Nodal on the left margin and that PKD1L1/PKD2 overexpression significantly augments cellular Nodal sensitivity, we propose that leftward transfer of polycystin-containing fibrous strands determines left-right asymmetry in developing embryos.


Subject(s)
Hedgehog Proteins , TRPP Cation Channels , Mice , Animals , Hedgehog Proteins/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Cilia/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Body Patterning , Gene Expression Regulation, Developmental , Nodal Protein/metabolism
11.
Glia ; 71(9): 2096-2116, 2023 09.
Article in English | MEDLINE | ID: mdl-37208933

ABSTRACT

Our prior work examining endogenous repair after spinal cord injury (SCI) in mice revealed that large numbers of new oligodendrocytes (OLs) are generated in the injured spinal cord, with peak oligodendrogenesis between 4 and 7 weeks post-injury (wpi). We also detected new myelin formation over 2 months post-injury (mpi). Our current work significantly extends these results, including quantification of new myelin through 6 mpi and concomitant examination of indices of demyelination. We also examined electrophysiological changes during peak oligogenesis and a potential mechanism driving OL progenitor cell (OPC) contact with axons. Results reveal peak in remyelination occurs during the 3rd mpi, and that myelin generation continues for at least 6 mpi. Further, motor evoked potentials significantly increased during peak remyelination, suggesting enhanced axon potential conduction. Interestingly, two indices of demyelination, nodal protein spreading and Nav1.2 upregulation, were also present chronically after SCI. Nav1.2 was expressed through 10 wpi and nodal protein disorganization was detectable throughout 6 mpi suggesting chronic demyelination, which was confirmed with EM. Thus, demyelination may continue chronically, which could trigger the long-term remyelination response. To examine a potential mechanism that may initiate post-injury myelination, we show that OPC processes contact glutamatergic axons in the injured spinal cord in an activity-dependent manner. Notably, these OPC/axon contacts were increased 2-fold when axons were activated chemogenetically, revealing a potential therapeutic target to enhance post-SCI myelin repair. Collectively, results show the surprisingly dynamic nature of the injured spinal cord over time and that the tissue may be amenable to treatments targeting chronic demyelination.


Subject(s)
Demyelinating Diseases , Spinal Cord Injuries , Mice , Animals , Myelin Sheath/metabolism , Nodal Protein/metabolism , Spinal Cord Injuries/metabolism , Axons/physiology , Oligodendroglia/metabolism , Spinal Cord , Demyelinating Diseases/metabolism
12.
Clin Neurol Neurosurg ; 223: 107521, 2022 12.
Article in English | MEDLINE | ID: mdl-36401951

ABSTRACT

OBJECTIVE: Antibodies against nodal-paranodal junction proteins have been detected in some patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), which is a crucial step to define the most effective treatment strategies. In this paper, we tested the positive rates of these antibodies in CIDP and characterized the clinical and electrophysiological features of the antibodies-positive patients. METHODS: We prospectively recruited 47 patients with CIDP. We detected IgG antibodies against human neurofascin-155 (NF155), neurofascin-186 (NF186), contactin-1 (CNTN1), contactin-2 (CNTN2) and contactin-associated protein-1 (Caspr1), and identified the IgG isotype with cell-based assay (CBA). We collected the demographic, clinical, laboratory, and electrophysiological information of the patients that were seropositive. RESULTS: Five patients (10.6 %) had IgG against NF155, 3 (6.4 %) against Caspr1, 2 (4.3 %) against NF186 and 1 (2.1 %) against CNTN1. All the 11 antibody-positive patients (8 males and 3 females) presented with typical clinical features. Five of them needed assistance in walking, 5 had cranial nerve impairments and 3 had autonomic disturbances. The age at onset of the patients that were anti-NF155-positive was younger (19.60 ± 9.02 years vs. 55.33 ± 11.93 years, P = 0.003) than those that were anti-Caspr1-positive. No significant difference in the functional status was observed between these two groups. The action potentials of 11/79 (13.9 %) motor nerves and 62/93 (66.7 %) sensory nerves exhibited no response. Moreover, 16/68 (23.5 %) nerves presented conduction block and 13/68 (19.1 %) nerves presented temporal dispersion. Distal motor latency (DML) of ulnar nerve and tibial nerve tended to be longer (p = 0.008 and p = 0.006, respectively) in anti-NF155-positive patients than that in anti-Caspr1-positive patients. Of the 11 patients that were antibody-positive patients, corticosteroids were effective in 3/7 (42.9 %), intravenous immunoglobins (IVIG) were effective in 1/7 (14.3 %), and rituximab was effective in 6/8 (75.0 %). CONCLUSIONS: Our findings validate the previous observation on the clinico-serological correlation between CIDP and antibodies against nodal-paranodal proteins. Of note, the damage on nerves is more severe in anti-NF155-positive patients than that in anti-Caspr1-positive patients during electrophysiological diagnosis.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Adolescent , Adult , Child , Female , Humans , Male , Young Adult , Contactins , Cranial Nerves , Immunoglobulin G , Nodal Protein , Middle Aged , Aged
13.
Nat Commun ; 13(1): 6101, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36243734

ABSTRACT

The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.


Subject(s)
Nodal Protein , Zebrafish , Animals , Diffusion , Gene Expression Regulation, Developmental , Left-Right Determination Factors/genetics , Nodal Protein/metabolism , Transforming Growth Factor beta/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics
14.
Elife ; 112022 09 23.
Article in English | MEDLINE | ID: mdl-36149406

ABSTRACT

During vertebrate embryogenesis, the germ layers are patterned by secreted Nodal signals. In the classical model, Nodals elicit signaling by binding to a complex comprising Type I/II Activin receptors (Acvr) and the co-receptor Tdgf1. However, it is currently unclear whether receptor binding can also affect the distribution of Nodals themselves through the embryo, and it is unknown which of the putative Acvr paralogs mediate Nodal signaling in zebrafish. Here, we characterize three Type I (Acvr1) and four Type II (Acvr2) homologs and show that - except for Acvr1c - all receptor-encoding transcripts are maternally deposited and present during zebrafish embryogenesis. We generated mutants and used them together with combinatorial morpholino knockdown and CRISPR F0 knockout (KO) approaches to assess compound loss-of-function phenotypes. We discovered that the Acvr2 homologs function partly redundantly and partially independently of Nodal to pattern the early zebrafish embryo, whereas the Type I receptors Acvr1b-a and Acvr1b-b redundantly act as major mediators of Nodal signaling. By combining quantitative analyses with expression manipulations, we found that feedback-regulated Type I receptors and co-receptors can directly influence the diffusion and distribution of Nodals, providing a mechanism for the spatial restriction of Nodal signaling during germ layer patterning.


Building a body is complicated. Cells must organise themselves head-to-tail, belly-to-back, and inside-to-outside. They do this by laying down a chemical map, which is made up of gradients of molecular signals, high in some places and lower in others. The amount of signal each cell receives helps to decide which part of the body it will become. One of the essential signals in developing vertebrates is Nodal. It helps cells to tell inside from outside and left from right. Cells detect Nodal using an activin receptor and co-receptor complex, which catch hold of passing Nodal proteins and transmit developmental signals into cells. An important model to study Nodal signals is the zebrafish embryo, but the identity of the activin receptors and their exact role in this organism has been unclear. To find out more, Preiß, Kögler, Mörsdorf et al. studied the activin receptors Acvr1 and Acvr2 in zebrafish embryos. The experiments revealed that two putative Acvr1 and four Acvr2 receptors were present during early development. To better understand their roles, Preiß et al. eliminated them one at a time, and in combination. Losing single activin receptors had no effect. But losing both Acvr1 receptors together stopped Nodal signalling and changed the distribution of the Nodal gradient. Loss of all Acvr2 receptors also caused developmental problems, but they were partly independent of Nodal. This suggests that Acvr1s seem to be able to transmit signals and to shape the Nodal gradient, and that Acvr2s might have another, so far unknown, role. Nodal signals guide the development of all vertebrates. Understanding how they work in a model species like zebrafish could shed light on their role in other species, including humans. A clearer picture could help to uncover what happens at a molecular level when development goes wrong.


Subject(s)
Zebrafish Proteins , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Feedback , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Nodal Protein/genetics , Nodal Protein/metabolism , Body Patterning/genetics , Gene Expression Regulation, Developmental
15.
Science ; 377(6613): eabl3921, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137018

ABSTRACT

The vertebrate intestine forms by asymmetric gut rotation and elongation, and errors cause lethal obstructions in human infants. Rotation begins with tissue deformation of the dorsal mesentery, which is dependent on left-sided expression of the Paired-like transcription factor Pitx2. The conserved morphogen Nodal induces asymmetric Pitx2 to govern embryonic laterality, but organ-level regulation of Pitx2 during gut asymmetry remains unknown. We found Nodal to be dispensable for Pitx2 expression during mesentery deformation. Intestinal rotation instead required a mechanosensitive latent transforming growth factor-ß (TGFß), tuning a second wave of Pitx2 that induced reciprocal tissue stiffness in the left mesentery as mechanical feedback with the right side. This signaling regulator, an accelerator (right) and brake (left), combines biochemical and biomechanical inputs to break gut morphological symmetry and direct intestinal rotation.


Subject(s)
Gastrulation , Gene Expression Regulation, Developmental , Homeodomain Proteins , Intestines , Mechanotransduction, Cellular , Nodal Protein , Transcription Factors , Transforming Growth Factor beta , Animals , Chick Embryo , Gastrulation/genetics , Gastrulation/physiology , Homeodomain Proteins/genetics , Homeodomain Proteins/pharmacology , Intestines/embryology , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Mice , Nodal Protein/genetics , Transcription Factors/genetics , Transcription Factors/pharmacology , Transforming Growth Factor beta/metabolism , Homeobox Protein PITX2
16.
Nat Commun ; 13(1): 3984, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810171

ABSTRACT

TGF-ß family proteins including Nodal are known as central regulators of early development in metazoans, yet our understanding of the scope of Nodal signaling's downstream targets and associated physiological mechanisms in specifying developmentally appropriate cell fates is far from complete. Here, we identified a highly conserved, transmembrane micropeptide-NEMEP-as a direct target of Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells (mESCs), and this micropeptide is essential for mesendoderm differentiation. We showed that NEMEP interacts with the glucose transporters GLUT1/GLUT3 and promotes glucose uptake likely through these interactions. Thus, beyond expanding the scope of known Nodal signaling targets in early development and showing that this target micropeptide augments the glucose uptake during mesendoderm differentiation, our study provides a clear example for the direct functional impact of altered glucose metabolism on cell fate determination.


Subject(s)
Mesoderm , Nodal Protein , Animals , Cell Differentiation , Embryonic Stem Cells/metabolism , Glucose/metabolism , Mesoderm/metabolism , Mice , Nodal Protein/metabolism , Transforming Growth Factor beta/metabolism
17.
J Cell Mol Med ; 26(14): 4087-4100, 2022 07.
Article in English | MEDLINE | ID: mdl-35729773

ABSTRACT

Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24-h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia-induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.


Subject(s)
Pre-Eclampsia , RNA, Long Noncoding , Activin Receptors, Type I/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Female , Humans , Hypoxia/genetics , Hypoxia/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Nodal Protein/metabolism , Polycomb Repressive Complex 2/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pregnancy , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Taurine/metabolism , Transforming Growth Factor beta/metabolism , Trophoblasts/metabolism
18.
Proteomics ; 22(13-14): e2200018, 2022 07.
Article in English | MEDLINE | ID: mdl-35633524

ABSTRACT

IPF is a progressive fibrotic lung disease whose pathogenesis remains incompletely understood. We have previously discovered pathologic mesenchymal progenitor cells (MPCs) in the lungs of IPF patients. IPF MPCs display a distinct transcriptome and create sustained interstitial fibrosis in immune deficient mice. However, the precise pathologic alterations responsible for this fibrotic phenotype remain to be uncovered. Quantitative mass spectrometry and interactomics is a powerful tool that can define protein alterations in specific subcellular compartments that can be implemented to understand disease pathogenesis. We employed quantitative mass spectrometry and interactomics to define protein alterations in the nuclear compartment of IPF MPCs compared to control MPCs. We identified increased nuclear levels of PARP1, CDK1, and BACH1. Interactomics implicated PARP1, CDK1, and BACH1 as key hub proteins in the DNA damage/repair, differentiation, and apoptosis signaling pathways respectively. Loss of function and inhibitor studies demonstrated important roles for PARP1 in DNA damage/repair, CDK1 in regulating IPF MPC stemness and self-renewal, and BACH1 in regulating IPF MPC viability. Our quantitative mass spectrometry studies combined with interactomic analysis uncovered key roles for nuclear PARP1, CDK1, and BACH1 in regulating IPF MPC fibrogenicity.


Subject(s)
Idiopathic Pulmonary Fibrosis , Mesenchymal Stem Cells , Animals , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Nodal Protein/genetics , Nodal Protein/metabolism , Phenotype , Proteome/metabolism , Proteomics
19.
Curr Top Dev Biol ; 149: 311-340, 2022.
Article in English | MEDLINE | ID: mdl-35606059

ABSTRACT

Transforming growth factor ß (TGF-ß) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.


Subject(s)
Body Patterning , Nodal Protein , Animals , Bone Morphogenetic Proteins/metabolism , Gene Expression Regulation, Developmental , Nodal Protein/genetics , Transforming Growth Factor beta/metabolism , Vertebrates/metabolism
20.
J Cell Sci ; 135(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35302162

ABSTRACT

SMAD2, an effector of the NODAL/Activin signalling pathway, regulates developmental processes by sensing distinct chromatin states and interacting with different transcriptional partners. However, the network of factors that controls SMAD2 chromatin binding and shapes its transcriptional programme over time is poorly characterised. Here, we combine ATAC-seq with computational footprinting to identify temporal changes in chromatin accessibility and transcription factor activity upon NODAL/Activin signalling. We show that SMAD2 binding induces chromatin opening genome wide. We discover footprints for FOXI3, FOXO3 and ZIC3 at the SMAD2-bound enhancers of the early response genes, Pmepa1 and Wnt3, respectively, and demonstrate their functionality. Finally, we determine a mechanism by which NODAL/Activin signalling induces delayed gene expression, by uncovering a self-enabling transcriptional cascade whereby activated SMADs, together with ZIC3, induce the expression of Wnt3. The resultant activated WNT pathway then acts together with the NODAL/Activin pathway to regulate expression of delayed target genes in prolonged NODAL/Activin signalling conditions. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Activins , Transcription Factors , Activins/metabolism , Chromatin/genetics , Gene Expression Regulation, Developmental , Humans , Membrane Proteins/metabolism , Nodal Protein/metabolism , Smad2 Protein , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...