Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.038
Filter
1.
Virology ; 597: 110160, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955083

ABSTRACT

Plant viruses threaten global food security by infecting commercial crops, highlighting the critical need for efficient virus detection to enable timely preventive measures. Current techniques rely on polymerase chain reaction (PCR) for viral genome amplification and require laboratory conditions. This review explores the applications of CRISPR-Cas assisted diagnostic tools, specifically CRISPR-Cas12a and CRISPR-Cas13a/d systems for plant virus detection and analysis. The CRISPR-Cas12a system can detect viral DNA/RNA amplicons and can be coupled with PCR or isothermal amplification, allowing multiplexed detection in plants with mixed infections. Recent studies have eliminated the need for expensive RNA purification, streamlining the process by providing a visible readout through lateral flow strips. The CRISPR-Cas13a/d system can directly detect viral RNA with minimal preamplification, offering a proportional readout to the viral load. These approaches enable rapid viral diagnostics within 30 min of leaf harvest, making them valuable for onsite field applications. Timely identification of diseases associated with pathogens is crucial for effective treatment; yet developing rapid, specific, sensitive, and cost-effective diagnostic technologies remains challenging. The current gold standard, PCR technology, has drawbacks such as lengthy operational cycles, high costs, and demanding requirements. Here we update the technical advancements of CRISPR-Cas in viral detection, providing insights into future developments, versatile applications, and potential clinical translation. There is a need for approaches enabling field plant viral nucleic acid detection with high sensitivity, specificity, affordability, and portability. Despite challenges, CRISPR-Cas-mediated pathogen diagnostic solutions hold robust capabilities, paving the way for ideal diagnostic tools. Alternative applications in virus research are also explored, acknowledging the technology's limitations and challenges.


Subject(s)
CRISPR-Cas Systems , Plant Diseases , Plant Viruses , Plant Viruses/genetics , Plant Viruses/isolation & purification , Plant Diseases/virology , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral/genetics , DNA, Viral/genetics
2.
Appl Microbiol Biotechnol ; 108(1): 414, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985204

ABSTRACT

Airborne animal viral pathogens can rapidly spread and become a global threat, resulting in substantial socioeconomic and health consequences. To prevent and control potential epidemic outbreaks, accurate, fast, and affordable point-of-care (POC) tests are essential. As a proof-of-concept, we have developed a molecular system based on the loop-mediated isothermal amplification (LAMP) technique for avian metapneumovirus (aMPV) detection, an airborne communicable agent mainly infecting turkeys and chickens. For this purpose, a colorimetric system was obtained by coupling the LAMP technique with specific DNA-functionalized AuNPs (gold nanoparticles). The system was validated using 50 different samples (pharyngeal swabs and tracheal tissue) collected from aMPV-infected and non-infected chickens and turkeys. Viral detection can be achieved in about 60 min with the naked eye, with 100% specificity and 87.88% sensitivity for aMPV. In summary, this novel molecular detection system allows suitable virus testing in the field, with accuracy and limit of detection (LOD) values highly close to qRT-PCR-based diagnosis. Furthermore, this system can be easily scalable to a platform for the detection of other viruses, addressing the current gap in the availability of POC tests for viral detection in poultry farming. KEY POINTS: •aMPV diagnosis using RT-LAMP is achieved with high sensitivity and specificity. •Fifty field samples have been visualized using DNA-nanoprobe validation. •The developed system is a reliable, fast, and cost-effective option for POCT.


Subject(s)
Chickens , Gold , Metapneumovirus , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Paramyxoviridae Infections , Poultry Diseases , Sensitivity and Specificity , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/economics , Chickens/virology , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/economics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Gold/chemistry , Turkeys , Metal Nanoparticles/chemistry , Limit of Detection , Colorimetry/methods , DNA, Viral/genetics
3.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Article in English | MEDLINE | ID: mdl-38994004

ABSTRACT

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , Limit of Detection , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Recombinases/metabolism , Recombinases/genetics , Molecular Diagnostic Techniques/methods , Bacterial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics , Endodeoxyribonucleases
4.
Mol Biol Rep ; 51(1): 811, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002038

ABSTRACT

BACKGROUND: Neonatal sepsis, often attributed to Group B Streptococcus (GBS) infection, poses a critical health risk to infants, demanding rapid and accurate diagnostic approaches. Existing diagnostic approaches are dependent on traditional culture methods, a process that requires substantial time and has the potential to delay crucial therapeutic assessments. METHODS: This study introduces an innovative Loop-Mediated Isothermal Amplification (LAMP) assay for the early on-site detection of GBS infection from neonatal sepsis blood samples. To develop a LAMP assay, the primers are designed for the selective targeting of a highly conserved segment within the cfb gene encoding the CAMP factor in Streptococcus agalactiae ensuring high specificity. RESULTS: Rigorous optimization of reaction conditions, including temperature and incubation time, enhances the efficiency of the LAMP assay, enabling rapid and reliable GBS detection within a short timeframe. The diagnostic efficacy of the LAMP assay was evaluated using spiked blood samples by eliminating the DNA extraction step. The simplified colorimetric LAMP assay has the capability to detect S. agalactiae in a neonatal blood sample containing 2 CFU/mL during sepsis. Additionally, the LAMP assay effectively detected S. agalactiae in both the standard and spiked blood samples, with no detectable interference with blood. CONCLUSION: This optimised LAMP assay emerges as a promising tool for early GBS detection, offering a rapid and accurate on-site solution that has the potential to inform timely interventions and improve outcomes in neonatal sepsis cases.


Subject(s)
Molecular Diagnostic Techniques , Neonatal Sepsis , Nucleic Acid Amplification Techniques , Streptococcal Infections , Streptococcus agalactiae , Humans , Nucleic Acid Amplification Techniques/methods , Streptococcus agalactiae/genetics , Streptococcus agalactiae/isolation & purification , Infant, Newborn , Neonatal Sepsis/diagnosis , Neonatal Sepsis/microbiology , Neonatal Sepsis/blood , Streptococcal Infections/diagnosis , Streptococcal Infections/blood , Streptococcal Infections/microbiology , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , DNA, Bacterial/genetics , DNA, Bacterial/blood , Bacterial Proteins/genetics
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000322

ABSTRACT

Human adenoviruses (HAdVs) are common pathogens that are associated with a variety of diseases, including respiratory tract infections (RTIs). Without reliable, fast, and cost-effective detection methods for HAdVs, patients may be misdiagnosed and inappropriately treated. To address this problem, we have developed a multiplex loop-mediated isothermal amplification (LAMP) assay for the detection of the species Human adenovirus B (HAdV-B), Human adenovirus C (HAdV-C) and Human adenovirus E (HAdV-E) that cause RTIs. This multiplexing approach is based on the melting curve analysis of the amplicons with a specific melting temperature for each HAdV species. Without the need for typing of HAdVs, the LAMP results can be visually detected using colorimetric analysis. The assay reliably detects at least 375 copies of HAdV-B and -C and 750 copies of HAdV-E DNA per reaction in less than 35 min at 60 °C. The designed primers have no in silico cross-reactivity with other human respiratory pathogens. Validation on 331 nasal swab samples taken from patients with RTIs showed a 90-94% agreement rate with our in-house multiplex quantitative polymerase chain reaction (qPCR) method. Concordance between the quantitative and visual LAMP was 99%. The novel multiplexed LAMP could be an alternative to PCR for diagnostic purposes, saving personnel and equipment time, or could be used for point-of-care testing.


Subject(s)
Adenoviruses, Human , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Respiratory Tract Infections , Humans , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Nucleic Acid Amplification Techniques/methods , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Molecular Diagnostic Techniques/methods , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/virology , Sensitivity and Specificity , DNA, Viral/genetics , DNA, Viral/analysis , Multiplex Polymerase Chain Reaction/methods
6.
Sensors (Basel) ; 24(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39001045

ABSTRACT

Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.


Subject(s)
Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/instrumentation , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Vibration , Point-of-Care Systems , Humans , Nucleic Acids/analysis , DNA/analysis , DNA/genetics , DNA/chemistry
7.
Sci Rep ; 14(1): 16156, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997337

ABSTRACT

Dermatophagoides farina (D. farinae) and Dermatophagoides pteronyssinus (D. pteronyssinus) are the prevalent kinds of house dust mites (HDMs). HDMs are common inhalant allergens that cause a range of allergic diseases, such as rhinitis, atopic dermatitis, and asthma. The epidemiology of these diseases is associated with exposure to mites. Therefore, in the present study, a method named multiplex loop-mediated isothermal amplification (LAMP) was developed to detect environmental dust mites. The multiplex LAMP assay allows amplification within a single tube and has an ITS plasmid detection limit as low as 40 fg/µL for both single dust mites and mixed dust mites (D. pteronyssinus and D. farinae), which is up to ten times more sensitive than classical PCR techniques. Furthermore, the multiplex LAMP method was applied to samples of single dust mites and clinical dust to confirm its validity. The multiplex LAMP assay exhibited higher sensitivity, simpler instrumentation, and visualization of test results, indicating that this method could be used as an alternative to traditional techniques for the detection of HDMs.


Subject(s)
Dermatophagoides farinae , Dermatophagoides pteronyssinus , Nucleic Acid Amplification Techniques , Animals , Dermatophagoides pteronyssinus/genetics , Dermatophagoides farinae/genetics , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity
8.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38952078

ABSTRACT

Owing to the lack of effective vaccines, current control measures and eradication strategies for the African swine fever virus (ASFV) rely on early detection and stringent stamping-out procedures. In the present study, we developed two independent isothermal amplification assays, namely, loop-mediated isothermal amplification (LAMP) and polymerase spiral reaction (PSR), for quick visualization of the ASFV genome in clinical samples. Additionally, a quantitative real-time PCR (qRT-PCR)-based hydrolysis probe assay was developed for comparative assessment of sensitivity with the developed isothermal assays. The analytical sensitivity of the LAMP, PSR, and qRT-PCR was found to be 2.64 ×105 copies/µL, 2.64 ×102 copies/µL, and 2.64 ×101 copies/µL, respectively. A total of 165 clinical samples was tested using the developed visual assays. The relative accuracy, relative specificity, and relative diagnostic sensitivity for LAMP vs PSR were found to be 95.37% vs 102.48%, 97.46% vs 101.36%, and 73.33% vs 113.33%, respectively.


Subject(s)
African Swine Fever Virus , African Swine Fever , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , African Swine Fever Virus/genetics , African Swine Fever Virus/isolation & purification , Animals , Nucleic Acid Amplification Techniques/methods , Swine , African Swine Fever/diagnosis , African Swine Fever/virology , Real-Time Polymerase Chain Reaction/methods , Molecular Diagnostic Techniques/methods , Genome, Viral/genetics
9.
Biomed Environ Sci ; 37(6): 639-646, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38988114

ABSTRACT

Objective: To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We designed, developed, and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection. The precision of the liquid transfer and temperature control was tested. A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR). The entire process, from SARS-CoV-2 nucleic acid extraction to amplification, was evaluated. Results: The precision of the syringe transfer volume was 19.2 ± 1.9 µL (set value was 20), 32.2 ± 1.6 (set value was 30), and 57.2 ± 3.5 (set value was 60). Temperature control in the amplification tube was measured at 60.0 ± 0.0 °C (set value was 60) and 95.1 ± 0.2 °C (set value was 95) respectively. SARS-Cov-2 nucleic acid extraction yield through the device was 7.10 × 10 6 copies/mL, while a commercial kit yielded 2.98 × 10 6 copies/mL. The mean time to complete the entire assay, from SARS-CoV-2 nucleic acid extraction to amplification detection, was 36 min and 45 s. The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL. Conclusion: The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test (POCT).


Subject(s)
COVID-19 , Disposable Equipment , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Humans , RNA, Viral/isolation & purification , RNA, Viral/analysis , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/methods , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/instrumentation
10.
Sci Rep ; 14(1): 15539, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969670

ABSTRACT

One of the significant challenges in organic cultivation of edible mushrooms is the control of invasive Trichoderma species that can hinder the mushroom production and lead to economic losses. Here, we present a novel loop-mediated isothermal amplification (LAMP) assay coupled with gold nanoparticles (AuNPs) for rapid colorimetric detection of Trichoderma spp. The specificity of LAMP primers designed on the tef1 gene was validated in silico and through gel-electrophoresis on Trichoderma harzianum and non-target soil-borne fungal and bacterial strains. LAMP amplification of genomic DNA templates was performed at 65 °C for only 30 min. The results were rapidly visualized in a microplate format within less than 5 min. The assay is based on salt-induced aggregation of AuNPs that is being prevented by the amplicons produced in case of positive LAMP reaction. As the solution color changes from red to violet upon nanoparticle aggregation can be observed with the naked eye, the developed LAMP-AuNPs assay can be easily operated to provide a simple initial screening for the rapid detection of Trichoderma in button mushroom cultivation substrate.


Subject(s)
Agaricus , Colorimetry , Gold , Metal Nanoparticles , Nucleic Acid Amplification Techniques , Trichoderma , Gold/chemistry , Nucleic Acid Amplification Techniques/methods , Metal Nanoparticles/chemistry , Colorimetry/methods , Trichoderma/genetics , Trichoderma/isolation & purification , Agaricus/genetics , DNA, Fungal/genetics , Molecular Diagnostic Techniques/methods
11.
Anal Chem ; 96(28): 11383-11389, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946419

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.


Subject(s)
Biosensing Techniques , DNA-(Apurinic or Apyrimidinic Site) Lyase , Electrochemical Techniques , Luminescent Measurements , Metal Nanoparticles , Silver , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/analysis , Silver/chemistry , Humans , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Luminescent Measurements/methods , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , DNA/chemistry , Limit of Detection , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism
12.
Anal Biochem ; 693: 115597, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969155

ABSTRACT

Vibrio parahaemolyticus (V. parahaemolyticus) is a major foodborne pathogen, which can cause serious foodborne illnesses like diarrhoea. Rapid on-site detection of foodborne pathogens is an ideal way to respond to foodborne illnesses. Herein, we provide an electrochemical sensor for rapid on-site detection. This sensor utilized a pH-sensitive metal-oxide material for the concurrent isothermal amplification and label-free detection of nucleic acids. Based on a pH-sensitive hydrated iridium oxide oxyhydroxide film (HIROF), the electrode transforms the hydrogen ion compound generated during nucleic acid amplification into potential, so as to achieve a real-time detection. The results can be transmitted to a smartphone via Bluetooth. Moreover, HIROF was applied in nucleic acid device detection, with a super-Nernst sensitivity of 77.6 mV/pH in the pH range of 6.0-8.5, and the sensitivity showed the best results so far. Detection of V. parahaemolyticus by this novel method showed a detection limit of 1.0 × 103 CFU/mL, while the time consumption was only 30 min, outperforming real-time fluorescence loop-mediated isothermal amplification (LAMP). Therefore, the characteristics of compact, portable, and fast make the sensor more widely used in on-site detection.


Subject(s)
Electrochemical Techniques , Iridium , Vibrio parahaemolyticus , Vibrio parahaemolyticus/isolation & purification , Vibrio parahaemolyticus/genetics , Hydrogen-Ion Concentration , Electrochemical Techniques/methods , Iridium/chemistry , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , Limit of Detection , Electrodes
13.
Expert Rev Mol Diagn ; 24(6): 509-524, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38973430

ABSTRACT

INTRODUCTION: Suitable sample collection and preparation methods are essential to enable nucleic acid amplification testing at the point of care (POC). Strategies that allow direct isothermal nucleic acid amplification testing (iNAAT) of crude sample lysate without the need for nucleic acid extraction minimize time to result as well as the need for operator expertise and costly infrastructure. AREAS COVERED: The authors review research to understand how sample matrix and preparation affect the design and performance of POC iNAATs. They focus on approaches where samples are directly combined with liquid reagents for preparation and amplification via iNAAT strategies. They review factors related to the type and method of sample collection, storage buffers, and lysis strategies. Finally, they discuss RNA targets and relevant regulatory considerations. EXPERT OPINION: Limitations in sample preparation methods are a significant technical barrier preventing implementation of nucleic acid testing at the POC. The authors propose a framework for co-designing sample preparation and amplification steps for optimal performance with an extraction-free paradigm by considering a sample matrix and lytic strategy prior to an amplification assay and readout. In the next 5 years, the authors anticipate increasing priority on the co-design of sample preparation and iNAATs.


Subject(s)
Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Point-of-Care Testing , Specimen Handling , Nucleic Acid Amplification Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Specimen Handling/methods , Point-of-Care Systems
14.
PLoS Negl Trop Dis ; 18(7): e0012282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990839

ABSTRACT

OVERVIEW: The roadmap adopted by the World Health Organization (WHO) for eliminating neglected tropical diseases aims to eliminate schistosomiasis, as a public health concern, by 2030. While progress has been made towards reducing schistosomiasis morbidity control in several sub-Saharan African countries, there is still more that needs to be done. Proper surveillance using accurate diagnostics with acceptable sensitivity and specificity is essential for evaluating the success of all efforts against schistosomiasis. Microscopy, despite its low sensitivity, remains the gold standard approach for diagnosing the disease. Although many efforts have been made to develop new diagnostics based on circulating parasite proteins, genetic markers, schistosome egg morphology, and their paramagnetic properties, none has been robust enough to replace microscopy. This review highlights common diagnostic approaches for detecting schistosomiasis in field and clinical settings, major challenges, and provides new and novel opportunities and diagnosis pathways that will be critical in supporting elimination of schistosomiasis. METHODS: We searched for relevant and reliable published literature from PubMed, Scopus, google scholar, and Web of science. The search strategies were primarily determined by subtopic, and hence the following words were used (schistosom*, diagnosis, Kato-Katz, antibody test, circulating antigen, POC-CCA, UCP-LF-CAA, molecular diagnostics, nucleic acid amplification test, microfluidics, lab-on a disk, lab-on chip, recombinase polymerase amplification (RPA), LAMP, portable sequencer, nanobody test, identical multi-repeat sequences, diagnostic TPPs, REASSURED, extraction free), and Boolean operators AND and/OR were used to refine the searching capacity. Due to the global public health nature of schistosomiasis, we also searched for reliable documents, reports, and research papers published by international health organizations, World Health Organization (WHO), and Center for Disease control and Elimination.


Subject(s)
Schistosomiasis , Schistosomiasis/diagnosis , Schistosomiasis/prevention & control , Humans , Animals , Schistosoma/genetics , Schistosoma/isolation & purification , Disease Eradication , Sensitivity and Specificity , Molecular Diagnostic Techniques/methods , Neglected Diseases/diagnosis , Neglected Diseases/prevention & control , Neglected Diseases/parasitology , Nucleic Acid Amplification Techniques/methods
15.
BMC Infect Dis ; 24(1): 679, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982392

ABSTRACT

BACKGROUND: There is an increasing disease trend for SARS-COV-2, so need a quick and affordable diagnostic method. It should be highly accurate and save costs compared to other methods. The purpose of this research is to achieve these goals. METHODS: This study analyzed 342 samples using TaqMan One-Step RT-qPCR and fast One-Step RT-LAMP (Reverse Transcriptase Loop-Mediated Isothermal Amplification). The One-Step LAMP assay was conducted to assess the sensitivity and specificity. RESULTS: The research reported positive samples using two different methods. In the RT-LAMP method, saliva had 92 positive samples (26.9%) and 250 negative samples (73.09%) and nasopharynx had 94 positive samples (27.4%) and 248 negative samples (72.51%). In the RT-qPCR method, saliva had 86 positive samples (25.1%) and 256 negative samples (74.8%) and nasopharynx had 93 positive samples (27.1%) and 249 negative samples (72.8%). The agreement between the two tests in saliva and nasopharynx samples was 93% and 94% respectively, based on Cohen's kappa coefficient (κ) (P < 0.001). The rate of sensitivity in this technique was reported at a dilution of 1 × 101 and 100% specificity. CONCLUSIONS: Based on the results of the study the One-Step LAMP assay has multiple advantages. These include simplicity, cost-effectiveness, high sensitivity, and specificity. The One-Step LAMP assay shows promise as a diagnostic tool. It can help manage disease outbreaks, ensure prompt treatment, and safeguard public health by providing rapid, easy-to-use testing.


Subject(s)
COVID-19 , Molecular Diagnostic Techniques , Nasopharynx , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Saliva , Sensitivity and Specificity , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , Saliva/virology , Real-Time Polymerase Chain Reaction/methods , Molecular Diagnostic Techniques/methods , COVID-19 Nucleic Acid Testing/methods , RNA, Viral/genetics , RNA, Viral/analysis
16.
J Assoc Physicians India ; 72(7): 17-21, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38990581

ABSTRACT

BACKGROUND: The most common form of extrapulmonary tuberculosis (TB) is tuberculous lymphadenitis, which constitutes about 30-40% of all extrapulmonary TB cases. A new diagnostic method like the nucleic acid amplification test (NAAT) is a very sensitive and rapid test for diagnosing tuberculous cervical lymphadenopathy. It also detects rifampicin sensitivity among positive patients. OBJECTIVES: (1) To evaluate the diagnostic yield of TrueNAT for detecting Mycobacterium tuberculosis bacteria in the fine-needle aspirated samples of cervical lymph nodes compared with Ziehl-Neelsen (ZN) staining; (2) to evaluate the diagnostic yield of TrueNAT for diagnosis of tuberculosis through comparison with the cytology report of fine-needle aspiration (FNA) sample of cervical lymph node and with necrotic cervical lymph node on ultrasonography (USG) neck. MATERIALS AND METHODS: A total of 50 patients enrolled in this prospective study from January to December 2022. Demographic profile and clinical history were noted. Fine-needle aspirate samples were sent for TrueNAT assay, cytological examination, and ZN staining. USG neck was done for necrotic findings in the cervical lymph nodes. RESULTS: The TrueNAT positivity rate was 70%. TrueNAT sensitivity and specificity were assessed according to the cytology report, acid-fast bacilli (AFB) positivity on ZN stain, and the finding of necrosis in the cervical lymph node on the USG neck. The sensitivity and specificity of the TrueNAT assay were 80.49 and 77.78%, respectively, in accordance with necrosis on FNA cytology; 17.14 and 93.33%, respectively, in accordance with AFB positivity on ZN stain; and 74.29 and 33.33%, respectively, in accordance with lymph node necrosis on USG neck. CONCLUSION: The TrueNAT assay should be used as an adjunctive test in addition to the conventional cytological examination of the FNA sample of lymph nodes for the rapid diagnosis of tuberculosis. It also detects rifampicin resistance simultaneously.


Subject(s)
Lymph Nodes , Mycobacterium tuberculosis , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Tuberculosis, Lymph Node , Humans , Tuberculosis, Lymph Node/diagnosis , Nucleic Acid Amplification Techniques/methods , Female , Male , Adult , Biopsy, Fine-Needle/methods , Prospective Studies , Lymph Nodes/pathology , Lymph Nodes/microbiology , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/genetics , Middle Aged , Neck , Young Adult , Immunocompetence , Adolescent
17.
Mikrochim Acta ; 191(7): 430, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38949666

ABSTRACT

A pico-injection-aided digital droplet detection platform is presented that integrates loop-mediated isothermal amplification (LAMP) with molecular beacons (MBs) for the ultrasensitive and quantitative identification of pathogens, leveraging the sequence-specific detection capabilities of MBs. The microfluidic device contained three distinct functional units including droplet generation, pico-injection, and droplet counting. Utilizing a pico-injector, MBs are introduced into each droplet to specifically identify LAMP amplification products, thereby overcoming issues related to temperature incompatibility. Our methodology has been validated through the quantitative detection of Escherichia coli, achieving a detection limit as low as 9 copies/µL in a model plasmid containing the malB gene and 3 CFU/µL in a spiked milk sample. The total analysis time was less than 1.5 h. The sensitivity and robustness of this platform further demonstrated the potential for rapid pathogen detection and diagnosis, particularly when integrated with cutting-edge microfluidic technologies.


Subject(s)
Escherichia coli , Limit of Detection , Milk , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Escherichia coli/isolation & purification , Escherichia coli/genetics , Milk/microbiology , Animals , Molecular Diagnostic Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , DNA, Bacterial/analysis , DNA, Bacterial/genetics
18.
Mikrochim Acta ; 191(7): 431, 2024 06 29.
Article in English | MEDLINE | ID: mdl-38951263

ABSTRACT

A signal amplification electrochemical biosensor chip was developed to integrate loop-mediated isothermal amplification (LAMP) based on in situ nucleic acid amplification and methyl blue (MB) serving as the hybridization redox indicator for sensitive and selective foodborne pathogen detection without a washing step. The electrochemical biosensor chip was designed by a screen-printed carbon electrode modified with gold nanoparticles (Au NPs) and covered with polydimethylsiloxane membrane to form a microcell. The primers of the target were immobilized on the Au NPs by covalent attachment for in situ amplification. The electroactive MB was used as the electrochemical signal reporter and embedded into the double-stranded DNA (dsDNA) amplicons generated by LAMP. Differential pulse voltammetry was introduced to survey the dsDNA hybridization with MB, which differentiates the specifically electrode-unbound and -bound labels without a washing step. Pyrene as the back-filling agent can further improve response signaling by reducing non-specific adsorption. This method is operationally simple, specific, and effective. The biosensor showed a detection linear range of 102-107 CFU mL-1 with the limit of detection of 17.7 CFU mL-1 within 40 min. This method showed promise for on-site testing of foodborne pathogens and could be integrated into an all-in-one device.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Food Microbiology , Gold , Metal Nanoparticles , Nucleic Acid Amplification Techniques , Nucleic Acid Amplification Techniques/methods , Electrochemical Techniques/methods , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Limit of Detection , Electrodes , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Nucleic Acid Hybridization
19.
Mikrochim Acta ; 191(7): 437, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951284

ABSTRACT

A stable DNA signal amplification sensor was developed on account of rolling circle amplification (RCA). This sensor includes target DNA-controlled rolling circle amplification technology and locking probe DNA replacement technology, which can be used to detect DNA fragments with genetic information, thus constructing a biosensor for universal detection of DNA. This study takes the homologous DNA of human immunodeficiency virus (HIV) and let-7a as examples to describe this biosensor. The padlock probe is first cyclized by T4 DNA ligase in response to the target's reaction with it. Then, rolling cycle amplification is initiated by Phi29 DNA polymerase, resulting in the formation of a lengthy chain with several triggers. These triggers can open the locked probe LP1 with the fluorescence signal turned off, so that it can continue to react with H2 to form a stable H1-H2 double strand. This regulates the distance between B-DNA modified by the quenching group and H1 modified by fluorescent group, and the fluorescence signal is recovered.


Subject(s)
Biosensing Techniques , DNA Probes , Nucleic Acid Amplification Techniques , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , Humans , DNA Probes/chemistry , DNA Probes/genetics , Fluorescent Dyes/chemistry , DNA, Viral/analysis , DNA, Viral/genetics , DNA/chemistry , DNA/genetics , Spectrometry, Fluorescence/methods , Fluorescence , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/chemistry , Limit of Detection , HIV/genetics
20.
Mikrochim Acta ; 191(7): 439, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38954110

ABSTRACT

A Pyrococcus furiosus Argonaute (PfAgo)-based biosensor is presented for alkaline phosphatase (ALP) activity detection in which the ALP-catalyzed hydrolysis of 3'-phosphate-modified functional DNA activates the strand displacement amplification, and the amplicon mediates the fluorescent reporter cleavage as a guide sequence of PfAgo. Under the dual amplification mode of PfAgo-catalyzed multiple-turnover cleavage activity and pre-amplification technology, the developed method was successfully applied to ALP activity determination with a detection limit (LOD) of 0.0013 U L-1 (3σ) and a detection range of 0.0025 to 1 U L-1 within 90 min. The PfAgo-based method exhibits satisfactory analytic performance in the presence of potential interferents and in complex human serum samples. The proposed method shows several advantages, such as rapid analysis, high sensitivity, low-cost, and easy operation, and has great potential in disease evolution fundamental studies and clinical diagnosis applications.


Subject(s)
Alkaline Phosphatase , Biosensing Techniques , Limit of Detection , Pyrococcus furiosus , Biosensing Techniques/methods , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Humans , Pyrococcus furiosus/enzymology , Argonaute Proteins/metabolism , Nucleic Acid Amplification Techniques/methods , Enzyme Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...