Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 966
Filter
1.
BMC Plant Biol ; 24(1): 837, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242495

ABSTRACT

BACKGROUND: The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS: We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS: (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION: The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.


Subject(s)
Soil Microbiology , Soil , Soil/chemistry , Hydrogen-Ion Concentration , Bacteria/genetics , Bacteria/classification , Microbiota , Nitrogen/analysis , Nitrogen/metabolism , Camellia sinensis/microbiology , Camellia sinensis/growth & development , Forests , Nutrients/analysis , Poaceae/growth & development , Phosphorus/analysis
2.
Sci Rep ; 14(1): 20539, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232009

ABSTRACT

The objective was to evaluate the biosolids as an alternative source of nutrients in the production of chrysanthemums by adding increasing doses to the cultivation substrate. The experimental design was in blocks with 6 treatments and 5 replications. The treatments consisted of the mixture (commercial substrate + biosolid) at the concentrations: 20%, 40%, 60% and 80% of biosolid + two controls (100% of biosolid and 100% of substrate). The experiment was conducted in a greenhouse for 90 days. Physiological parameters, number of flower buds, dry biomass and nutrient accumulation were evaluated. Physiological parameters were evaluated using the Infrared Gas Analyzer. The number of flower buds was evaluated by counting. Biomass was determined after drying the structures and then calculated the accumulation of nutrients. A total of 90 plants were evaluated. Concentrations of up to 40% of biosolid promoted a greater number of flower buds, dry biomass and nutrient accumulation. Concentrations above 60% lower number of buds, biomass increment and nutrient accumulation. It is concluded that the biosolid has potential as an alternative source of nutrients in the cultivation of chrysanthemums, indicating concentrations of up to 40% and the nutrient content of each batch generated must be verified.


Subject(s)
Biomass , Chrysanthemum , Flowers , Nutrients , Chrysanthemum/growth & development , Chrysanthemum/metabolism , Nutrients/metabolism , Nutrients/analysis , Flowers/growth & development , Flowers/metabolism
3.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1799-1806, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233408

ABSTRACT

Exploring nutrient limitation in forest soil holds significant implications for forest tending and management. However, current research on nutrient limitation status of microorganisms in Robinia pseudoacacia plantations within the Loess Plateau remains insufficient. To investigate soil microbial nutrient limitation of R. pseu-doacacia plantations on the Loess Plateau, we selected R. pseudoacacia plantations with different afforestation time series (15, 25, 35, and 45 years) and a pile of barren slope cropland (control) in Yongshou County, Shaanxi Province as the research objects. We analyzed the contents of soil organic matter, total nitrogen, and total phosphorus, and the activities of ß-1,4-glucosidase (BG), cellobiose hydrolase (CBH), leucine aminopeptidase (LAP), ß-1,4-N-acetylglucoside (NAG) and phosphatase (AP). We analyzed the soil nutrient limitation by stoichiometry and enzyme metrology. The results showed a shift in soil pH from alkaline to acidic during vegetation restoration process, and that total phosphorus exhibited a gradual decrease over the course of 0 to 25 years. Soil orga-nic matter, total nitrogen and enzyme activities exhibited an increasing trend during the same time frame. However, between 25 and 45 years of age, soil total phosphorus, soil organic matter, total nitrogen, AP and LAP gradually declined while NAG, BG, and CBH initially increased and then decreased. Notably, the values of (BG+CBH)/(LAP+NAG), (BG+CBH)/AP and (LAP+NAG)/AP in R. pseudoacacia plantations were higher than the global average throughout the process of vegetation restoration. In the study area, the vector length was less than 1 and gradually increased, indicating that a progressive increase in microbial carbon limitation during the process of vegetation restoration. The vector angle exceeded 45° and exhibited an overall decreasing trend, suggesting that soil microorganisms were constrained by phosphorus (P) with a gradual deceleration of P limitation, without any nitrogen (N) limitation. The restoration of R. pseudoacacia plantation resulted in significant change in soil physical and chemical properties, while the time series of afforestation also influenced nutrient limitation of soil microorganisms.


Subject(s)
Nitrogen , Phosphorus , Robinia , Soil Microbiology , Soil , Robinia/growth & development , Robinia/metabolism , Soil/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Nitrogen/metabolism , Nitrogen/analysis , China , Leucyl Aminopeptidase/metabolism , Forests , Nutrients/analysis , Nutrients/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem
4.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1455-1462, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235002

ABSTRACT

The contribution of litterfall nutrient return to the maintenance of soil carbon pool and nutrient cycling is a crucial aspect of forest ecosystem functioning. Taking 21 tree species in subtropical young plantations as subjects, we investigated the correlation between litterfall nutrient return characteristics and functional traits of leaf and root and. The results showed notable variations in litterfall production, standing crop, and nutrient return across all the examined tree species. Mytilaria laosensis exhibited the highest litterfall production (689.2 g·m-2·a-1) and standing crop (605.1 g·m-2), while Cryptomeria fortunei demonstrated the lowest litterfall production (36.0 g·m-2·a-1) and standing crop (10.0 g·m-2). The nitrogen and phosphorus return amounts of 21 species ranged from 3.0 to 48.3 kg·hm-2 and from 0.1 to 2.0 kg·hm-2, respectively. Castanopsis fissa demonstrated the highest nitrogen return, while Liquidambar formosana exhibited the highest phosphorus return. C. fortunei had the lowest nitrogen and phosphorus return. Results of the stepwise regression analysis indicated that litterfall production exhibited a significant negative correlation with leaf nitrogen content and leaf dry matter content, and a significant positive correlation with fine root tissue density. Additionally, leaf nitrogen content, leaf dry matter content, and specific root length had a significant negative impact on standing crop. The structural equation modelling results indicated that leaf dry matter content had a direct or indirect negative effect on nitrogen return amount through the reduction of litterfall production. Conversely, fine root tissue density had a significant positive impact on nitrogen return amount by increasing litter leaf nitrogen content. Both leaf nitrogen content and leaf dry matter content had direct or indirect negative effects on phosphorus return amount through the reduction of litterfall production. In conclusion, the tree species with low leaf nitrogen content and dry matter content, as well as high fine root tissue density, was recommended for the establishment of plantations in the subtropical zone in order to enhance nutrient cycling through litter decomposition and improve soil fertility and forest productivity.


Subject(s)
Ecosystem , Nitrogen , Phosphorus , Plant Leaves , Soil , Trees , Tropical Climate , Trees/growth & development , Trees/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/chemistry , China , Soil/chemistry , Forests , Plant Roots/metabolism , Plant Roots/growth & development , Nutrients/analysis , Nutrients/metabolism , Carbon/metabolism , Carbon/analysis
5.
Sci Rep ; 14(1): 20377, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223290

ABSTRACT

Portable X-ray Fluorescence probe (pXRF) is a tool used to measure many elements quickly and efficiently in soil with minimal sample preparation. Although this sensing technique has been widely used to determine total elemental concentrations, it has not been calibrated for plant-available nutrient predictions. We evaluated the potential of using pXRF for fast plant-available nutrient quantification. Two experiments were conducted in soils treated with two types of biochars to obtain a practical range of soil pH (5.5 - 8.0) and organic carbon (2.0 - 5.5%). Biochars applied were derived from switchgrass (SGB) and poultry litter (PLB). The first experiment received biochars at application rates up to 8% (w/w) and had no plants. The second experiment had up to 4% of SGB or PLB planted with ryegrass (Lolium perenne). Linear regression (LR), polynomial regression (PolR), power regression (PowR), and stepwise multiple linear regression (SMLR) were the models tested. Regardless of the extraction method, phosphorus (P) showed a strong relationship between pXRF and several laboratory extraction methods; however, K prediction via pXRF was sensitive to the plant factor. The optimum soil available-P corresponding to the maximum P uptake in plant tissues can be assessed with pXRF. The LR was inconsistent for calcium (Ca), sulfur (S), and copper (Cu) and non-significant for magnesium (Mg), iron (Fe), and zinc (Zn). Our results showed that pXRF is applicable to estimate P availability in soils receiving organic amendments. More evaluations are needed with diverse soil types to confirm the findings before using pXRF for fertilizer recommendation.


Subject(s)
Charcoal , Soil , Spectrometry, X-Ray Emission , Soil/chemistry , Charcoal/chemistry , Spectrometry, X-Ray Emission/methods , Nutrients/analysis , Phosphorus/analysis , Lolium/chemistry , Lolium/metabolism , Plants/chemistry , Plants/metabolism
6.
Nutrients ; 16(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125312

ABSTRACT

BACKGROUND: Previous studies have shown that Japanese dietary patterns are associated with high nutrient density. However, these studies were limited to the Japanese population. We examined this association in the US population. METHODS: A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2017-2018. We included 3138 people aged 20-79 years. Food and nutrient intake data were based on the 24 h recall method. Three Japanese diet indices were used: (1) Japanese Diet Index (JDI, based on 9 food items), (2) modified JDI (mJDI, based on 12 food items), and (3) weighted JDI (wJDI, selected and weighted from mJDI food items). The nutrient density (ND) score was calculated based on the Nutrient-Rich Food Index 9.3. Spearman's rank correlation coefficients were calculated. RESULTS: The correlation coefficients with the ND score were 0.24 (p < 0.001) for the JDI and 0.38 (p < 0.001) for the mJDI. The correlation coefficient between the wJDI and ND score was 0.48 (p < 0.001). The three Japanese diet indices were correlated with the ND score in all racial groups (p < 0.001). CONCLUSIONS: Even among the US population, higher degrees of Japanese diet defined by the JDI or mJDI were associated with higher nutrient density.


Subject(s)
Diet , Nutrition Surveys , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Cross-Sectional Studies , Diet/statistics & numerical data , Feeding Behavior , Japan , Nutrients/analysis , Nutritive Value , United States
7.
Environ Monit Assess ; 196(9): 807, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133340

ABSTRACT

Application of sewage sludge as fertilizer can be beneficial for sustainable agriculture as it could largely account for nitrogen and phosphorus demand for crops and has lower costs compared to other disposal routes, e.g., incineration, and sanitary landfills. This study evaluates the feasibility of pilot-scale pelletization of sewage sludge for non-food crops (e.g., ornamental plants). The co-pelletization method was designed by mixing sewage sludge and binder (tapioca starch) at a 9:1 sludge-to-starch weight ratio. The amount of nitrogen (N), phosphorus (P), and potassium (K) of the resultant pellets were determined at 5.7%, 4.9%, and 0.2%, respectively. Following Malaysian and US Standards, non-essential elements and pathogenicity of the pelletized sewage sludge were measured below the predetermined limits and hence safe for agricultural application. The planting trial using 50% inorganic fertilizer + 50% sewage sludge pellets exhibited a promising result on the growth of the flowering plant Celosia plumosa, with having better dimension and color, 20% higher in height, 4% more chlorophyll content, 54% more leaf, 43% greater stem growth, and 27% more flowers compared to control. Likewise, the planting trial on Tagetes erecta resulted in 10.5% wider leaf, 10.6% heavier leaf dry weight, and 12.5% more chlorophyll content compared to control with full usage of inorganic fertilizer. By considering liquidities to operate the production facility, the economic analysis estimated that the production cost per ton of pelletized sewage sludge produced was USD 0.98.


Subject(s)
Agriculture , Fertilizers , Nitrogen , Phosphorus , Sewage , Phosphorus/analysis , Nitrogen/analysis , Agriculture/methods , Crops, Agricultural , Nutrients/analysis , Potassium/analysis , Waste Disposal, Fluid/methods , Pilot Projects , Malaysia , Manihot
8.
Environ Monit Assess ; 196(9): 831, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39174786

ABSTRACT

Reservoir is easy to be polluted by nutrients and heavy metals in the surrounding soil. There is a close relationship between heavy metals and nutrients in soil. Nutrient salts will affect the activity of heavy metals, and heavy metal pollution will affect plant growth and nutrient salt absorption, thus affecting ecosystem health. This study was performed to evaluate nutrients (TN, TP) and heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) in the upper watershed of Xiashan Reservoir by the enrichment factor, the geoaccumulation index, the enrichment factor and leaching experiments. The results showed that the average enrichment of TN and TP reached the level of moderate pollution. The nutrient enrichment of different sampling sites increased gradually from south to north, which may be affected by the topography of the study area. The comprehensive trophic level exceeds the criteria for a state of severe eutrophication of water bodies, which may lead to the enrichment of nitrogen and phosphorus in the water body through processes such as runoff. Evaluation of the geoaccumulation index and potential ecological risk index revealed that the soil was primarily contaminated by Cd and Hg, which are in the level of considerable potential ecological risk and high potential ecological risk. So most attention should be paid to Cd and Hg pollution. Pollution control of heavy metals in soil is a priority because they are more difficult to leach than nutrients. This study provided an insight into the nitrogen and phosphorus control and heavy metal pollution management in the upper watershed of Xiashan Reservoir.


Subject(s)
Environmental Monitoring , Metals, Heavy , Nitrogen , Phosphorus , Soil Pollutants , Soil , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Soil Pollutants/analysis , Phosphorus/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Nitrogen/analysis , Nutrients/analysis , Water Supply
9.
Environ Monit Assess ; 196(9): 839, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180650

ABSTRACT

Research on the observation of nutrient release rates from slow-release and regular fertilizers combined with the percolation rate in the soil is scarce. This work aims to observe potassium and phosphate release behavior from slow-release and regular fertilizer, followed by the percolation of that nutrient in the soil. The characteristics of the soil were analyzed using X-ray Diffraction (XRD), X-ray Fluorescence (XRF), and Scanning Electron Microscope (SEM). The concentration of potassium and phosphate in soil is analyzed using Atomic Absorption Spectroscopy (AAS) and Ultraviolet-Visible Spectroscopy (UV-Vis), respectively. The release rate of nutrients from slow-release fertilizer is 6 to 8 times slower than regular fertilizer. Meanwhile, the rate of nutrients released from slow-release and regular fertilizer followed by soil percolation matches the quadratic equation. Potassium adsorption on the soil surface is significantly higher than that of potassium. The negativity of soil polarity contributed to the high level of potassium adsorption on soil particle surfaces. The low phosphate adsorption capability of magnetite and the negativity of soil polarity contributed to the soil's low phosphate adsorption.


Subject(s)
Fertilizers , Potassium , Soil Pollutants , Soil , Soil/chemistry , Potassium/analysis , Soil Pollutants/analysis , Soil Pollutants/chemistry , Phosphates/analysis , Phosphates/chemistry , Nutrients/analysis , Environmental Monitoring , Adsorption , X-Ray Diffraction
10.
Sci Total Environ ; 950: 175239, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39111439

ABSTRACT

Both ecological regime shifts and carbon cycling in lakes have been the subject of global debates in recent years. However, the direct linkage between them is poorly understood. Lake Baiyangdian, a representative large shallow lake with the coexistence of a macrophyte-dominated area (MDA) and an algae-dominated area (ADA) in eastern China, allowing better understanding of the relationship between regime shifts and organic carbon (OC) burial in lakes. On the basis of Bayesian isotopic mixing modelling of C/N ratios and δ13C values, the sediment OC is primarily of autochthonous origin. The mean OC burial rate (OCBR) was 39 g C m-2 yr-1 before eutrophication occurred in 1990 and increased approximately 2.7-fold to 106 g C m-2 yr-1 after eutrophication. Partial least squares path modelling revealed that this change can be largely attributed to enhanced primary productivity and rapid burial as a result of intensified human perturbation. In terms of spatial patterns, the OCBR was greater in the MDA than in the ADA, which may be related to the different burial and mineralization processes of debris from macrophytes and algae. It then deduced that a decrease in the OCBR and an increase in the mineralization rate might have occurred after a shift from a macrophyte-dominated state to an algae-dominated state. Our findings highlight that eutrophication generally increases OC burial by enhancing lake primary productivity. However, once nutrient levels reach a critical range, lake ecosystems may shift from a macrophyte-dominated state to an algae-dominated state, which can lead to a significant reduction in the carbon burial capacity of lakes. Therefore, more attention should be given to avoiding shifts in eutrophic lakes, as such shifts can alter carbon cycling.


Subject(s)
Carbon , Environmental Monitoring , Eutrophication , Lakes , Lakes/chemistry , China , Carbon/analysis , Plants , Carbon Cycle , Nutrients/analysis , Geologic Sediments/chemistry
11.
PLoS One ; 19(8): e0298910, 2024.
Article in English | MEDLINE | ID: mdl-39150950

ABSTRACT

The closed nutrient solution management method allows for the recycling and utilization of nutrient solutions, improving the efficiency of water and fertilizer utilization. This study was conducted to investigate the effects of changing the frequency of nutrient solution renewal and method of nutrient supply on the microbial communities composition, yield, and quality in closed soilless systems by using high-throughput sequencing technology and combining the physicochemical properties of root exudate solution. The results showed that different nutrient solution management modes had a significant impact on the structure and diversity of root exudate solution microbial communities. The abundance and diversity of microorganisms in inorganic perlites were correlative with EC. The abundance and diversity of bacterial communities in the root exudate solution of open liquid supply (CK) were higher than that of closed liquid supply, while the abundance and diversity of fungal communities in the root exudate solution of closed liquid supply (T1, T2, T3) were higher than that of open liquid supply. As the frequency of nutrient solution interval decreased, the accumulation of salt in root exudate solution and the richness and diversity of the fungal community also decreased, especially increasing the K+, Ca2+, and Mg2+ contents, which were positively correlated with potential beneficial Candidatus_Xiphinematobacter, Arachidicoccus, Cellvibrio, Mucilaginibacter, Taibaiella communities and decreasing the content of soluble protein, Vitamin C content, but not significantly increased cucumber yield.


Subject(s)
Cucumis sativus , Cucumis sativus/microbiology , Microbiota , Plant Roots/microbiology , Nutrients/analysis , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Soil Microbiology , Fungi , Plant Exudates/chemistry , Fertilizers/analysis
12.
Environ Monit Assess ; 196(9): 785, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39098961

ABSTRACT

Mapping of soil nutrient parameters using experimental measurements and geostatistical approaches to assist site-specific fertiliser advisories is anticipated to play a significant role in Smart Agriculture. FarmerZone is a cloud service envisioned by the Department of Biotechnology, Government of India, to provide advisories to assist smallholder farmers in India in enhancing their overall farm production. As a part of the project, we evaluated the soil spatial variability of three potato agroecological zones in India and provided soil health cards along with field-specific fertiliser recommendations for potato cultivation to farmers. Specifically, 705 surface samples were collected from three representative potato-growing districts of Indian states (Meerut, UP; Jalandhar, Punjab and Lahaul and Spiti, HP) and analysed for soil parameters such as organic carbon, macronutrients (NPK), micronutrients (Zn, Fe, Mn, and Cu), pH, and EC. The soil parameters were integrated into a geodatabase and subjected to kriging interpolation to create spatial soil maps of the targeted potato agroecological zones through best-fit experimental semivariograms. The spatial distribution showed a deficiency of soil organic carbon in two studied zones and available nitrogen among all studied zones. The available phosphorus and potassium varied among the agroecological zones. The micronutrient levels were largely sufficient in all the zones except at a few specific sites where nutrient advisories are recommended to replenish. The general management strategies were recommended based on the nutrient status in the studied area. This study clearly supports the significance of site-specific soil analytics and interpolated spatial soil mapping over any targeted agroecological zones as a promising strategy to deliver reliable advisories of fertiliser recommendations for smart farming.


Subject(s)
Agriculture , Environmental Monitoring , Fertilizers , Soil , Solanum tuberosum , India , Soil/chemistry , Agriculture/methods , Environmental Monitoring/methods , Phosphorus/analysis , Nitrogen/analysis , Soil Pollutants/analysis , Nutrients/analysis
13.
J Environ Manage ; 368: 122137, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39153319

ABSTRACT

Global warming is altering the frequency of extreme rainfall events and introducing uncertainties for non-point source pollution (NPSP). This research centers on orchard-influenced planting areas (OIPA) in the Wulong River Watershed of Shandong Province, China, which are known for their heightened nitrogen (N) and phosphorus (P) pollution. Leveraging meteorological data from both historical (1989-2018) and projected future periods (2041-2100), this research identified five extreme rainfall indices (ERI): R10 (moderate rain), R20 (heavy rain), R50 (rainstorm), R95p (Daily rainfall between the 95th and 99th percentile of the rainfall), and R99p (>99th percentile). Utilizing an advanced watershed hydrological model, SWAT-CO2, this study carried out a comparison between ERI and average conditions and evaluated the effects of ERI on the hydrology and nutrient losses in this coastal watershed. The findings revealed that the growth multiples of precipitation in the OIPA for five ERI varied between 16 and 59 times for the historical period and 14 to 65 times for future climate scenarios compared to the average conditions. The most pronounced increases in surface runoff and total phosphorus (TP) loss were observed with R50, R95p, and R99p, showing growth multiples as high as 352 and 330 times, and total nitrogen (TN) growth multiples varied between 4.6 and 30.3 times. The contribution rates of R50 and R99p for surface runoff and TP loss in the OIPA during all periods exceeded 55%, however, TN exhibited the opposite trend, primarily due to the dominated NO3-N leaching in the sandy soil. This research revealed how the OIPA reacts to different ERI and pinpointed essential elements influencing water and nutrient losses.


Subject(s)
Hydrology , Nitrogen , Phosphorus , Rain , Phosphorus/analysis , Nitrogen/analysis , Nutrients/analysis , China , Rivers/chemistry , Environmental Monitoring
14.
Environ Geochem Health ; 46(10): 390, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39172153

ABSTRACT

In Chinese freshwater lakes, eutrophication often coincides with heavy metal/metalloids (HM/Ms) pollution, yet the coevolution of critical nutrients (P, S, Se) and HM/Ms (Cd, Hg, etc.) remains understudied. To address this gap, we conducted a sedimentary chemistry analysis on a 30 cm-deep core, dating back approximately 200 years, retrieved from Chaohu Lake, China. The age-depth model revealed a gradual increase in deposition rates over time. Notably, the concentrations and enrichment factors (EFs) of most target elements surged in the uppermost ~ 15 cm layer, covering the period from 1953 to 2013, while both the concentrations and EFs in deeper layers remained relatively stable, except for Hg. This trend indicates a significant co-enrichment and near-synchronous increase in the levels and EFs of both nutrients and HM/Ms in the upper sediment layers since the mid-twentieth century. Anthropogenic factors were identified as the primary drivers of the enrichment of P, Se, Cd, Hg, Zn, and Te in the upper core, with their contributions also showing a coupled evolutionary trend over time. Conversely, geological activities governed the enrichment of elements in the lower half of the core. The gradual accumulation of anthropogenic Hg between the - 30 to - 15 cm layers might be attributed to global Hg deposition resulting from the industrial revolution. The ecological risk index (RI) associated with HM/Ms loading has escalated rapidly over the past 50 years, with Cd and Hg posing the greatest threats. Furthermore, the PMF model was applied to specifically quantify source contributions of these elements in the core, with anthropogenic and geogenic factors accounting for ~ 60 and ~ 40%, respectively. A good correlation (r2 = 0.87, p < 0.01) between the PMF and Ti-normalized method was observed, indicating their feasibility and cross-validation in source apportionment. Finally, we highlighted environment impact and health implications of the co-enrichment of nutrients and HM/Ms. This knowledge is crucial for developing strategies to protect freshwater ecosystems from the combined impacts of eutrophication and HM/Ms pollution, thereby promoting water environment and human health.


Subject(s)
Geologic Sediments , Lakes , Metalloids , Metals, Heavy , Water Pollutants, Chemical , Lakes/chemistry , China , Geologic Sediments/chemistry , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Metalloids/analysis , Environmental Monitoring/methods , Nutrients/analysis , Eutrophication
15.
Sci Rep ; 14(1): 18634, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128922

ABSTRACT

Water scarcity and droughts are among the most challenging issues worldwide, particularly in arid and semi-arid regions like Saudi Arabia. Date palm (Phoenix dactylifera L.), a major crop in Saudi Arabia, is being significantly affected by water scarcity, soil salinity, and desertification. Alternative water sources are needed to conserve freshwater resources and increase date palm production in Saudi Arabia. On the other hand, Saudi Arabia has a significant number of aquaculture farms that generate substantial amounts of wastewater, which can be utilized as an alternative source of irrigation. Therefore, this study aimed to assess the potential of aquaculture wastewater as an alternative irrigation source for date palm orchards. Aquaculture wastewater was collected from 12 different farms (Al-Kharj, Al-Muzahmiya, and Al-Qassim regions, Saudi Arabia) and its quality was analyzed. The impacts of aquaculture wastewater irrigation on soil quality, nutrient availability, nutrient status of date palm trees, and dates fruit quality were assessed in comparison to source water (freshwater) irrigation at Al-Kharj, Al-Muzahmiya, and Al-Qassim regions. The water quality analyses showed higher salinity (EC = 3.31 dSm-1) in farm Q3, while all other farms demonstrated no salinity, sodicity, or alkalinity hazards. Moreover, the aquaculture wastewater irrigation increased soil available P, K, NO3--N, and NH4+-N by 49.31%, 21.11%, 33.62%, and 52.31%, respectively, compared to source water irrigation. On average, date palm fruit weight, length, and moisture contents increased by 26%, 23%, and 43% under aquaculture wastewater irrigation compared to source water irrigation. Further, P, K, Fe, Cu, and Zn contents in date palm leaf were increased by 19.35%, 34.17%, 37.36%, 38.24%, and 45.29%, respectively, under aquaculture wastewater irrigation compared to source water irrigation. Overall, aquaculture wastewater irrigation significantly enhanced date palm plant growth, date palm fruit quality, and soil available nutrients compared to freshwater irrigation. It was concluded that aquaculture wastewater can be used as an effective irrigation source for date palm farms as it enhances soil nutrient availability, date palm growth, and date fruit yield and quality. The findings of this study suggest that aquaculture wastewater could be a viable alternative for conserving freshwater resources and increase date palm production in Saudi Arabia.


Subject(s)
Agricultural Irrigation , Aquaculture , Fruit , Phoeniceae , Soil , Wastewater , Agricultural Irrigation/methods , Aquaculture/methods , Soil/chemistry , Fruit/growth & development , Saudi Arabia , Nutrients/analysis , Salinity
16.
PLoS One ; 19(8): e0309070, 2024.
Article in English | MEDLINE | ID: mdl-39146315

ABSTRACT

In contrast to prolonged exposure to high temperatures, investigating short-term high-temperature stress can provide insights into the impact of varying heat stress durations on plant development and soil nutrient dynamics, which is crucial for advancing ecological agriculture. In this study, five heating temperatures were set at 200°C, 250°C, 300°C, 350°C, and 400°C, along with five heating time gradients of 6s, 10s, 14s, 18s, and 20s, including a control. A total of 26 treatment groups were analyzed, focusing on maize growth parameters and soil indicators. Principal component analysis was used for comprehensive evaluation. The results showed that high-temperature treatments with different heating times significantly influenced maize growth and soil properties. For instance, the treatment of 300°C+6s resulted in the longest total root length, while 200°C+6s led to the highest average root diameter. Plant height and leaf length were notably increased with the treatment of 400°C+6s. Most treatments resulted in decreased soil pH and organic matter content. Notably, the treatment of 350°C+16s showed the highest available phosphorus content, reaching 24.0 mg/kg, an increase of 4.5 mg/kg compared to the control. The study found that the average levels of active organic carbon and peroxidase were 1.26 mg/g and 3.91 mg/g, respectively. Additionally, the average mass fractions of clay, silt, and sand particles were 8.99%, 66.75%, and 24.26%, respectively. Through principal component analysis, six principal components were able to extract 19 indicators from the 26 treatments, covering 86.129% of the information. It was observed that 16 treatment methods performed better than the control in terms of soil comprehensive quality. The optimal treatment temperature and time identified for improving soil physicochemical properties and crop growth were 300°C+6s. These findings can be used to guide agricultural management and soil improvement practices, ultimately enhancing field productivity and providing valuable insights for sustainable agricultural development.


Subject(s)
Hot Temperature , Principal Component Analysis , Soil , Zea mays , Zea mays/growth & development , Soil/chemistry , Nutrients/analysis , Phosphorus/analysis , Phosphorus/metabolism
17.
Water Res ; 264: 122108, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39126744

ABSTRACT

The profound influence of climate change on the hydrological cycle raises concerns about its potential impacts on water quality, particularly in agricultural catchments. Here, we analysed 200 storm events monitored for nitrate and total phosphorus (TP) at sub-hourly intervals from 2016 to 2023 in the Kervidy-Naizin catchment (north-western France). Using Extreme Value theory, we identified storm events with extreme concentrations and compared their hydroclimatic characteristics to those of non-extreme events. We hypothesised that extreme concentration events occurred under extreme hydroclimatic conditions, which are projected to become more frequent in the future. The extreme events identified showed dilution patterns for nitrate, with concentrations decreasing by up to 41 %, and accretion patterns for TP, with concentrations increasing by up to 1400 % compared to non-extreme events. Hydroclimatic conditions during extreme concentration events were characterised by high rainfall intensities and low antecedent discharge, but no particular conditions for mean discharge. During non-extreme events, nitrate concentration-discharge relationships exhibited primarily clockwise hysteresis, whereas TP displayed an equal mix of clockwise and anticlockwise loops. In contrast, extreme events showed more anticlockwise hysteresis for nitrate and weak hysteresis for TP. We interpreted these dynamics and their hydroclimatic controls as the result of infiltration-excess overland flow diluting nitrate-rich groundwater and exporting large amounts of TP during intensive rainfall events following droughts, while groundwater fluctuations in the riparian zone and streambed remobilization control nutrient exports during non-extreme events. Given the increasing frequency and intensity of hydroclimatic extremes, such retrospective analyses can provide valuable insights into future nutrient dynamics in streams draining agricultural catchments.


Subject(s)
Agriculture , Droughts , Phosphorus , Rain , Phosphorus/analysis , Nitrates/analysis , Nutrients/analysis , France , Climate Change , Groundwater/chemistry , Environmental Monitoring
18.
Sci Rep ; 14(1): 20228, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215054

ABSTRACT

A two-year field trial was set up to investigate the effects of applying 3 tons ha-1 of wheat (3WB) and cotton biochar (3CB) alone or in combination with chemical nitrogen (N) and phosphorus (P) fertilizers on biochemical properties, yield and nutrient content of safflower under normal irrigation and water stress (irrigation cut-off at flowering stage) conditions. The total water applied in the chemical treatments [150 kg ha-1 N + 50 kg ha-1 P (100% of the recommended dose) and 112.5N + 37.5P (75% of the recommended dose)] under water stress, was significantly higher than other treatments. Application of 112.5N + 37.5P + 3CB increased RWC from 57.5 to 59.4% and the total chlorophyll content from 80.7 to 128.1%, compared to the control. The carotenoid content, catalase and peroxidase in 112.5N + 37.5P + 3CB were lower than chemical fertilizers. Under water stress, the seed yield of 112.5N + 37.5P + 3CB was 10.2-12.6% higher than 112.5N + 37.5P + 3WB. The higher chlorophyll content, RWC, remobilization efficiency and nutrient content in 112.5N + 37.5P + 3CB compared to other treatments was associated with seed yield enhancement. The findings indicate that the combination of CB with 75% recommended dosage of N and P, may be the optimal approach for enhancing safflower production under water stress conditions.


Subject(s)
Carthamus tinctorius , Charcoal , Chlorophyll , Fertilizers , Nutrients , Carthamus tinctorius/metabolism , Carthamus tinctorius/chemistry , Charcoal/chemistry , Charcoal/pharmacology , Chlorophyll/metabolism , Fertilizers/analysis , Nutrients/analysis , Nutrients/metabolism , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/analysis , Phosphorus/metabolism , Water/chemistry , Dehydration , Carotenoids/metabolism
19.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201356

ABSTRACT

Milk thermal treatment, such as pasteurization, high-temperature short-time processing, and the emerging ultra-short-time processing (<0.5 s), are crucial for ensuring milk safety and extending its shelf life. Milk is a nutritive food matrix with various macro/micro-nutrients and other constituents that are possibly affected by thermal treatment for reasons associated with processing strength. Therefore, understanding the relationship between heating strength and milk quality is vital for the dairy industry. This review summarizes the impact of thermal treatment strength on milk's nutritional and sensory properties, the synthesizing of the structural integrity and bioavailability of milk proteins, the profile and stability of fatty acids, the retention of macro/micro-nutrients, as well as the overall flavor profile. Additionally, it examines the formation of heat-induced markers, such as Maillard reaction products, lactulose, furosine, and alkaline phosphatase activity, which serve as indicators of heating intensity. Flavor and heating markers are commonly used to assess the quality of pasteurized milk. By examining former studies, we conclude that ultra-short-time-processing-treated milk is comparable to pasteurized milk in terms of specific parameters (such as whey protein behavior, furosine, and ALP contents). This review aims to better summarize how thermal treatments influence the milk matrix, guiding the dairy industry's development and balancing milk products' safety and nutritional value.


Subject(s)
Fatty Acids , Milk , Animals , Milk/chemistry , Fatty Acids/analysis , Hot Temperature , Milk Proteins/analysis , Milk Proteins/chemistry , Pasteurization/methods , Food Handling/methods , Taste , Humans , Nutrients/analysis , Biomarkers
20.
J Environ Qual ; 53(5): 618-628, 2024.
Article in English | MEDLINE | ID: mdl-39091173

ABSTRACT

Microalgae are a promising bio-fertilizer that can be cultivated in municipal wastewater, where the organisms perform water purification by incorporation of nutrients and contaminants. Before bio-fertilization with wastewater-grown microalgae can be put into practice, its impact on the leaching of macronutrients and trace elements needs to be evaluated. Here, we studied the leaching behavior of a microalgae-fertilized soil against a control in column percolation setup. Microalgae were grown in real municipal wastewater supplemented with bromide for the analysis of within-cell Br- accumulation by time-of-flight secondary ion mass spectrometry. Dry biomass (45.0 g N kg-1 and 28.9 g P kg-1) was added to the topmost layer of the fertilized column at a level of 3 g biomass kg-1 on a whole soil basis. Column irrigation was equivalent to 3 years of precipitation in central Germany. The leaching of macronutrients and trace elements from the fertilized and control columns was largely identical. Except for P, depth profiles confirmed very low vertical translocation within the soil. This is held for total element contents as well as for operationally defined pools, suggesting that microalgae cultivated in municipal wastewater provide a slow-release fertilizer largely resistant to leaching. Mass spectrometric imaging gave clear evidence for bromide uptake by the microalgae, and pure cultures of the genus Scenedesmus showed that it was preferentially located in the cell membrane. Therefore, bromide could potentially be employed as a mineralization tracer in future studies on the use of microalgae as a bio-fertilizer.


Subject(s)
Biomass , Fertilizers , Microalgae , Soil , Trace Elements , Waste Disposal, Fluid , Wastewater , Fertilizers/analysis , Wastewater/chemistry , Wastewater/analysis , Trace Elements/analysis , Soil/chemistry , Waste Disposal, Fluid/methods , Nutrients/analysis
SELECTION OF CITATIONS
SEARCH DETAIL