Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054537

ABSTRACT

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Subject(s)
Neoplastic Stem Cells , Norepinephrine , Olanzapine , Animals , Olanzapine/pharmacology , Mice , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Norepinephrine/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Male , Cell Line, Tumor , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice, Inbred C57BL , Anxiety/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Carcinogenesis/drug effects , Depression/drug therapy
2.
Biomolecules ; 14(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927091

ABSTRACT

BACKGROUND: Induced pluripotent stem cell (iPSC) based neuronal differentiation is valuable for studying neuropsychiatric disorders and pharmacological mechanisms at the cellular level. We aimed to examine the effects of typical and atypical antipsychotics on human iPSC-derived neural progenitor cells (NPCs). METHODS: Proliferation and neurite outgrowth were measured by live cell imaging, and gene expression levels related to neuronal identity were analyzed by RT-QPCR and immunocytochemistry during differentiation into hippocampal dentate gyrus granule cells following treatment of low- and high-dose antipsychotics (haloperidol, olanzapine, and risperidone). RESULTS: Antipsychotics did not modify the growth properties of NPCs after 3 days of treatment. However, the characteristics of neurite outgrowth changed significantly in response to haloperidol and olanzapine. After three weeks of differentiation, mRNA expression levels of the selected neuronal markers increased (except for MAP2), while antipsychotics caused only subtle changes. Additionally, we found no changes in MAP2 or GFAP protein expression levels as a result of antipsychotic treatment. CONCLUSIONS: Altogether, antipsychotic medications promoted neurogenesis in vitro by influencing neurite outgrowth rather than changing cell survival or gene expression. This study provides insights into the effects of antipsychotics on neuronal differentiation and highlights the importance of considering neurite outgrowth as a potential target of action.


Subject(s)
Antipsychotic Agents , Cell Differentiation , Haloperidol , Hippocampus , Induced Pluripotent Stem Cells , Neural Stem Cells , Neurogenesis , Olanzapine , Risperidone , Humans , Olanzapine/pharmacology , Risperidone/pharmacology , Neurogenesis/drug effects , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/metabolism , Haloperidol/pharmacology , Antipsychotic Agents/pharmacology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Neuronal Outgrowth/drug effects
3.
Int Immunopharmacol ; 137: 112469, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38908083

ABSTRACT

The accumulation of amyloid-ß (Aß) in the brain is the first pathological mechanism to initiate Alzheimer's disease (AD) pathogenesis. However, the precise role of Aß in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aß-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aß may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aß-induced progressive neurite lesions. Our study reports that Aß induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aß exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aß promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aß-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aß is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aß was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aß-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Neurites , Olanzapine , Olanzapine/pharmacology , Microglia/drug effects , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Animals , Neurites/drug effects , Neurites/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Mice , Cells, Cultured , Antipsychotic Agents/pharmacology , Coculture Techniques , Humans , Mice, Inbred C57BL
4.
Biochem Pharmacol ; 225: 116308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788961

ABSTRACT

A high risk of glucometabolic disorder severely disturbs compliance and limits the clinical application of olanzapine. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have been reported as emerging biomarkers in glucolipid metabolic disorders. A total of 81 individuals with continuous olanzapine treatment over 3 months were recruited in this study, and plasma EVs from these individuals were isolated and injected into rats via the tail vein to investigate the glucose-regulating function in vivo. Moreover, we performed a miRNA profiling assay by high through-put sequencing to clarify the differentiated miRNA profiles between two groups of patients who were either susceptible or not susceptible to olanzapine-induced insulin resistance (IR). Finally, we administered antagomir and cocultured them with adipocytes to explore the mechanism in vitro. The results showed that individual insulin sensitivity varied in those patients and in olanzapine-administered rats. Furthermore, treatment with circulating EVs from patients with olanzapine-induced IR led to the development of metabolic abnormalities in rats and adipocytes in vitro through the AKT-GLUT4 pathway. Deep sequencing illustrated that the miRNAs of plasma EVs from patients showed a clear difference based on susceptibility to olanzapine-induced IR, and miR-486-5p was identified as a notable gene. The adipocyte data indicated that miR-486-5p silencing partially reversed the impaired cellular insulin sensitivity. Collectively, this study confirmed the function of plasma EVs in the interindividual differences in olanzapine-induced insulin sensitivity.


Subject(s)
Extracellular Vesicles , Insulin Resistance , MicroRNAs , Olanzapine , Rats, Sprague-Dawley , Olanzapine/adverse effects , Olanzapine/toxicity , Olanzapine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Insulin Resistance/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Humans , Male , Rats , Female , Adult , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Glucose/metabolism , Middle Aged , Adipocytes/drug effects , Adipocytes/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , 3T3-L1 Cells
5.
Behav Brain Res ; 468: 115039, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38718877

ABSTRACT

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Disease Models, Animal , Hippocampus , Olanzapine , Pain Perception , Spatial Memory , Stress, Psychological , Synaptophysin , Animals , Female , Male , Rats , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Depression/drug therapy , Depression/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Olanzapine/pharmacology , Pain Perception/drug effects , Pain Perception/physiology , Spatial Memory/drug effects , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Synaptophysin/metabolism , Rats, Wistar
6.
Biomed Pharmacother ; 176: 116763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805968

ABSTRACT

BACKGROUND: Antipsychotics are indispensable in the treatment of severe mental illneses, however adverse metabolic effects including diabetes, weight gain, dyslipidemia, and related cardiovascular morbidity are common, and current pharmacological strategies for their management are unsatisfactory. Glucagon-like 1 peptide receptor agonists (GLP-1 RAs) are approved for the treatment of type 2 diabetes and obesity hold promise for the management of antipsychotic-associated adverse metabolic effects. METHODS: To characterize the molecular effects and identify biomarkers for GLP-1 RA preventive treatment, Sprague-Dawley female rats were treated with long-acting formulations of the antipsychotic olanzapine and the GLP-1 RA dulaglutide for 8 days. A pair-feeding protocol evaluated the combined effects of dulaglutide and food restriction on an olanzapine-induced metabolic phenotype. Body weight and food consumption were recorded. Biochemical analysis included a lipid profile, a spectrum of gastrointestinal and adipose tissue-derived hormones, and fibroblast growth factor 21 serum levels. RESULTS: Olanzapine induced hyperphagia, weight gain, increased serum triglycerides and HDL cholesterol. Food restriction affected the OLA-induced phenotype but not serum markers. Dulaglutide led to a modest decrease in food intake, with no effect on weight gain, and did not reverse the OLA-induced changes in serum lipid parameters. Concomitant dulaglutide and food restriction resulted in weight loss, decreased feed efficiency, and lower total and HDL cholesterol. CONCLUSIONS: A combined strategy of dulaglutide and food restriction manifested a massive synergistic benefit. GLP-1RAs represent a promising strategy and deserve thorough future research. Our findings underline the potential importance of lifestyle intervention in addition to GLP-1 RA treatment.


Subject(s)
Glucagon-Like Peptides , Immunoglobulin Fc Fragments , Olanzapine , Rats, Sprague-Dawley , Recombinant Fusion Proteins , Animals , Immunoglobulin Fc Fragments/pharmacology , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Olanzapine/pharmacology , Olanzapine/adverse effects , Female , Recombinant Fusion Proteins/pharmacology , Rats , Antipsychotic Agents/pharmacology , Antipsychotic Agents/adverse effects , Eating/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Weight Gain/drug effects , Disease Models, Animal , Benzodiazepines/pharmacology , Benzodiazepines/adverse effects , Body Weight/drug effects , Caloric Restriction/methods
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733774

ABSTRACT

Olanzapine (OLA) is a highly obesogenic second-generation antipsychotic (SGA). Recently we demonstrated that, contrarily to OLA oral treatment, intraperitoneal (i.p.) administration resulted in weight loss and absence of hepatic steatosis in wild-type (WT) and protein tyrosine phosphatase 1B (PTP1B)-deficient (KO) male mice. This protection relied on two central-peripheral axes connecting hypothalamic AMPK with brown/inguinal white adipose tissue (BAT/iWAT) uncoupling protein-1 (UCP-1) and hypothalamic JNK with hepatic fatty acid synthase (FAS). Herein, we addressed OLA i.p. treatment effects in WT and PTP1B-KO female mice. Contrarily to our previous results in WT females receiving OLA orally, the i.p. treatment did not induce weight gain or hyperphagia. Molecularly, in females OLA failed to diminish hypothalamic phospho-AMPK or elevate BAT UCP-1 and energy expenditure (EE) despite the preservation of iWAT browning. Conversely, OLA i.p. treatment in ovariectomized mice reduced hypothalamic phospho-AMPK, increased BAT/iWAT UCP-1 and EE, and induced weight loss as occurred in males. Pretreatment of hypothalamic neurons with 17ß-estradiol (E2) abolished OLA effects on AMPK. Moreover, neither hypothalamic JNK activation nor hepatic FAS upregulation were found in WT and PTP1B-KO females receiving OLA via i.p. Importantly, this axis was reestablished upon ovariectomy. In this line, E2 prevented OLA-induced phospho-JNK in hypothalamic neurons. These results support the role of estrogens in sex-related dimorphism in OLA treatment. This study evidenced the benefit of OLA i.p. administration in preventing its obesogenic effects in female mice that could offer clinical value.


Subject(s)
Adipose Tissue, Brown , Estrogens , Hypothalamus , Liver , Mice, Knockout , Olanzapine , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Uncoupling Protein 1 , Animals , Female , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , Mice , Liver/metabolism , Liver/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Olanzapine/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Male , Energy Metabolism/drug effects , Injections, Intraperitoneal , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Mice, Inbred C57BL , Estradiol/pharmacology , Ovariectomy
8.
Diabetes Obes Metab ; 26(7): 2695-2705, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38660748

ABSTRACT

AIMS: To investigate whether gamma-aminobutyric acid (GABA) supplementation improves insulin resistance during olanzapine treatment in mice and to explore the underlying mechanisms. MATERIALS AND METHODS: Insulin resistance and body weight gain were induced in mice by 10 weeks of olanzapine treatment. Simultaneously, the mice were administered GABA after 4 weeks of olanzapine administration. RESULTS: We found that mice treated with olanzapine had lower GABA levels in serum and subcutaneous white adipose tissue (sWAT). GABA supplementation restored GABA levels and improved olanzapine-induced lipid metabolism disorders and insulin resistance. Chronic inflammation in adipose tissue is one of the main contributors to insulin resistance. We found that GABA supplementation inhibited olanzapine-induced adipose tissue macrophage infiltration and M1-like polarization, especially in sWAT. In vitro studies showed that stromal vascular cells, rather than adipocytes, were sensitive to GABA. Furthermore, the results suggested that GABA improves olanzapine-induced insulin resistance at least in part through a GABAB receptor-dependent pathway. CONCLUSIONS: These findings suggest that targeting GABA may be a potential therapeutic approach for olanzapine-induced metabolic disorders.


Subject(s)
Insulin Resistance , Macrophages , Olanzapine , Subcutaneous Fat , gamma-Aminobutyric Acid , Animals , Olanzapine/pharmacology , Olanzapine/adverse effects , gamma-Aminobutyric Acid/metabolism , Mice , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Antipsychotic Agents/pharmacology , Antipsychotic Agents/adverse effects , Dietary Supplements , Weight Gain/drug effects , Benzodiazepines/pharmacology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism
9.
Eur J Pharmacol ; 969: 176396, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38325793

ABSTRACT

Olanzapine is an antipsychotic drug applied in psychiatry to treat psychoses, especially schizophrenia and schizoaffective disorders with similar or better improvement than haloperidol and risperidone in the treatment of depressive and negative symptoms. The effect of olanzapine on neural synchrony remains to be explored. We investigated the effects of olanzapine on gamma oscillations in the CA3 region of the hippocampus and frontal association cortex. Olanzapine reduced carbachol (CCh)-induced gamma oscillation power in CA3 slice and gamma oscillation power in the frontal association cortex in vivo. The power of theta oscillations was increased in the presence of olanzapine. The phase amplitude coupling of theta and gamma wave was strengthened by the administration of olanzapine in the frontal association cortex in vivo. Taken together, these results show that olanzapine modulates local field potential and the neuronal activity.


Subject(s)
Antipsychotic Agents , Olanzapine/pharmacology , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Hippocampus , Haloperidol/pharmacology , Prefrontal Cortex
10.
Psychoneuroendocrinology ; 163: 106987, 2024 May.
Article in English | MEDLINE | ID: mdl-38340539

ABSTRACT

Olanzapine is a second-generation antipsychotic that disrupts metabolism and is associated with an increased risk of type 2 diabetes. The hypothalamus is a key region in the control of whole-body metabolic homeostasis. The objective of the current study was to determine how acute peripheral olanzapine administration affects transcription and serine/threonine kinase activity in the hypothalamus. Hypothalamus samples from rats were collected following the pancreatic euglycemic clamp, thereby allowing us to study endpoints under steady state conditions for plasma glucose and insulin. Olanzapine stimulated pathways associated with inflammation, but diminished pathways associated with the capacity to combat endoplasmic reticulum stress and G protein-coupled receptor activity. These pathways represent potential targets to reduce the incidence of type 2 diabetes in patients taking antipsychotics.


Subject(s)
Antipsychotic Agents , Diabetes Mellitus, Type 2 , Humans , Rats , Animals , Olanzapine/pharmacology , Olanzapine/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Benzodiazepines/pharmacology , Benzodiazepines/metabolism , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Hypothalamus/metabolism , Gene Expression Profiling
11.
Transl Psychiatry ; 14(1): 13, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191558

ABSTRACT

The metabolic effects induced by antipsychotics in vitro depend on their action on the trafficking and biosynthesis of sterols and lipids. Previous research showed that antipsychotics with different adverse effects in patients cause similar alterations in vitro, suggesting the low clinical usefulness of cellular studies. Moreover, the inhibition of peripheral AMPK was suggested as potential aetiopathogenic mechanisms of olanzapine, and different effects on autophagy were reported for several antipsychotics. We thus assessed, in clinically-relevant culture conditions, the aetiopathogenic mechanisms of olanzapine, risperidone and ziprasidone, antipsychotics with respectively high, medium, low metabolic risk in patients, finding relevant differences among them. We highlighted that: olanzapine impairs lysosomal function affecting autophagy and autophagosome clearance, and increasing intracellular lipids and sterols; ziprasidone activates AMPK increasing the autophagic flux and reducing intracellular lipids; risperidone increases lipid accumulation, while it does not affect lysosomal function. These in vitro differences align with their different impact on patients. We also provided evidence that metformin add-on improved autophagy in olanzapine-treated cells and reduced lipid accumulation induced by both risperidone and olanzapine in an AMPK-dependent way; metformin also increased the production of bile acids to eliminate cholesterol accumulations caused by olanzapine. These results have different clinical implications. We demonstrated that antipsychotics with different metabolic impacts on patients actually have different mechanisms of action, thus supporting the possibility of a personalised antipsychotic treatment. Moreover, we found that metformin can fully revert the phenotype caused by risperidone but not the one caused by olanzapine, that still activates SREBP2.


Subject(s)
Antipsychotic Agents , Metformin , Humans , Risperidone/pharmacology , Olanzapine/pharmacology , AMP-Activated Protein Kinases , Antipsychotic Agents/adverse effects , Autophagy , Sterols , Lysosomes
12.
J Neural Transm (Vienna) ; 131(3): 275-280, 2024 03.
Article in English | MEDLINE | ID: mdl-38253928

ABSTRACT

Nitric oxide (NO) has been thought to be a novel factor involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about potential crosstalk between neuronal NO signaling and neuroleptics action. The present work was, therefore, focused on gene expression of neuronal NO synthase (nNOS) in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at dose 5 mg/kg daily). All individuals were killed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain, and for both descriptive and quantitative analysis of nNOS protein distribution in selected brain structures. Long-term treatment with olanzapine is reflected in different changes in the number of enzyme-expressing cells in the rat brain. Olanzapine decreased the number of nNOS-expressing cells and possibly reduced NO synthesis in the rat striatum. Olanzapine can be taken into account as a potential inhibitor of NO synthesis in the rat striatum.


Subject(s)
Antipsychotic Agents , Corpus Striatum , Animals , Male , Rats , Antipsychotic Agents/pharmacology , Corpus Striatum/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Olanzapine/pharmacology , Rats, Sprague-Dawley
13.
Brain Imaging Behav ; 18(1): 117-129, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37917311

ABSTRACT

BACKGROUND: The neurobiology of psychotic depression is not well understood and can be confounded by antipsychotics. Magnetic resonance spectroscopy (MRS) is an ideal tool to measure brain metabolites non-invasively. We cross-sectionally assessed brain metabolites in patients with remitted psychotic depression and controls. We also longitudinally assessed the effects of olanzapine versus placebo on brain metabolites. METHODS: Following remission, patients with psychotic depression were randomized to continue sertraline + olanzapine (n = 15) or switched to sertraline + placebo (n = 18), at which point they completed an MRS scan. Patients completed a second scan either 36 weeks later, relapse, or discontinuation. Where water-scaled metabolite levels were obtained and a Point-RESolved Spectroscopy sequence was utilized, choline, myo-inositol, glutamate + glutamine (Glx), N-acetylaspartate, and creatine were measured in the left dorsolateral prefrontal cortex (L-DLPFC) and dorsal anterior cingulate cortex (dACC). An ANCOVA was used to compare metabolites between patients (n = 40) and controls (n = 46). A linear mixed-model was used to compare olanzapine versus placebo groups. RESULTS: Cross-sectionally, patients (compared to controls) had higher myo-inositol (standardized mean difference [SMD] = 0.84; 95%CI = 0.25-1.44; p = 0.005) in the dACC but not different Glx, choline, N-acetylaspartate, and creatine. Longitudinally, patients randomized to placebo (compared to olanzapine) showed a significantly greater change with a reduction of creatine (SMD = 1.51; 95%CI = 0.71-2.31; p = 0.0002) in the dACC but not glutamate + glutamine, choline, myo-inositol, and N-acetylaspartate. CONCLUSIONS: Patients with remitted psychotic depression have higher myo-inositol than controls. Olanzapine may maintain creatine levels. Future studies are needed to further disentangle the mechanisms of action of olanzapine.


Subject(s)
Antipsychotic Agents , Brain , Depression , Humans , Antipsychotic Agents/pharmacology , Aspartic Acid , Brain/diagnostic imaging , Brain/metabolism , Choline/metabolism , Creatine/metabolism , Depression/drug therapy , Glutamine/metabolism , Inositol/metabolism , Magnetic Resonance Imaging , Olanzapine/pharmacology , Sertraline/pharmacology
14.
Acta Pharmacol Sin ; 45(3): 502-516, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37880338

ABSTRACT

Olanzapine (OLZ) is a widely prescribed antipsychotic drug with a relatively ideal effect in the treatment of schizophrenia (SCZ). However, its severe metabolic side effects often deteriorate clinical therapeutic compliance and mental rehabilitation. The peripheral mechanism of OLZ-induced metabolic disorders remains abstruse for its muti-target activities. Endoplasmic reticulum (ER) stress is implicated in cellular energy metabolism and the progression of psychiatric disorders. In this study, we investigated the role of ER stress in the development of OLZ-induced dyslipidemia. A cohort of 146 SCZ patients receiving OLZ monotherapy was recruited, and blood samples and clinical data were collected at baseline, and in the 4th week, 12th week, and 24th week of the treatment. This case-control study revealed that OLZ treatment significantly elevated serum levels of endoplasmic reticulum (ER) stress markers GRP78, ATF4, and CHOP in SCZ patients with dyslipidemia. In HepG2 cells, treatment with OLZ (25, 50 µM) dose-dependently enhanced hepatic de novo lipogenesis accompanied by SREBPs activation, and simultaneously triggered ER stress. Inhibition of ER stress by tauroursodeoxycholate (TUDCA) and 4-phenyl butyric acid (4-PBA) attenuated OLZ-induced lipid dysregulation in vitro and in vivo. Moreover, we demonstrated that activation of PERK-CHOP signaling during ER stress was a major contributor to OLZ-triggered abnormal lipid metabolism in the liver, suggesting that PERK could be a potential target for ameliorating the development of OLZ-mediated lipid dysfunction. Taken together, ER stress inhibitors could be a potentially effective intervention against OLZ-induced dyslipidemia in SCZ.


Subject(s)
Dyslipidemias , Signal Transduction , Humans , Olanzapine/pharmacology , Case-Control Studies , Endoplasmic Reticulum Stress , Dyslipidemias/chemically induced , Lipids , eIF-2 Kinase/metabolism , Apoptosis
15.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139008

ABSTRACT

Depression is linked to changes in GABAergic inhibitory neurons, especially parvalbumin (PV) interneurons, which are susceptible to redox dysregulation. Olanzapine (Olz) is an atypical antipsychotic whose mode of action remains unclear. We determined the effect of Olz on PV-positive (+) and glutamate decarboxylase 67 (GAD67) + cell numbers in the layers of dorsal hippocampus (dHIPP) cornu ammonis (CA1-CA3) and dentate gyrus (DG) subregions in rats exposed to chronic social isolation (CSIS), which is an animal model of depression. Antioxidative enzymes and proinflammatory cytokine levels were also examined. CSIS decreased the PV+ cell numbers in the Stratum Oriens (SO) and Stratum Pyramidale (SP) of dCA1 and dDG. It increased interleukin-6 (IL-6), suppressor of cytokine signaling 3 (SOCS3), and copper-zinc superoxide dismutase (CuZnSOD) levels, and it decreased catalase (CAT) protein levels. Olz in CSIS increased the number of GAD67+ cells in the SO and SP layers of dCA1 with no effect on PV+ cells. It reduced the PV+ and GAD67+ cell numbers in the Stratum Radiatum of dCA3 in CSIS. Olz antagonizes the CSIS-induced increase in CuZnSOD, CAT and SOCS3 protein levels with no effect on IL-6. Data suggest that the protective Olz effects in CSIS may be mediated by altering the number of PV+ and GAD67+ cells in dHIPP subregional layers.


Subject(s)
Interleukin-6 , Parvalbumins , Rats , Animals , Parvalbumins/metabolism , Olanzapine/pharmacology , Interleukin-6/metabolism , Cell Count , Hippocampus/metabolism
16.
Pharmacol Rep ; 75(6): 1610-1618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37874531

ABSTRACT

BACKGROUND: Gaseous neurotransmitters have been thought to be novel factors involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about the potential crosstalk between neuronal gasotransmitter signaling and neuroleptics action. The present work was, therefore, focused on gene expression of H2S and CO-producing enzymes in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at a dose of 5 mg/kg daily). All individuals were sacrificed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain and for quantitative analysis of cystathionine ß-synthase (CBS) and heme oxygenase 2 (HO-2) protein distribution in selected brain structures. RESULTS: Long-term treatment with olanzapine is reflected in different changes in the number of enzymes-expressing cells in the rat brain. Olanzapine decreased the number of CBS-expressing cells and possibly reduced H2S synthesis in the hippocampus and striatum. The antipsychotic administration increased the number of HO-2 immunopositive cells and probably stimulated the CO production in the hippocampus. CONCLUSIONS: Modulatory effect of olanzapine on cellular mechanisms of gasotransmitter synthesis may be an alternative way of their pharmacological action.


Subject(s)
Antipsychotic Agents , Gasotransmitters , Hydrogen Sulfide , Animals , Male , Rats , Antipsychotic Agents/pharmacology , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Gasotransmitters/metabolism , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Hippocampus , Hydrogen Sulfide/metabolism , Olanzapine/pharmacology , Rats, Sprague-Dawley
17.
Aging Cell ; 22(11): e14003, 2023 11.
Article in English | MEDLINE | ID: mdl-37828862

ABSTRACT

The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.


Subject(s)
Antipsychotic Agents , Animals , Humans , Olanzapine/pharmacology , Antipsychotic Agents/adverse effects , Aging , Mitophagy , Mitochondria , Caenorhabditis elegans
18.
Behav Brain Res ; 454: 114614, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37572758

ABSTRACT

The serotonin (5-HT)2 C receptor(R) is a widely distributed G-protein-coupled receptor, expressed abundantly in the central nervous system. Alstonine is a natural product that has significant properties of atypical antipsychotic drugs (AAPDs), in part attributed to 5-HT2 CR agonism. Based on alstonine, we developed NU-1223, a simplified ß carboline analog of alstonine, which shows efficacies comparable to alstonine and to other 5-HT2 CR agonists, Ro-60-0175 and lorcaserin. The 5-HT2 CR antagonism of some APDs, including olanzapine, contributes to weight gain, a major side effect which limits its tolerability, while the 5-HT2 CR agonists and/or modulators, may minimize weight gain. We used the well-established rodent subchronic phencyclidine (PCP) model to test the efficacy of NU-1223 on episodic memory, using novel object recognition (NOR) task, positive (locomotor activity), and negative symptoms (social interaction) of schizophrenia (SCH). We found that NU-1223 produced both transient and prolonged rescue of the subchronic PCP-induced deficits in NOR and SI. Further, NU-1223, but not Ro-60-0175, blocked PCP and amphetamine (AMPH)-induced increase in LMA in subchronic PCP mice. These transient efficacies in LMA were blocked by the 5-HT2 CR antagonist, SB242084. Sub-chronic NU-1223 treatment rescued NOR and SI deficits in subchronic PCP mice for at least 39 days after 3 days injection. Chronic treatment with NU-1223, ip, twice a day for 21 days, did not increase average body weight vs olanzapine. These findings clearly indicate NU-1223 as a class of small molecules with a possible 5-HT2 CR-agonist-like mechanism of action, attributing to its efficacy. Additional in-depth receptor mechanistic studies are warranted, as this small molecule, both transiently and chronically rescued PCP-induced deficits. Furthermore, NU-1223 did not induce weight gain post long-term administrations vs AAPDs such as olanzapine, making NU-1223 a putative therapeutic compound for SCH.


Subject(s)
Antipsychotic Agents , Schizophrenia , Animals , Mice , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Olanzapine/pharmacology , Phencyclidine/pharmacology , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Serotonin/metabolism , Serotonin/pharmacology , Secologanin Tryptamine Alkaloids/pharmacology , Secologanin Tryptamine Alkaloids/therapeutic use
19.
Adv Biol (Weinh) ; 7(12): e2300228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37565702

ABSTRACT

The involvement of vitamin D (VD) signaling in atypical antipsychotics (AAPs)-induced metabolic disturbances has been previously established. This study aims to elucidate the role of VD in maintaining endoplasmic reticulum (ER) homeostasis and its impact on AAPs-induced metabolic adverse effects. Female C57BL/6 mice receive either calcitriol or vehicle one week prior to co-treatment with olanzapine (OLZ) for an additional four weeks. Metabolic parameters, hepatic ER homeostasis, and the SREBPs pathway are assessed through biochemical assays and protein expression profiling. HepG2 cells are transfected with vitamin D receptor (VDR) siRNA for VDR knockdown. OLZ-treated HepG2 cells are exposed to calcitriol to examine its effects on SREBPs and the unfolded protein response (UPR) pathways. VDR activation by calcitriol reduces OLZ-induced hepatic ER stress, leading to decreased SREBPs activity and lipid accumulation. Conversely, the knockdown of VDR in HepG2 cells diminishes the protective effects of calcitriol against OLZ-induced ER stress and SREBPs activation. This resulted in sustained UPR activation, elevated cleaved SREBPs levels, and increased lipid accumulation. These findings highlight an essential role of VDR signaling in the beneficial effects of VD on OLZ-induced metabolic side effects. Targeting VDR to resolve ER stress is likely an applicable therapeutic strategy for AAPs-induced metabolic disturbances.


Subject(s)
Antipsychotic Agents , Dyslipidemias , Mice , Female , Animals , Olanzapine/pharmacology , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Calcitriol/pharmacology , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Antipsychotic Agents/adverse effects , Vitamin D/pharmacology , Vitamin D/therapeutic use , Dyslipidemias/chemically induced
20.
Brain Res ; 1818: 148527, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37567547

ABSTRACT

It is well known that antipsychotic drugs (APDs) are more effective in reducing symptoms in women than in men, and that women are more sensitive to the side effects of APDs. Therefore, it is of great importance that sex differences in drug responses are considered already in the early stages of drug development. In this study, we investigated whether sex-specific differences could be observed in response to the commonly prescribed APDs olanzapine and risperidone using the conditioned avoidance response (CAR) test. To this end we tested the effect of 1.25 and 2.5 mg/kg olanzapine and 0.25 and 0.4 mg/kg risperidone using female and male Wistar rats in the CAR test. Whereas there were no significant differences between the female and male rats in response to either dose of olanzapine administration, an injection of 0.4 mg/kg risperidone significantly suppressed avoidance more in female rats than in male rats. In addition, we found that the estrous cycle of the female rats did not have a significant effect on the avoidance response. In conclusion, we show that there are sex-specific differences as well as similarities between female and male rats in the CAR test and novel APDs should be tested on female and male rats in the future.


Subject(s)
Antipsychotic Agents , Risperidone , Female , Rats , Male , Animals , Olanzapine/pharmacology , Risperidone/pharmacology , Sex Characteristics , Benzodiazepines/pharmacology , Rats, Sprague-Dawley , Rats, Wistar , Antipsychotic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL