Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; 225: 116308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788961

ABSTRACT

A high risk of glucometabolic disorder severely disturbs compliance and limits the clinical application of olanzapine. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have been reported as emerging biomarkers in glucolipid metabolic disorders. A total of 81 individuals with continuous olanzapine treatment over 3 months were recruited in this study, and plasma EVs from these individuals were isolated and injected into rats via the tail vein to investigate the glucose-regulating function in vivo. Moreover, we performed a miRNA profiling assay by high through-put sequencing to clarify the differentiated miRNA profiles between two groups of patients who were either susceptible or not susceptible to olanzapine-induced insulin resistance (IR). Finally, we administered antagomir and cocultured them with adipocytes to explore the mechanism in vitro. The results showed that individual insulin sensitivity varied in those patients and in olanzapine-administered rats. Furthermore, treatment with circulating EVs from patients with olanzapine-induced IR led to the development of metabolic abnormalities in rats and adipocytes in vitro through the AKT-GLUT4 pathway. Deep sequencing illustrated that the miRNAs of plasma EVs from patients showed a clear difference based on susceptibility to olanzapine-induced IR, and miR-486-5p was identified as a notable gene. The adipocyte data indicated that miR-486-5p silencing partially reversed the impaired cellular insulin sensitivity. Collectively, this study confirmed the function of plasma EVs in the interindividual differences in olanzapine-induced insulin sensitivity.


Subject(s)
Extracellular Vesicles , Insulin Resistance , MicroRNAs , Olanzapine , Rats, Sprague-Dawley , Olanzapine/adverse effects , Olanzapine/toxicity , Olanzapine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Insulin Resistance/physiology , Extracellular Vesicles/metabolism , Extracellular Vesicles/drug effects , Humans , Male , Rats , Female , Adult , Antipsychotic Agents/adverse effects , Antipsychotic Agents/pharmacology , Glucose/metabolism , Middle Aged , Adipocytes/drug effects , Adipocytes/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , 3T3-L1 Cells
2.
Environ Toxicol Pharmacol ; 108: 104472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763437

ABSTRACT

Pharmaceuticals released from municipal effluents discharges pose a risk to aquatic organisms. The toxicity of 5 pharmaceuticals with distinct therapeutic actions were assessed in rainbow trout: olanzapine (antipsychotic), erythromycin (antibiotic), mycophenoate (immunosuppression), pinaverium (anti-inflammatory) and trazodone (sedative). Juveniles were exposed to these drugs for 96 h at concentrations between 64 µg/L up to 40 mg/L to reach lethality. Survival was determined and a suite of biomarkers was analyzed for drug biotransformation, oxidative stress/damage and metabolic activity at sublethal concentrations. The data revealed the following toxicity: olanzapine >trazodone>mycophenolate>pinaverium∼erythromycin based on mortality. The data also revealed that toxicity was associated to mass, pKa and hydrophobicity and the following sublethal effects: GST, LPO and DNA strand breaks. Pharmaceuticals with lower molecular weight, physiological pKa, moderate hydrophobicity, low biotransformation and DNA strand breaks were generally more toxic to fish. However, this should be considered as a general guide in identifying toxic pharmaceuticals in non-target organisms.


Subject(s)
Biomarkers , Oncorhynchus mykiss , Water Pollutants, Chemical , Animals , Oncorhynchus mykiss/metabolism , Water Pollutants, Chemical/toxicity , Biomarkers/metabolism , Erythromycin/toxicity , Trazodone/toxicity , Olanzapine/toxicity , Glutathione Transferase/metabolism , Benzodiazepines/toxicity , Oxidative Stress/drug effects
3.
J Hazard Mater ; 472: 134444, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701724

ABSTRACT

The effects of antipsychotic drugs on aquatic organisms have received widespread attention owing to their widespread use and continued release in aquatic environments. The toxicological effects of antipsychotics on aquatic organisms, particularly fish, are unexplored, and the underlying mechanisms remain unelucidated. This study aimed to use common carp to explore the effects of antipsychotics (olanzapine [OLA] and risperidone [RIS]) on behavior and the potential mechanisms driving these effects. The fish were exposed to OLA (0.1 and 10 µg/L) and RIS (0.03 and 3 µg/L) for 60 days. Behavioral tests and neurological indicators showed that exposure to antipsychotics could cause behavioral abnormalities and neurotoxicity in common carp. Further, 16 S rRNA sequencing revealed gut microbiota alteration and decreased relative abundance of some strains related to SCFA production after OLA and RIS exposure. Subsequently, a pseudo-sterile common carp model was successfully constructed, and transplantation of the gut microbiota from antipsychotic-exposed fish caused behavioral abnormalities and neurotoxicity in pseudo-sterile fish. Further, SCFA supplementation demonstrated that SCFAs ameliorated the behavioral abnormalities and neurological damage caused by antipsychotic exposure. To our knowledge, the present study is the first to investigate the effects of antipsychotics on various complex behaviors (swimming performance and social behavior) in common carp, highlighting the potential health risks associated with antipsychotic drug-induced neurotoxicity in fish. Although these results do not fully elucidate the mechanisms underlying the effects of antipsychotic drugs on fish behavior, they serve as a valuable initial investigation and form the basis for future research.


Subject(s)
Antipsychotic Agents , Behavior, Animal , Carps , Gastrointestinal Microbiome , Risperidone , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Antipsychotic Agents/toxicity , Behavior, Animal/drug effects , Risperidone/toxicity , Risperidone/pharmacology , Water Pollutants, Chemical/toxicity , Olanzapine/toxicity , Brain-Gut Axis/drug effects , Swimming , Social Behavior
4.
Toxicol Appl Pharmacol ; 485: 116876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437955

ABSTRACT

BACKGROUND: Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS: Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS: In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS: These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.


Subject(s)
Antipsychotic Agents , Aripiprazole , Benzodiazepines , Bromocriptine , Mammary Glands, Animal , Olanzapine , Prolactin , Animals , Olanzapine/toxicity , Female , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Aripiprazole/toxicity , Rats , Prolactin/blood , Antipsychotic Agents/toxicity , Antipsychotic Agents/adverse effects , Benzodiazepines/toxicity , Male , Rats, Sprague-Dawley , Receptors, Prolactin/metabolism , Estradiol/blood , Dose-Response Relationship, Drug , Progesterone/blood , Quinolones/toxicity , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Piperazines/toxicity
5.
CNS Neurosci Ther ; 30(2): e14565, 2024 02.
Article in English | MEDLINE | ID: mdl-38421095

ABSTRACT

AIM: Widely used second-generation antipsychotics are associated with adverse metabolic effects, contributing to increased cardiovascular mortality. To develop strategies to prevent or treat adverse metabolic effects, preclinical models have a clear role in uncovering underlying molecular mechanisms. However, with few exceptions, preclinical studies have been performed in healthy animals, neglecting the contribution of dysmetabolic features inherent to psychotic disorders. METHODS: In this study, methylazoxymethanol acetate (MAM) was prenatally administered to pregnant Sprague-Dawley rats at gestational day 17 to induce a well-validated neurodevelopmental model of schizophrenia mimicking its assumed pathogenesis with persistent phenotype. Against this background, the dysmetabolic effects of acute treatment with olanzapine and haloperidol were examined in female rats. RESULTS: Prenatally MAM-exposed animals exhibited several metabolic features, including lipid disturbances. Half of the MAM rats exposed to olanzapine had pronounced serum lipid profile alteration compared to non-MAM controls, interpreted as a reflection of a delicate MAM-induced metabolic balance disrupted by olanzapine. In accordance with the drugs' clinical metabolic profiles, olanzapine-associated dysmetabolic effects were more pronounced than haloperidol-associated dysmetabolic effects in non-MAM rats and rats exposed to MAM. CONCLUSION: Our results demonstrate metabolic vulnerability in female prenatally MAM-exposed rats, indicating that findings from healthy animals likely provide an underestimated impression of metabolic dysfunction associated with antipsychotics. In the context of metabolic disturbances, neurodevelopmental models possess a relevant background, and the search for adequate animal models should receive more attention within the field of experimental psychopharmacology.


Subject(s)
Antipsychotic Agents , Haloperidol , Methylazoxymethanol Acetate/analogs & derivatives , Pregnancy , Rats , Female , Animals , Haloperidol/toxicity , Methylazoxymethanol Acetate/toxicity , Olanzapine/toxicity , Rats, Sprague-Dawley , Antipsychotic Agents/therapeutic use , Lipids , Disease Models, Animal
6.
J Toxicol Sci ; 48(4): 191-202, 2023.
Article in English | MEDLINE | ID: mdl-37005277

ABSTRACT

Olanzapine is widely used as a treatment for schizophrenia and other psychiatric disorders. Its metabolic side effects, including weight gain and hyperglycemia, are a clinical problem; however, their full mechanism is not yet clearly understood. Recently, it was reported that the accumulation of oxidative stress in the hypothalamus may cause obesity and diabetes mellitus. Epidemiologically, metabolic side effects are known to be more likely to occur in women. In the present study, we investigated and tested the hypothesis that olanzapine induces oxidative stress in the hypothalamus and induces metabolic side effects. We also examined its association with sex differences. Olanzapine was administered intraperitoneally to male and female C57BL/6 mice, and the expression levels of oxidative stress-responsible genes in the hypothalamus and cerebral cortex were measured by qRT-PCR. In addition, olanzapine was administered intraperitoneally to C57BL/6 and Nrf2 KO mice, and the expression level of total glutathione was measured. Gene expressions induced by the Keap1-Nrf2-regulated system showed different responses to olanzapine for each gene. Under the conditions of this experiment, cystine-glutamate transporter was decreased although heme oxygenase-1 and γ-glutamylcysteine synthetase were increased. It was also clear that these responses were not hypothalamus-specific. Long-term feeding with olanzapine suppressed weight gain in males but not females. No glucose intolerance was observed at 13 weeks of administration. Furthermore, deaths occurred only in females. In conclusion, this study failed to provide evidence that olanzapine induces oxidative stress in a hypothalamic-specific manner. Instead, sex differences were observed in response to long-term and high-dose olanzapine administration, suggesting that individual susceptibility to olanzapine toxicity occurred in female mice.


Subject(s)
Antipsychotic Agents , NF-E2-Related Factor 2 , Female , Male , Mice , Animals , Olanzapine/toxicity , Kelch-Like ECH-Associated Protein 1 , Sex Characteristics , Mice, Inbred C57BL , Weight Gain , Antipsychotic Agents/toxicity , Antipsychotic Agents/therapeutic use
7.
Life Sci ; 322: 121660, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37011876

ABSTRACT

AIMS: Investigate whether the coadministration of olanzapine exacerbates the diabetogenic effects of dexamethasone, two agents used in the antiemetic cocktails indicated to mitigate the adverse effects of chemotherapy. MAIN METHODS: Adult Wistar rats (both sexes) were treated daily with dexamethasone (1 mg/kg, body mass (b.m.), intraperitoneal (i.p.)) with or without olanzapine (10 mg/kg, b.m., orogastric (o.g.)) for 5 consecutive days. During and at the end of the treatment, we evaluated biometric data and parameters involving glucose and lipid metabolism. KEY FINDINGS: Dexamethasone treatment resulted in glucose and lipid intolerance, higher plasma insulin and triacylglycerol levels, higher content of hepatic glycogen and fat, and higher islet mass in both sexes. These changes were not exacerbated by concomitant treatment with olanzapine. However, coadministration of olanzapine worsened the weight loss and plasma total cholesterol in males, while in females resulted in lethargy, higher plasma total cholesterol, and higher hepatic triacylglycerol release. SIGNIFICANCE: Coadministration of olanzapine does not exacerbate any diabetogenic dexamethasone effect on glucose metabolism and exerts a minor impact on the lipid homeostasis of rats. Our data favor the addition of olanzapine in the antiemetic cocktail considering the low incidence of metabolic adverse effects for the period and dosage analyzed in male and female rats.


Subject(s)
Antiemetics , Antipsychotic Agents , Diabetes Mellitus , Rats , Male , Female , Animals , Olanzapine/toxicity , Rats, Wistar , Blood Glucose/metabolism , Glucose/metabolism , Triglycerides , Dexamethasone/toxicity , Cholesterol , Benzodiazepines/pharmacology , Antipsychotic Agents/pharmacology
8.
J Psychopharmacol ; 36(2): 202-213, 2022 02.
Article in English | MEDLINE | ID: mdl-34694173

ABSTRACT

BACKGROUND: Olanzapine is one of the most commonly used antipsychotic drugs; however, its metabolic disorders are the main obstacle in the clinic. Olanzapine is a potent antagonist of the M3 acetylcholine muscarinic receptor (M3R), while the downregulated hepatic M3R-AMPKα signalling pathway is involved in metabolic disorders. AIM: This study investigated the effects of chronic co-treatment with cevimeline (an agonist of M3Rs) in attenuating olanzapine-induced metabolic disorders and the underlying mechanisms. METHODS: Forty-eight adult female Sprague-Dawley rats were treated orally with olanzapine (2 mg/kg, 3 times/day (t.i.d.)) and/or cevimeline (9 mg/kg, t.i.d.), or control (vehicle) for 9 weeks. RESULTS: Cevimeline co-treatment significantly attenuated olanzapine-induced body weight gain and glucolipid metabolic disorders. Importantly, cevimeline co-treatment attenuated olanzapine-induced upregulation of M3Rs, while the co-treatment improved olanzapine-induced downregulation of AMPKα in the liver. Cevimeline co-treatment attenuated olanzapine-induced dyslipidaemia by modulating the hepatic M3R-AMPKα downstream pathways. Cevimeline co-treatment also improved lower activated AKT-GSK3ß signalling to reverse impairment of glucose metabolism and insulin resistance caused by chronic olanzapine treatment. CONCLUSION: These results not only support the important role of M3R antagonism and its related AMPKα and downstream pathways in antipsychotic-induced metabolic disorders but also indicate that these pathways might be promising targets for pharmacological intervention to control these side effects caused by antipsychotic therapy.


Subject(s)
Antipsychotic Agents/toxicity , Metabolic Diseases/prevention & control , Olanzapine/toxicity , Quinuclidines/pharmacology , Thiophenes/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Female , Liver/drug effects , Liver/metabolism , Metabolic Diseases/chemically induced , Muscarinic Agonists/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Signal Transduction/drug effects , Weight Gain/drug effects
9.
Int J Mol Sci ; 22(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34769286

ABSTRACT

The incidence of depression among humans is growing worldwide, and so is the use of antidepressants. However, our fundamental understanding regarding the mechanisms by which these drugs function and their off-target effects against human sexuality remains poorly defined. The present study aimed to determine their differential toxicity on mouse spermatogenic cells and provide mechanistic data of cell-specific response to antidepressant and neuroleptic drug treatment. To directly test reprotoxicity, the spermatogenic cells (GC-1 spg and GC-2 spd cells) were incubated for 48 and 96 h with amitriptyline (hydrochloride) (AMI), escitalopram (ESC), fluoxetine (hydrochloride) (FLU), imipramine (hydrochloride) (IMI), mirtazapine (MIR), olanzapine (OLZ), reboxetine (mesylate) (REB), and venlafaxine (hydrochloride) (VEN), and several cellular and biochemical features were assessed. Obtained results reveal that all investigated substances showed considerable reprotoxic potency leading to micronuclei formation, which, in turn, resulted in upregulation of telomeric binding factor (TRF1/TRF2) protein expression. The TRF-based response was strictly dependent on p53/p21 signaling and was followed by irreversible G2/M cell cycle arrest and finally initiation of apoptotic cell death. In conclusion, our findings suggest that antidepressants promote a telomere-focused DNA damage response in germ cell lines, which broadens the established view of antidepressants' and neuroleptic drugs' toxicity and points to the need for further research in this topic with the use of in vivo models and human samples.


Subject(s)
Antidepressive Agents/toxicity , Antipsychotic Agents/toxicity , G2 Phase Cell Cycle Checkpoints/drug effects , Micronuclei, Chromosome-Defective/chemically induced , Spermatogenesis/drug effects , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/metabolism , Amitriptyline/toxicity , Animals , Cell Line , Escitalopram/toxicity , Fluoxetine/toxicity , Gene Expression Regulation/drug effects , Imipramine/toxicity , Male , Mice , Mirtazapine/toxicity , Models, Biological , Olanzapine/toxicity , Organ Specificity , Reboxetine/toxicity , Reproduction/drug effects , Signal Transduction/drug effects , Time Factors , Venlafaxine Hydrochloride/toxicity
10.
Behav Pharmacol ; 32(8): 615-629, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34637209

ABSTRACT

The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.


Subject(s)
Antipsychotic Agents/toxicity , Fenofibrate/pharmacology , Hypolipidemic Agents/pharmacology , Olanzapine/toxicity , Adiponectin/metabolism , Adipose Tissue/drug effects , Animals , Antipsychotic Agents/pharmacology , Female , Fibroblast Growth Factors/metabolism , Insulin Resistance , Olanzapine/pharmacology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Weight Gain/drug effects
11.
Can J Physiol Pharmacol ; 99(10): 1088-1096, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34473596

ABSTRACT

Metabolic side effects of atypical antipsychotics are an important cause of deterioration of cognitive function and failure of drug adherence. The antifatty effect trypsin/chymotrypsin (T/C) and their mechanisms of action remain unclear. To investigate possible therapeutic effect of T/C in rat model of chronic olanzapine (OLZ) - induced hepatic steatosis. Twenty rats were divided into two groups: control (C), given distilled water, and O, given 1 mg/kg of OLZ orally daily for 7 weeks. Then, both groups were given T/C 3 enzyme activity unit (EAU)/kg orally as an add-on treatment daily for the next 5 weeks and were named T/C or T/C+O groups. Rat performance in radial arm water maze was tested twice before and after T/C treatment. We measured liver enzymes, alpha-1 antitrypsin, albumin, total protein, direct and total bilirubin, inflammatory cytokines, and lipoprotein serum levels. Liver samples were collected for histopathology and Ki67 expression. The T/C add-on caused significant reduction in OLZ-induced elevation of alanine transaminase (ALT; P < 0.01), aspartate transaminase (AST; P < 0.001), alkaline phosphatase (ALP; P < 0.05), total cholesterol (Tc; P < 0.01), low-density lipoproteins (LDL-c; P < 0.05), steatosis score (P < 0.001), hepatocyte necrosis (P < 0.01), and significantly increased Ki67 expression (P < 0.01). The T/C add-on to OLZ provided protection against hepatic steatosis, elevated enzymes, and disturbed lipid profile and increased Ki67 without disturbing memory function.


Subject(s)
Antipsychotic Agents/toxicity , Chymotrypsin/pharmacology , Non-alcoholic Fatty Liver Disease/prevention & control , Olanzapine/toxicity , Trypsin/pharmacology , Alanine Transaminase/blood , Alkaline Phosphatase/blood , Animals , Aspartate Aminotransferases/blood , Drug Combinations , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/pathology , Rats
12.
Biomed Pharmacother ; 142: 112071, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34449309

ABSTRACT

AIMS: c-jun N-terminal kinase (JNK) plays pivotal roles in many physiological processes, including inflammation and glucose metabolism. However, the effects of JNK on olanzapine-induced insulin resistance and the underlying mechanisms have not been fully elucidated. The aim of our study was to explore the role of JNK in olanzapine-induced insulin resistance and the underlying mechanisms. METHODS: We studied glucose metabolism in olanzapine-treated female C57B/J mice and mice with adeno-associated virus (AAV)-mediated downregulation of JNK1 in epididymal white adipose tissue (eWAT). 3T3-L1 adipocytes were used to investigate the mechanism of JNK1 regulating insulin signaling after olanzapine treatment. RESULTS: JNK was activated in eWAT after olanzapine treatment. JNK1 downregulation in eWAT ameliorated the insulin resistance and adipose tissue inflammation in olanzapine-treated mice. Furthermore, overexpression of JNK1 in adipocytes exacerbated the glucose disorder while JNK1 knockdown alleviated the impaired insulin signaling on olanzapine challenge, which was likely mediated by the reduced inflammation and insulin receptor substrate 1 (IRS1) phosphorylation. Moreover, the effect of JNK1 was attenuated by downregulation of IRS1 in adipocytes. Finally, the JNK1-IRS1 interaction and IRS1S307 phosphorylation were required for JNK1-regulated olanzapine-induced insulin resistance in adipocytes. CONCLUSIONS: Our results demonstrated that JNK1 activation by olanzapine induced insulin resistance by promoting IRS1Ser307 phosphorylation and inflammation in eWAT. These results highlighted the importance of JNK1 in eWAT as a promising drug target for olanzapine-induced insulin resistance.


Subject(s)
Inflammation/chemically induced , Insulin Resistance , Mitogen-Activated Protein Kinase 8/genetics , Olanzapine/toxicity , 3T3-L1 Cells , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Antipsychotic Agents/toxicity , Down-Regulation , Female , Gene Knockdown Techniques , Glucose/metabolism , Inflammation/pathology , Insulin/metabolism , Insulin Receptor Substrate Proteins/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation
13.
Pharmacol Res ; 170: 105714, 2021 08.
Article in English | MEDLINE | ID: mdl-34098070

ABSTRACT

Second-generation antipsychotics (SGAs) are first-line drugs that are prescribed for mental disorders in clinic. Severe cardiotoxicity has been widely reported and thus limits their clinical application. This study aimed to identify the common mechanism underlying SGAs-induced cardiotoxicity using dual-omics analyses. Balb/C mice were intraperitoneally injected with two representative SGAs, olanzapine (2.5 mg/kg) and clozapine (25 mg/kg), at clinically comparable doses for 0, 7, 14 and 21 days. Our results showed that both SGAs induced cardiomyocyte degeneration, inflammation infiltration, and cardiac fibrosis, all of which worsened with time. Proteomic analysis revelaed that 22 differentially expressed (DE) proteins overlapped in olanzapine and clozapine-treated hearts. These proteins were significantly enriched in muscle contraction, amino acid metabolism and spliceosomal assembly by GO term analysis and spliceosome signaling was among the top enriched pathways by KEGG analysis. Among the 22 DE proteins, three spliceosome signal proteins were validated in a dynamic detection, and their expression significantly correlated with the extent of SGAs-induced cardiac fibrosis. Following the spliceosome signaling dysregulation, RNA sequencing revealed that alternative splicing events in the mouse hearts were markedly enhanced by SGAs treatments, and the production of vast transcript variants resulted in dysregulation of multiple pathways that are critical for cardiomyocytes adaptation and cardiac remodeling. Pladienolide B, a specific inhibitor of mRNA splicing, successfully corrected SGAs-induced alternative splicing and significantly attenuated the secretion of pro-inflammatory factors and cell deaths induced by SGAs exposure. Our study concluded that the spliceosome signaling was a common pathway driving SGAs cardiotoxicity. Pharmacological inhibition of the spliceosome signaling represents a novel therapeutic strategy against SGAs cardiotoxicity.


Subject(s)
Alternative Splicing/drug effects , Antipsychotic Agents/toxicity , Clozapine/toxicity , Heart Diseases/chemically induced , Olanzapine/toxicity , Proteome , Spliceosomes/drug effects , Transcriptome , Animals , Cardiotoxicity , Gene Expression Profiling , Gene Regulatory Networks , Heart Diseases/genetics , Heart Diseases/metabolism , Mice, Inbred BALB C , Proteomics , Signal Transduction , Spliceosomes/genetics , Spliceosomes/metabolism
14.
Biomed Pharmacother ; 141: 111803, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34146854

ABSTRACT

The antipsychotic drug olanzapine was reported to induce nonalcoholic fatty liver disease (NAFLD), whereas the underlying mechanism remains incompletely understood. This study investigated whether apolipoprotein A5 (apoA5) and sortilin, two interactive factors involved in NAFLD pathogenesis, are implicated in olanzapine-induced NAFLD. In our study, at week 8, olanzapine treatment successfully induced hepatic steatosis in female C57 BL/6 J mice, which was independent of body weight gain. Likewise, olanzapine effectively mediated hepatocyte steatosis in HepG2 cells characterized by substantially elevated intracellular lipid droplets. Increased plasma triglyceride concentration and decreased plasma apoA5 levels were observed in mice treated with 8-week olanzapine. Surprisingly, olanzapine markedly enhanced hepatic apoA5 protein levels in mice, without a significant effect on rodent hepatic ApoA5 mRNA. Our in vitro study showed that olanzapine reduced apoA5 protein levels in the medium and enhanced apoA5 protein levels in hepatocytes, whereas this drug exerted no effect on hepatocyte APOA5 mRNA. By transfecting APOA5 siRNA into HepG2 cells, it was demonstrated that APOA5 knockdown effectively reversed olanzapine-induced hepatocyte steatosis in vitro. In addition, olanzapine drastically increased sortilin mRNA and protein levels in vivo and in vitro. Interestingly, SORT1 knockdown reduced intracellular apoA5 protein levels and increased medium apoA5 protein levels in vitro, without affecting intracellular APOA5 mRNA levels. Furthermore, SORT1 knockdown greatly ameliorated hepatocyte steatosis in vitro. This study provides the first evidence that sortilin inhibits the hepatic apoA5 secretion that is attributable to olanzapine-induced NAFLD, which provides new insight into effective strategies against NAFLD for patients with schizophrenia administered olanzapine.


Subject(s)
Antipsychotic Agents/toxicity , Apolipoprotein A-V/antagonists & inhibitors , Apolipoprotein A-V/biosynthesis , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/metabolism , Olanzapine/toxicity , Animals , Female , Gene Knockdown Techniques/methods , Hep G2 Cells , Humans , Mice , Mice, Inbred C57BL , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
15.
J Psychopharmacol ; 35(3): 284-302, 2021 03.
Article in English | MEDLINE | ID: mdl-33570012

ABSTRACT

BACKGROUND: Liraglutide is a glucagon-like peptide-1 (GLP-1) receptor agonist that prevents metabolic side effects of the antipsychotic drugs (APDs) olanzapine and clozapine through unknown mechanisms. AIM: This study aimed to investigate the effect of chronic APD and liraglutide co-treatment on key neural and peripheral metabolic signals, and acute liraglutide co-treatment on clozapine-induced hyperglycaemia. METHODS: In study 1, rats were administered olanzapine (2 mg/kg), clozapine (12 mg/kg), liraglutide (0.2 mg/kg), olanzapine + liraglutide co-treatment, clozapine + liraglutide co-treatment or vehicle for six weeks. Feeding efficiency was examined weekly. Examination of brain tissue (dorsal vagal complex (DVC) and mediobasal hypothalamus (MBH)), plasma metabolic hormones and peripheral (liver and kidney) cellular metabolism and oxidative stress was conducted. In study 2, rats were administered a single dose of clozapine (12 mg/kg), liraglutide (0.4 mg/kg), clozapine + liraglutide co-treatment or vehicle. Glucose tolerance and plasma hormone levels were assessed. RESULTS: Liraglutide co-treatment prevented the time-dependent increase in feeding efficiency caused by olanzapine, which plateaued by six weeks. There was no effect of chronic treatment on melanocortinergic, GABAergic, glutamatergic or endocannabionoid markers in the MBH or DVC. Peripheral hormones and cellular metabolic markers were unaltered by chronic APD treatment. Acute liraglutide co-treatment was unable to prevent clozapine-induced hyperglycaemia, but it did alter catecholamine levels. CONCLUSION: The unexpected lack of change to central and peripheral markers following chronic treatment, despite the presence of weight gain, may reflect adaptive mechanisms. Further studies examining alterations across different time points are required to continue to elucidate the mechanisms underlying the benefits of liraglutide on APD-induced metabolic side effects.


Subject(s)
Antipsychotic Agents/toxicity , Clozapine/toxicity , Liraglutide/pharmacology , Olanzapine/toxicity , Animals , Female , Glucagon-Like Peptide-1 Receptor/agonists , Glucose Tolerance Test , Hypoglycemic Agents/pharmacology , Rats , Rats, Sprague-Dawley , Weight Gain/drug effects
16.
Sci Rep ; 11(1): 4739, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637793

ABSTRACT

Although it is reported that olanzapine (OLZ), which is an atypical antipsychotic drug, causes sexual dysfunction in men, it is noteworthy that there is not any study evaluating the toxic effects of OLZ on the male reproductive system. In the scope of this research, it was aimed to assess the reproductive toxic effects of OLZ by oral administration of 2.5, 5, or 10 mg/kg of it to male rats for 28 days. For this purpose, sperm concentration, motility and morphology, and DNA damage were determined, and histopathological examination of testis tissue was carried out in rats. Also, the levels of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone, which play roles in the regulation of reproductive functions, and the levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA) which play roles in reproductive pathologies as oxidative stress biomarkers, were determined. According to the results, normal sperm morphology was decreased in 5 ve 10 mg/kg OLZ-administered groups, and pathological findings were evident in the testicular structure of the OLZ-administered group when compared with the control group. It was determined that serum LH, FSH, and testosterone levels were decreased in the OLZ-administered group. Also, decreases of GSH levels in testis tissue were determined and evaluated as the markers of the oxidative stress induced by OLZ in the testis. In conclusion, it was determined that reproductive toxic effects were induced in rats by OLZ administration. This pathology was accompanied by alterations of the hormone levels and testicular oxidative stress.


Subject(s)
Antipsychotic Agents/toxicity , Olanzapine/toxicity , Administration, Oral , Animals , DNA Damage/drug effects , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Male , Oxidative Stress/drug effects , Rats, Wistar , Sperm Count , Sperm Motility/drug effects , Spermatozoa/abnormalities , Spermatozoa/drug effects , Testis/drug effects , Testis/pathology , Testosterone/blood
17.
Int J Mol Sci ; 21(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302598

ABSTRACT

Patients with severe mental illness have increased mortality, often linked to cardio-metabolic disease. Non-alcoholic fatty liver disease (NAFLD) incidence is higher in patients with schizophrenia and is exacerbated with antipsychotic treatment. NAFLD is associated with obesity and insulin resistance, both of which are induced by several antipsychotic medications. NAFLD is considered an independent risk factor for cardiovascular disease, the leading cause of death for patients with severe mental illness. Although the clinical literature clearly defines increased risk of NAFLD with antipsychotic therapy, the underlying mechanisms are not understood. Given the complexity of the disorder as well as the complex pharmacology associated with atypical antipsychotic (AA) medications, we chose to use a proteomic approach in healthy mice treated with a low dose of risperidone (RIS) or olanzapine (OLAN) for 28 days to determine effects on development of NAFLD and to identify pathways impacted by AA medications, while removing confounding intrinsic effects of mental illness. Both AA drugs caused development of steatosis in comparison with vehicle controls (p < 0.01) and affected multiple pathways relating to energy metabolism, NAFLD, and immune function. AA-associated alteration in autonomic function appears to be a unifying theme in the regulation of hepatic pathology.


Subject(s)
Antipsychotic Agents/toxicity , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Olanzapine/toxicity , Proteome/metabolism , Risperidone/toxicity , Animals , Chemical and Drug Induced Liver Injury, Chronic/etiology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Proteome/genetics
18.
Elife ; 92020 11 17.
Article in English | MEDLINE | ID: mdl-33198886

ABSTRACT

Second-generation antipsychotics are widely used to medicate patients with schizophrenia, but may cause metabolic side effects such as diabetes, which has been considered to result from obesity-associated insulin resistance. Olanzapine is particularly well known for this effect. However, clinical studies have suggested that olanzapine-induced hyperglycemia in certain patients cannot be explained by such a generalized mechanism. Here, we focused on the effects of olanzapine on insulin biosynthesis and secretion by mouse insulinoma MIN6 cells. Olanzapine reduced maturation of proinsulin, and thereby inhibited secretion of insulin; and specifically shifted the primary localization of proinsulin from insulin granules to the endoplasmic reticulum. This was due to olanzapine's impairment of proper disulfide bond formation in proinsulin, although direct targets of olanzapine remain undetermined. Olanzapine-induced proinsulin misfolding and subsequent decrease also occurred at the mouse level. This mechanism of olanzapine-induced ß-cell dysfunction should be considered, together with weight gain, when patients are administered olanzapine.


Subject(s)
Diabetes Mellitus/chemically induced , Endoplasmic Reticulum/metabolism , Olanzapine/toxicity , Proinsulin/metabolism , Protein Folding/drug effects , Animals , Antipsychotic Agents/toxicity , Cell Line, Tumor , Diabetes Mellitus/metabolism , Insulinoma , Male , Mice , Mice, Inbred BALB C , Risperidone/toxicity
19.
Sci Rep ; 10(1): 18581, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122657

ABSTRACT

Antipsychotic drugs (AP) are used to treat a multitude of psychiatric conditions including schizophrenia and bipolar disorder. However, APs also have metabolic side effects including increased food intake and body weight, but the underlying mechanisms remain unknown. We previously reported that minocycline (MINO) co-treatment abrogates olanzapine (OLZ)-induced hyperphagia and weight gain in mice. Using this model, we investigated the changes in the pharmacometabolome in the plasma and hypothalamus associated with OLZ-induced hyperphagia and weight gain. Female C57BL/6 mice were divided into groups and fed either i) control, CON (45% fat diet) ii) CON + MINO, iii) OLZ (45% fat diet with OLZ), iv) OLZ + MINO. We identified one hypothalamic metabolite indoxylsulfuric acid and 389 plasma metabolites (including 19 known metabolites) that were specifically associated with AP-induced hyperphagia and weight gain in mice. We found that plasma citrulline, tricosenoic acid, docosadienoic acid and palmitoleic acid were increased while serine, asparagine and arachidonic acid and its derivatives were decreased in response to OLZ. These changes were specifically blocked by co-treatment with MINO. These pharmacometabolomic profiles associated with AP-induced hyperphagia and weight gain provide candidate biomarkers and mechanistic insights related to the metabolic side effects of these widely used drugs.


Subject(s)
Eating/drug effects , Hyperphagia/metabolism , Metabolome/drug effects , Minocycline/pharmacology , Olanzapine/toxicity , Weight Gain , Animals , Anti-Bacterial Agents/pharmacology , Antipsychotic Agents/toxicity , Female , Hyperphagia/chemically induced , Hyperphagia/drug therapy , Hyperphagia/pathology , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...