Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.735
Filter
1.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961086

ABSTRACT

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Subject(s)
Neuroglia , Neurons , Humans , Animals , Neuroglia/metabolism , Neuroglia/cytology , Neurons/metabolism , Neurons/cytology , Mice , Adult , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Lineage , Hippocampus/cytology , Hippocampus/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/metabolism , Cells, Cultured
2.
Inhal Toxicol ; 36(4): 261-274, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38836331

ABSTRACT

OBJECTIVE: Our work is focused on tungsten, considered as an emerging contaminant. Its environmental dispersion is partly due to mining and military activities. Exposure scenario can also be occupational, in areas such as the hard metal industry and specific nuclear facilities. Our study investigated the cerebral effects induced by the inhalation of tungsten particles. METHODS: Inhalation exposure campaigns were carried out at two different concentrations (5 and 80 mg/m3) in single and repeated modes (4 consecutive days) in adult rats within a nose-only inhalation chamber. Processes involved in brain toxicity were investigated 24 h after exposure. RESULTS AND DISCUSSION: Site-specific effects in terms of neuroanatomy and concentration-dependent changes in specific cellular actors were observed. Results obtained in the olfactory bulb suggest a potential early effect on the survival of microglial cells. Depending on the mode of exposure, these cells showed a decrease in density accompanied by an increase in an apoptotic marker. An abnormal phenotype of the nuclei of mature neurons, suggesting neuronal suffering, was also observed in the frontal cortex, and can be linked to the involvement of oxidative stress. The differential effects observed according to exposure patterns could involve two components: local (brain-specific) and/or systemic. Indeed, tungsten, in addition to being found in the lungs and kidneys, was present in the brain of animals exposed to the high concentration. CONCLUSION: Our data question the perceived innocuity of tungsten relative to other metals and raise hypotheses regarding possible adaptive or neurotoxic mechanisms that could ultimately alter neuronal integrity.


Subject(s)
Brain , Inhalation Exposure , Rats, Wistar , Tungsten , Animals , Tungsten/toxicity , Male , Inhalation Exposure/adverse effects , Brain/drug effects , Brain/metabolism , Rats , Biomarkers/metabolism , Microglia/drug effects , Microglia/metabolism , Neurons/drug effects , Neurons/metabolism , Lung/drug effects , Lung/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects
3.
BMC Genomics ; 25(1): 566, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840049

ABSTRACT

BACKGROUND: Advances of spatial transcriptomics technologies enabled simultaneously profiling gene expression and spatial locations of cells from the same tissue. Computational tools and approaches for integration of transcriptomics data and spatial context information are urgently needed to comprehensively explore the underlying structure patterns. In this manuscript, we propose HyperGCN for the integrative analysis of gene expression and spatial information profiled from the same tissue. HyperGCN enables data visualization and clustering, and facilitates downstream analysis, including domain segmentation, the characterization of marker genes for the specific domain structure and GO enrichment analysis. RESULTS: Extensive experiments are implemented on four real datasets from different tissues (including human dorsolateral prefrontal cortex, human positive breast tumors, mouse brain, mouse olfactory bulb tissue and Zabrafish melanoma) and technologies (including 10X visium, osmFISH, seqFISH+, 10X Xenium and Stereo-seq) with different spatial resolutions. The results show that HyperGCN achieves superior clustering performance and produces good domain segmentation effects while identifies biologically meaningful spatial expression patterns. This study provides a flexible framework to analyze spatial transcriptomics data with high geometric complexity. CONCLUSIONS: HyperGCN is an unsupervised method based on hypergraph induced graph convolutional network, where it assumes that there existed disjoint tissues with high geometric complexity, and models the semantic relationship of cells through hypergraph, which better tackles the high-order interactions of cells and levels of noise in spatial transcriptomics data.


Subject(s)
Gene Expression Profiling , Humans , Animals , Mice , Gene Expression Profiling/methods , Transcriptome , Deep Learning , Cluster Analysis , Computational Biology/methods , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Olfactory Bulb/metabolism
4.
Genesis ; 62(3): e23610, 2024 06.
Article in English | MEDLINE | ID: mdl-38874301

ABSTRACT

The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.


Subject(s)
Olfactory Bulb , Olfactory Receptor Neurons , Receptors, Odorant , Animals , Mice , Olfactory Bulb/metabolism , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
5.
Nat Commun ; 15(1): 5133, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879548

ABSTRACT

Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.


Subject(s)
Disease Progression , Lewy Bodies , Lewy Body Disease , alpha-Synuclein , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , alpha-Synuclein/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Brain/pathology , Brain/metabolism , Brain Stem/pathology , Brain Stem/metabolism , Lewy Bodies/pathology , Lewy Bodies/metabolism , Lewy Body Disease/pathology , Lewy Body Disease/metabolism , Olfactory Bulb/pathology , Olfactory Bulb/metabolism
6.
EMBO Rep ; 25(7): 2861-2877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839944

ABSTRACT

In developing olfactory bulb (OB), mitral cells (MCs) remodel their dendrites to establish the precise olfactory circuit, and these circuits are critical for individuals to sense odors and elicit behaviors for survival. However, how microtubules (MTs) participate in the process of dendritic remodeling remains elusive. Here, we reveal that calmodulin-regulated spectrin-associated proteins (CAMSAPs), a family of proteins that bind to the minus-end of the noncentrosomal MTs, play a crucial part in the development of MC dendrites. We observed that Camsap2 knockout (KO) males are infertile while the reproductive tract is normal. Further study showed that the infertility was due to the severe defects of mating behavior in male mice. Besides, mice with loss-of-function displayed defects in the sense of smell. Furthermore, we found that the deficiency of CAMSAP2 impairs the classical morphology of MCs, and the CAMSAP2-dependent dendritic remodeling process is responsible for this defect. Thus, our findings demonstrate that CAMSAP2 plays a vital role in regulating the development of MCs.


Subject(s)
Dendrites , Mice, Knockout , Microtubule-Associated Proteins , Olfactory Bulb , Smell , Animals , Mice , Male , Smell/physiology , Olfactory Bulb/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Dendrites/metabolism , Morphogenesis/genetics , Microtubules/metabolism , Female
7.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892173

ABSTRACT

A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.


Subject(s)
Adenosine Deaminase , Olfactory Perception , RNA Editing , Animals , Mice , Olfactory Perception/physiology , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Olfactory Bulb/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Neurons/metabolism , CRISPR-Cas Systems , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
8.
Acta Neuropathol Commun ; 12(1): 70, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38698465

ABSTRACT

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Subject(s)
COVID-19 , Microglia , Olfactory Bulb , Humans , COVID-19/pathology , COVID-19/complications , Olfactory Bulb/pathology , Olfactory Bulb/metabolism , Aged , Male , Female , Aged, 80 and over , Middle Aged , Microglia/pathology , Microglia/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , SARS-CoV-2 , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/metabolism
9.
Sci Rep ; 14(1): 11779, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783070

ABSTRACT

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Subject(s)
Nasal Cavity , Olfactory Bulb , Phoca , Vomeronasal Organ , Animals , Vomeronasal Organ/metabolism , Vomeronasal Organ/anatomy & histology , Phoca/metabolism , Phoca/anatomy & histology , Nasal Cavity/anatomy & histology , Nasal Cavity/metabolism , Olfactory Bulb/metabolism , Olfactory Bulb/anatomy & histology , Mucus/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/anatomy & histology , Male , Smell/physiology , Female
10.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791326

ABSTRACT

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Subject(s)
Manganese Compounds , Manganese , Mice, Inbred C57BL , Vanadium , Animals , Mice , Manganese/toxicity , Vanadium/toxicity , Male , Olfactory Bulb/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/pathology , Dopamine/metabolism , Vanadium Compounds , Oxidative Stress/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/chemically induced , alpha-Synuclein/metabolism , Chlorides/toxicity , Chlorides/metabolism , Tyrosine 3-Monooxygenase/metabolism , Aldehydes/metabolism , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Substantia Nigra/pathology , Disease Models, Animal , 3,4-Dihydroxyphenylacetic Acid/metabolism
11.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
12.
Neurotoxicology ; 102: 96-105, 2024 May.
Article in English | MEDLINE | ID: mdl-38582332

ABSTRACT

BACKGROUND: Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE: To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS: Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS: The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS: Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.


Subject(s)
Manganese , Occupational Exposure , Olfactory Bulb , Humans , Adult , Male , Occupational Exposure/adverse effects , Middle Aged , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Olfactory Pathways/drug effects , Olfactory Pathways/metabolism , Female , Mining , South Africa , Young Adult
13.
Nucleic Acids Res ; 52(11): e51, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38676948

ABSTRACT

Spatial transcriptomic (ST) techniques help us understand the gene expression levels in specific parts of tissues and organs, providing insights into their biological functions. Even though ST dataset provides information on the gene expression and its location for each sample, it is challenging to compare spatial gene expression patterns across tissue samples with different shapes and coordinates. Here, we propose a method, SpatialSPM, that reconstructs ST data into multi-dimensional image matrices to ensure comparability across different samples through spatial registration process. We demonstrated the applicability of this method by kidney and mouse olfactory bulb datasets as well as mouse brain ST datasets to investigate and directly compare gene expression in a specific anatomical region of interest, pixel by pixel, across various biological statuses. Beyond traditional analyses, SpatialSPM is capable of generating statistical parametric maps, including T-scores and Pearson correlation coefficients. This feature enables the identification of specific regions exhibiting differentially expressed genes across tissue samples, enhancing the depth and specificity of ST studies. Our approach provides an efficient way to analyze ST datasets and may offer detailed insights into various biological conditions.


Subject(s)
Brain , Gene Expression Profiling , Kidney , Olfactory Bulb , Animals , Mice , Algorithms , Brain/metabolism , Databases, Genetic , Gene Expression Profiling/methods , Image Processing, Computer-Assisted/methods , Kidney/metabolism , Olfactory Bulb/metabolism , Transcriptome
14.
Neurobiol Dis ; 196: 106514, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663633

ABSTRACT

The olfactory bulb is involved early in the pathophysiology of Parkinson's disease (PD), which is consistent with the early onset of olfactory dysfunction. Identifying the molecular mechanisms through which PD affects the olfactory bulb could lead to a better understanding of the pathophysiology and etiology of olfactory dysfunction in PD. We specifically aimed to assess gene expression changes, affected pathways and co-expression network by whole transcriptomic profiling of the olfactory bulb in subjects with clinicopathologically defined PD. Bulk RNA sequencing was performed on frozen human olfactory bulbs of 20 PD and 20 controls without dementia or any other neurodegenerative disorder, from the Arizona Study of Aging and Neurodegenerative disorders and the Brain and Body Donation Program. Differential expression analysis (19 PD vs 19 controls) revealed 2164 significantly differentially expressed genes (1090 upregulated and 1074 downregulated) in PD. Pathways enriched in downregulated genes included oxidative phosphorylation, olfactory transduction, metabolic pathways, and neurotransmitters synapses while immune and inflammatory responses as well as cellular death related pathways were enriched within upregulated genes. An overrepresentation of microglial and astrocyte-related genes was observed amongst upregulated genes, and excitatory neuron-related genes were overrepresented amongst downregulated genes. Co-expression network analysis revealed significant modules highly correlated with PD and olfactory dysfunction that were found to be involved in the MAPK signaling pathway, cytokine-cytokine receptor interaction, cholinergic synapse, and metabolic pathways. LAIR1 (leukocyte associated immunoglobulin like receptor 1) and PPARA (peroxisome proliferator activated receptor alpha) were identified as hub genes with a high discriminative power between PD and controls reinforcing an important role of neuroinflammation in the olfactory bulb of PD subjects. Olfactory identification test score positively correlated with expression of genes coding for G-coupled protein, glutamatergic, GABAergic, and cholinergic receptor proteins and negatively correlated with genes for proteins expressed in glial olfactory ensheathing cells. In conclusion, this study reveals gene alterations associated with neuroinflammation, neurotransmitter dysfunction, and disruptions of factors involved in the initiation of olfactory transduction signaling that may be involved in PD-related olfactory dysfunction.


Subject(s)
Olfaction Disorders , Olfactory Bulb , Parkinson Disease , Sequence Analysis, RNA , Humans , Olfactory Bulb/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Male , Olfaction Disorders/genetics , Female , Aged , Sequence Analysis, RNA/methods , Middle Aged , Aged, 80 and over , Gene Expression Profiling/methods , Transcriptome
15.
Horm Behav ; 162: 105527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492348

ABSTRACT

Olfactory communication is triggered by pheromones that profoundly influence neuroendocrine responses to drive social interactions. Two principal olfactory systems process pheromones: the main and the vomeronasal or accessory system. Prolactin receptors are expressed in both systems suggesting a participation in the processing of olfactory information. We previously reported that prolactin participates in the sexual and olfactory bulb maturation of females. Therefore, we explored the expression of prolactin receptors within the olfactory bulb during sexual maturation and the direct responses of prolactin upon pheromonal exposure. Additionally, we assessed the behavioral response of adult females exposed to male sawdust after prolactin administration and the consequent activation of main and accessory olfactory bulb and their first central relays, the piriform cortex and the medial amygdala. Last, we investigated the intracellular pathway activated by prolactin within the olfactory bulb. Here, prolactin receptor expression remained constant during all maturation stages within the main olfactory bulb but decreased in adulthood in the accessory olfactory bulb. Behaviorally, females that received prolactin actively explored the male stimulus. An increased cFos activation in the amygdala and in the glomerular cells of the whole olfactory bulb was observed, but an augmented response in the mitral cells was only found within the main olfactory bulb after prolactin administration and the exposure to male stimulus. Interestingly, the ERK pathway was upregulated in the main olfactory bulb after exposure to a male stimulus. Overall, our results suggest that, in female mice, prolactin participates in the processing of chemosignals and behavioral responses by activating the main olfactory system and diminishing the classical vomeronasal response to pheromones.


Subject(s)
Olfactory Bulb , Prolactin , Sexual Behavior, Animal , Animals , Olfactory Bulb/drug effects , Olfactory Bulb/metabolism , Olfactory Bulb/physiology , Female , Prolactin/metabolism , Prolactin/pharmacology , Mice , Male , Sexual Behavior, Animal/physiology , Sexual Behavior, Animal/drug effects , Receptors, Prolactin/metabolism , Sexual Maturation/physiology , Social Behavior , Pheromones/pharmacology , Amygdala/drug effects , Amygdala/metabolism
16.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38439531

ABSTRACT

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Subject(s)
Olfactory Receptor Neurons , S100 Proteins , Vomeronasal Organ , Animals , Olfactory Bulb/metabolism , Olfactory Mucosa , Olfactory Receptor Neurons/metabolism , S100 Proteins/metabolism , Vomeronasal Organ/metabolism , Xenopus laevis/metabolism
17.
J Comp Neurol ; 532(3): e25599, 2024 03.
Article in English | MEDLINE | ID: mdl-38488687

ABSTRACT

During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.


Subject(s)
Kallmann Syndrome , Humans , Animals , Mice , Kallmann Syndrome/genetics , Kallmann Syndrome/metabolism , Neurons/metabolism , Gonadotropin-Releasing Hormone/metabolism , Brain/metabolism , Axons/metabolism , Olfactory Bulb/metabolism , Cell Movement/physiology
18.
J Physiol Sci ; 74(1): 18, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491428

ABSTRACT

The olfactory bulb receives cholinergic basal forebrain inputs as does the neocortex. With a focus on nicotinic acetylcholine receptors (nAChRs), this review article provides an overview and discussion of the following findings: (1) the nAChRs-mediated regulation of regional blood flow in the neocortex and olfactory bulb, (2) the nAChR subtypes that mediate their responses, and (3) their activity in old rats. The activation of the α4ß2-like subtype of nAChRs produces vasodilation in the neocortex, and potentiates olfactory bulb vasodilation induced by olfactory stimulation. The nAChR activity producing neocortical vasodilation was similarly maintained in 2-year-old rats as in adult rats, but was clearly reduced in 3-year-old rats. In contrast, nAChR activity in the olfactory bulb was reduced already in 2-year-old rats. Thus, age-related impairment of α4ß2-like nAChR function may occur earlier in the olfactory bulb than in the neocortex. Given the findings, the vasodilation induced by α4ß2-like nAChR activation may be beneficial for neuroprotection in the neocortex and the olfactory bulb.


Subject(s)
Neocortex , Receptors, Nicotinic , Rats , Animals , Nicotine/pharmacology , Olfactory Bulb/metabolism , Receptors, Nicotinic/metabolism , Cholinergic Agents , Neocortex/metabolism
19.
Environ Sci Technol ; 58(11): 4914-4925, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38436231

ABSTRACT

Particulate matter, especially PM2.5, can invade the central nervous system (CNS) via the olfactory pathway to induce neurotoxicity. The olfactory bulb (OB) is the key component integrating immunoprotection and olfaction processing and is necessarily involved in the relevant CNS health outcomes. Here we show that a microglial chemokine receptor, CCR5, is the target of environmentally relevant PM2.5 in the OB to trigger neuroinflammation and then neuropathological injuries. Mechanistically, PM2.5-induced CCR5 upregulation results in the pro-inflammatory paradigm of microglial activation, which subsequently activates TLR4-NF-κB neuroinflammation signaling and induces neuropathological changes that are closely related to neurodegenerative disorders (e.g., Aß deposition and disruption of the blood-brain barrier). We specifically highlight that manganese and lead in PM2.5 are the main contributors to CCR5-mediated microglial activation and neuroinflammation in synergy with aluminum. Our results uncover a possible pathway of PM2.5-induced neuroinflammation and identify the principal neurotoxic components, which can provide new insight into efficiently diminishing the adverse health effects of PM2.5.


Subject(s)
Neuroinflammatory Diseases , Olfactory Bulb , Mice , Animals , Olfactory Bulb/metabolism , Particulate Matter/toxicity , Signal Transduction , Receptors, Chemokine/metabolism , NF-kappa B/metabolism , NF-kappa B/pharmacology
20.
Brain Res ; 1833: 148885, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38531465

ABSTRACT

BACKGROUND: Immune-inflammatory response is a key element in the occurrence and development of olfactory dysfunction (OD) in patients with allergic rhinitis (AR). As one of the core factors in immune-inflammatory responses, interleukin (IL)-6 is closely related to the pathogenesis of allergic diseases. It may also play an important role in OD induced by diseases, such as Sjögren's syndrome and coronavirus disease 2019. However, there is no study has reported its role in OD in AR. Thus, this study aimed to investigate the role of IL-6 in AR-related OD, in an attempt to discover a new target for the prevention and treatment of OD in patients with AR. METHODS: Differential expression analysis was performed using the public datasets GSE52804 and GSE140454 for AR, and differentially expressed genes (DEGs) were obtained by obtaining the intersection points between these two datasets. IL-6, a common differential factor, was obtained by intersecting the DEGs with the General Olfactory Sensitivity Database (GOSdb) again. A model of AR mice with OD was developed by sensitizing with ovalbumin (OVA) to verify the reliability of IL-6 as a key factor of OD in AR and explore the potential mechanisms. Furthermore, a supernatant and microglia co-culture model of nasal mucosa epithelial cells stimulated by the allergen house dust mite extract Derp1 was established to identify the cellular and molecular mechanisms of IL-6-mediated OD in AR. RESULTS: The level of IL-6 in the nasal mucosa and olfactory bulb of AR mice with OD significantly increased and showed a positive correlation with the expression of olfactory bulb microglia marker Iba-1 and the severity of OD. In-vitro experiments showed that the level of IL-6 significantly increased in the supernatant after the nasal mucosa epithelial cells were stimulated by Derp1, along with significantly decreased barrier function of the nasal mucosa. The expression levels of neuroinflammatory markers IL-1ß and INOS increased after a conditioned culture of microglia with the supernatant including IL-6. Then knockdown (KD) of IL-6R by small interfering RNA (siRNA), the expression of IL-1ß and INOS significantly diminished. CONCLUSION: IL-6 plays a key role in the occurrence and development of OD in AR, which may be related to its effect on olfactory bulb microglia-mediated neuroinflammation.


Subject(s)
Disease Models, Animal , Interleukin-6 , Olfaction Disorders , Rhinitis, Allergic , Animals , Mice , Interleukin-6/metabolism , Microglia/metabolism , Olfaction Disorders/metabolism , Olfactory Bulb/metabolism , Ovalbumin , Rhinitis, Allergic/metabolism , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL