Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.725
Filter
1.
Int J Nanomedicine ; 19: 6485-6497, 2024.
Article in English | MEDLINE | ID: mdl-38946886

ABSTRACT

Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.


Subject(s)
Angiogenesis Inhibitors , Neovascularization, Pathologic , Theranostic Nanomedicine , Humans , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/administration & dosage , Theranostic Nanomedicine/methods , Neovascularization, Pathologic/drug therapy , Animals , Liposomes/chemistry , Nanostructures/chemistry , Neoplasms/drug therapy , Drug Delivery Systems/methods , Oligonucleotides/chemistry , Oligonucleotides/administration & dosage , Oligonucleotides/pharmacokinetics , Oligonucleotides/pharmacology , Proteins/chemistry , Proteins/administration & dosage , Lipids/chemistry , Nanoparticles/chemistry
2.
Med ; 5(6): 493-494, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878767

ABSTRACT

Reducing the synthesis of apoC-III reduces fasting triglycerides in individuals lacking lipoprotein lipase activity. Recently, Stroes et al.1 published a phase 3 trial on the effects of olezarsen, a third-generation antisense oligonucleotide that blocks apoC-III mRNA, on triglycerides and risk of acute pancreatitis.


Subject(s)
Apolipoprotein C-III , Hyperlipoproteinemia Type I , Oligonucleotides , Triglycerides , Humans , Apolipoprotein C-III/genetics , Apolipoprotein C-III/blood , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/blood , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Triglycerides/blood , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Pancreatitis/genetics , Benzimidazoles
3.
Adv Ther ; 41(7): 2723-2742, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833142

ABSTRACT

INTRODUCTION: Hereditary transthyretin amyloidosis (ATTRv, also referred to as hATTR; ORPHA 271861) and wild-type ATTR amyloidosis (ATTRwt; ORPHA 330001) are rare, progressive, systemic protein misfolding disorders with heterogeneous clinical presentations. ATTRv and ATTRwt amyloidosis are characterized by the deposition of amyloid fibrils in multiple organs including the heart, nerves, eyes, and soft tissues. The management of ATTR amyloidosis is complex because of its multisystemic nature and progression despite available treatment options. Morbidity is high and there are many unmet medical needs for patients. While contemporary ATTR amyloidosis cohorts are diagnosed earlier, have lower risk disease and lower mortality compared with the previous era, these advances coupled with the emergence of effective disease-modifying therapies have confounded the design of future prospective clinical trials and interpretation of historical control data. MAIN BODY: The Amyloidosis Forum is a public-private partnership between the US Food and Drug Administration Center for Drug Evaluation and Research and the nonprofit Amyloidosis Research Consortium ( www.arci.org ). This article summarizes proceedings from the 21 June 2023 Amyloidosis Forum on advancing drug development in ATTR amyloidosis in an evolving treatment landscape. The Forum focused on elements of clinical trial design to address these challenges and discussed their strengths and weaknesses from multiple stakeholder perspectives (i.e., patient, sponsor, statistician, clinician, and regulatory authorities). CONCLUSION: Given rapid evolution of natural history in ATTR amyloidosis, the utility of historical control data is limited. Leveraging contemporary real-world data is essential for clinical trial design. Evidence generation from clinical trials should address clinically relevant questions. Key factors in successful trial design must be informed by up-to-date data on natural history, prognostic factors, clinically meaningful thresholds, and sharing available clinical trial data. The Amyloidosis Forum includes the community of patients with ATTR amyloidosis, the physicians who treat them, and the sponsors and regulators who collectively stand ready to support further studies in order to develop novel effective therapies.


Subject(s)
Amyloid Neuropathies, Familial , Drug Development , Humans , Amyloid Neuropathies, Familial/drug therapy , Benzoxazoles/therapeutic use , Oligonucleotides
4.
Drugs ; 84(6): 637-643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38849700

ABSTRACT

Increasing evidence has implicated lipoprotein(a) [Lp(a)] in the causality of atherosclerosis and calcific aortic stenosis. This has stimulated immense interest in developing novel approaches to integrating Lp(a) into the setting of cardiovascular prevention. Current guidelines advocate universal measurement of Lp(a) levels, with the potential to influence cardiovascular risk assessment and triage of higher-risk patients to use of more intensive preventive therapies. In parallel, considerable activity has been undertaken to develop novel therapeutics with the potential to achieve selective and substantial reductions in Lp(a) levels. Early studies of antisense oligonucleotides (e.g., mipomersen, pelacarsen), RNA interference (e.g., olpasiran, zerlasiran, lepodisiran) and small molecule inhibitors (e.g., muvalaplin) have demonstrated effective Lp(a) lowering and good tolerability. These agents are moving forward in clinical development, in order to determine whether Lp(a) lowering reduces cardiovascular risk. The results of these studies have the potential to transform our approach to the prevention of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Lipoprotein(a) , Oligonucleotides, Antisense , Humans , Lipoprotein(a)/blood , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/pharmacology , Atherosclerosis/drug therapy , RNA Interference , Oligonucleotides/therapeutic use , Oligonucleotides/pharmacology , Animals
5.
J Med Case Rep ; 18(1): 278, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872171

ABSTRACT

BACKGROUND: Homozygous mutations in the APOA5 gene constitute a rare cause of monogenic hypertriglyceridemia, or familial chylomicronemia syndrome (FCS). We searched PubMed and identified 16 cases of homozygous mutations in the APOA5 gene. Severe hypertriglyceridemia related to monogenic mutations in triglyceride-regulating genes can cause recurrent acute pancreatitis. Standard therapeutic approaches for managing this condition typically include dietary interventions, fibrates, and omega-3-fatty acids. A novel therapeutic approach, antisense oligonucleotide volanesorsen is approved for use in patients with FCS. CASE PRESENTATION: We report a case of a 25-years old Afghani male presenting with acute pancreatitis due to severe hypertriglyceridemia up to 29.8 mmol/L caused by homozygosity in APOA5 (c.427delC, p.Arg143Alafs*57). A low-fat diet enriched with medium-chain TG (MCT) oil and fibrate therapy did not prevent recurrent relapses, and volanesorsen was initiated. Volanesorsen resulted in almost normalized triglyceride levels. No further relapses of acute pancreatitis occurred. Patient reported an improve life quality due to alleviated chronic abdominal pain and headaches. CONCLUSIONS: Our case reports a rare yet potentially life-threatening condition-monogenic hypertriglyceridemia-induced acute pancreatitis. The implementation of the antisense drug volanesorsen resulted in improved triglyceride levels, alleviated symptoms, and enhanced the quality of life.


Subject(s)
Apolipoprotein A-V , Homozygote , Hypertriglyceridemia , Pancreatitis , Recurrence , Humans , Male , Adult , Pancreatitis/genetics , Apolipoprotein A-V/genetics , Hypertriglyceridemia/genetics , Mutation , Oligonucleotides/therapeutic use , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/complications , Diet, Fat-Restricted , Triglycerides/blood
6.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891955

ABSTRACT

There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression products with a high potential for abuse in horseracing. As these substances are not covered by most routine anti-doping analytical approaches, they represent an entire class of compounds that are not readily detectable. The nucleotide sequence for each oligonucleotide is highly specific, which makes targeted analysis for these agents problematic. Accordingly, we have developed a non-targeted approach to detect the presence of specific product ions that are not naturally present in ribonucleic acids. Briefly, serum samples were extracted using solid-phase extraction with a mixed-mode cartridge following the disruption of protein interactions to isolate the oligonucleotides. Following the elution and concentration steps, chromatographic separation was achieved utilizing reversed-phase liquid chromatography. Following an introduction to a Thermo Q Exactive HF mass spectrometer using electrospray ionization, analytes were detected utilizing a combination of full-scan, parallel reaction monitoring and all ion fragmentation scan modes. The limits of detection were determined along with the accuracy, precision, stability, recovery, and matrix effects using a representative 13mer oligonucleotide. Following method optimization using the 13mer oligonucleotide, the method was applied to successfully detect the presence of specific product ions in three unique oligonucleotide sequences targeting equine-specific transcripts.


Subject(s)
Oligonucleotides , Animals , Horses/blood , Oligonucleotides/blood , Doping in Sports/prevention & control , Chromatography, Liquid/methods , Mass Spectrometry/methods , Solid Phase Extraction/methods , Limit of Detection
7.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893532

ABSTRACT

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.


Subject(s)
Cell-Penetrating Peptides , Muscular Atrophy, Spinal , Oligonucleotides, Antisense , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Humans , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/pharmacology , Animals , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects
8.
BMC Neurol ; 24(1): 210, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902631

ABSTRACT

We analyzed the changes in various motor function scores over a four-year period in patients with non-ambulatory spinal muscular atrophy (SMA) during Nusinersen treatment. Patients underwent Hammersmith Infant Neurological Examination (HINE) or Hammersmith Functional Motor Scale Expanded (HFMSE) before treatment, and approximately every 4 months thereafter. Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) or Children's Hospital of Philadelphia - Adult Test of Neuromuscular Disorders (CHOP ATEND), Revised Upper Limb Module (RULM), and Motor Function Measure (MFM) were performed based on baseline functional status. Narrative interviews were conducted to explore post-treatment physical improvement regarding activities of daily living (ADLs) and fatigue after ADLs. Based on HFMSE results, 9 patients achieved minimum clinically important differences. Average rates of change (slopes) with corresponding 95% confidence intervals for all assessment tools were in a positive direction. CHOP-INTEND showed the most prominent improvement in children and adolescents followed by HFMSE. Improvements in CHOP-ATEND were most noticeable in adults. Improvements were accompanied by changes in ADLs as observed in the narrative interviews. It is necessary to consider various functional aspects to determine the effectiveness of Nusinersen therapy. The objective assessment of the therapeutic effect of Nusinersen in non-ambulatory SMA requires consideration of functional aspects and the related ADLs.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides , Humans , Male , Female , Oligonucleotides/therapeutic use , Muscular Atrophy, Spinal/drug therapy , Child , Child, Preschool , Adolescent , Republic of Korea/epidemiology , Adult , Infant , Treatment Outcome , Activities of Daily Living , Young Adult
9.
Anal Chem ; 96(24): 9994-10002, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38855895

ABSTRACT

Therapeutic oligonucleotides (ONs) commonly incorporate phosphorothioate (PS) modifications. These introduce chiral centers and generate ON diastereomers. The increasing number of ONs undergoing clinical trials and reaching the market has led to a growing interest to better characterize the ON diastereomer composition, especially for small interfering ribonucleic acids (siRNAs). In this study, and for the first time, we identify higher-order structures as the major cause of ON diastereomer separation in hydrophilic interaction chromatography (HILIC). We have used conformational predictions and melting profiles of several representative full-length ONs to first analyze ON folding and then run mass spectrometry and HILIC to underpin the link between their folding and diastereomer separation. On top, we show how one can either enhance or suppress diastereomer separation depending on chromatographic settings, such as column temperature, pore size, stationary phase, mobile-phase ionic strength, and organic modifier. This work will significantly facilitate future HILIC-based characterization of PS-containing ONs; e.g., enabling monitoring of batch-to-batch diastereomer distributions in full-length siRNAs, a complex task that is now for the first time shown as possible on this delicate class of therapeutic double-stranded ONs.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Stereoisomerism , Oligonucleotides/chemistry , Oligonucleotides/isolation & purification , RNA, Small Interfering/chemistry , RNA, Small Interfering/isolation & purification , Nucleic Acid Conformation , Chromatography, Liquid/methods
10.
RNA Biol ; 21(1): 1-8, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38836544

ABSTRACT

Production and storage of synthetic mRNA can introduce a variety of byproducts which reduce the overall integrity and functionality of mRNA vaccines and therapeutics. mRNA integrity is therefore designated as a critical quality attribute which must be evaluated with state-of-the-art analytical methods before clinical use. The current study first demonstrates the effect of heat degradation on transcript translatability and then describes a novel enzymatic approach to assess the integrity of conventional mRNA and long self-amplifying mRNA. By first hybridizing oligo-T to the poly(A) tail of intact mRNA and subsequently digesting the unhybridized RNA fragments with a 3'-5' exoribonuclease, individual nucleotides can be selectively released from RNA fragments. The adenosine-based fraction of these nucleotides can then be converted into ATP and detected by luminescence as a sensitive indicator of mRNA byproducts. We developed a polynucleotide phosphorylase (PNPase)-based assay that offers fast and sensitive evaluation of mRNA integrity, regardless of its length, thus presenting a novel and fully scalable alternative to chromatographic-, electrophoresis-, or sequencing-based techniques.


Subject(s)
Polyribonucleotide Nucleotidyltransferase , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polyribonucleotide Nucleotidyltransferase/metabolism , Polyribonucleotide Nucleotidyltransferase/genetics , Humans , Oligonucleotides/metabolism , RNA Stability
11.
Mol Pharm ; 21(7): 3471-3484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38872243

ABSTRACT

Oligonucleotides are short nucleic acids that serve as one of the most promising classes of drug modality. However, attempts to establish a physicochemical evaluation platform of oligonucleotides for acquiring a comprehensive view of their properties have been limited. As the chemical stability and the efficacy as well as the solution properties at a high concentration should be related to their higher-order structure and intra-/intermolecular interactions, their detailed understanding enables effective formulation development. Here, the higher-order structure and the thermodynamic stability of the thrombin-binding aptamer (TBA) and four modified TBAs, which have similar sequences but were expected to have different higher-order structures, were evaluated using ultraviolet spectroscopy (UV), circular dichroism (CD), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). Then, the relationship between the higher-order structure and the solution properties including solubility, viscosity, and stability was investigated. The impact of the higher-order structure on the antithrombin activity was also confirmed. The higher-order structure and intra-/intermolecular interactions of the oligonucleotides were affected by types of buffers because of different potassium concentrations, which are crucial for the formation of the G-quadruplex structure. Consequently, solution properties, such as solubility and viscosity, chemical stability, and antithrombin activity, were also influenced. Each instrumental analysis had a complemental role in investigating the higher-order structure of TBA and modified TBAs. The utility of each physicochemical characterization method during the preclinical developmental stages is also discussed.


Subject(s)
Aptamers, Nucleotide , Circular Dichroism , Oligonucleotides , Aptamers, Nucleotide/chemistry , Circular Dichroism/methods , Oligonucleotides/chemistry , Calorimetry, Differential Scanning/methods , Viscosity , Magnetic Resonance Spectroscopy/methods , Solubility , Thermodynamics , G-Quadruplexes , Drug Stability , Humans
12.
J Am Chem Soc ; 146(26): 18083-18094, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38904115

ABSTRACT

Multiple RNA strands can interact in solution and assume a large variety of configurations dictated by their potential for base pairing. Although duplex formation from two complementary oligonucleotides has been studied in detail, we still lack a systematic characterization of the behavior of higher order complexes. Here, we focus on the thermodynamic and kinetic effects of an upstream oligonucleotide on the binding of a downstream oligonucleotide to a common template, as we vary the sequence and structure of the contact interface. We show that coaxial stacking in RNA is well correlated with but much more stabilizing than helix propagation over an analogous intact double helix step (median ΔΔG°37 °C ≈ 1.7 kcal/mol). Consequently, approximating coaxial stacking in RNA with the helix propagation term leads to large discrepancies between predictions and our experimentally determined melting temperatures, with an offset of ≈10 °C. Our kinetic study reveals that the hybridization of the downstream probe oligonucleotide is impaired (lower kon) by the presence of the upstream oligonucleotide, with the thermodynamic stabilization coming entirely from an extended lifetime (lower koff) of the bound downstream oligonucleotide, which can increase from seconds to months. Surprisingly, we show that the effect of nicks is dependent on the length of the stacking oligonucleotides, and we discuss the binding of ultrashort (1-4 nt) oligonucleotides that are relevant in the context of the origin of life. The thermodynamic and kinetic data obtained in this work allow for the prediction of the formation and stability of higher-order multistranded complexes.


Subject(s)
RNA , Thermodynamics , Kinetics , RNA/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry , Base Pairing
13.
Medicine (Baltimore) ; 103(26): e38767, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941378

ABSTRACT

Hereditary transthyretin-mediated amyloidosis (ATTRv amyloidosis), known as Corino de Andrade disease, is a rare neurodegenerative disorder with a significant global impact characterized by the misfolding of transthyretin (TTR) protein leading to amyloid aggregation, ATTRv amyloidosis, especially with polyneuropathy, poses a considerable challenge in managing its rapid progression and debilitating effects. This mini-review focuses on the recent advancements in the treatment landscape for ATTRv amyloidosis with polyneuropathy, specifically the RNA interference therapeutic Vutrisiran and the ligand-conjugated antisense oligonucleotide Eplontersen. We aim to provide a comprehensive overview of the mechanisms, current evidence from clinical trials, and future directions for these novel therapeutic agents. Vutrisiran and Eplontersen have demonstrated significant clinical efficacy in improving neuropathic impairment, quality of life, and serum TTR levels in various trials. The distinct mechanistic approaches of these therapies, coupled with their acceptable safety profiles, offer promising avenues for addressing the complexities of ATTRv amyloidosis with polyneuropathy. The introduction of Vutrisiran and Eplontersen marks a pivotal moment in the quest for effective therapies against ATTRv amyloidosis with polyneuropathy. While clinical evidence is promising, ongoing research is crucial to deepen mechanistic understanding and address research gaps. Future perspectives include the potential expansion of therapeutic options and a more inclusive approach to cater to the diverse needs of individuals globally. This mini-review provides valuable insights into the evolving landscape of ATTRv amyloidosis management and sets the stage for further exploration in this challenging domain.


Subject(s)
Amyloid Neuropathies, Familial , Polyneuropathies , Humans , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/therapy , Polyneuropathies/genetics , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Prealbumin/genetics , Quality of Life
14.
J Phys Chem B ; 128(26): 6291-6307, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38899795

ABSTRACT

Berubicin, a chemotherapy medication belonging to the class of anthracyclines, is simulated in double-stranded DNA sequences and cyclodextrins in an aqueous environment via full-atom molecular dynamics simulations on the time scale of microseconds. The drug is studied in both the neutral and protonated states so as to better comprehend the role of its charge in the formed complexes. The noncovalent berubicin-DNA and berubicin-cyclodextrin complexes are investigated in detail, paying special attention to their thermodynamic description by employing the double decoupling method, the solvent balance method, the weighted solvent accessible surface model, and the linear interaction energy method. A novel approach for extracting the desolvation thermodynamics of the binding process is also presented. Both the binding and desolvation Gibbs energies are decomposed into entropic and enthalpic contributions so as to elucidate the nature of complexation and its driving forces. Selected structural and geometrical properties of all the complexes, which are all stable, are analyzed. Both cyclodextrins under consideration are widely utilized for drug delivery purposes, and a comparative investigation between their bound states with berubicin is carried out.


Subject(s)
Anthracyclines , Cyclodextrins , DNA , Molecular Dynamics Simulation , Thermodynamics , Water , Cyclodextrins/chemistry , Water/chemistry , DNA/chemistry , Anthracyclines/chemistry , Oligonucleotides/chemistry
15.
J Am Chem Soc ; 146(25): 17122-17130, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38861703

ABSTRACT

DNA nanotechnology has emerged as a useful tool for constructing artificial channels penetrating the lipid bilayer. In this work, we introduce a stacked DNA origami nanochannel device characterized by a width-variable pathway, consisting of narrow entrance and exit channels coupled with a wide, modifiable lumen. This design modulates the translocation behavior of oligonucleotides, revealing distinct stages of signal patterns in the recorded current traces. The observed prolonged dwell times indicate oligonucleotide retention, specifically due to the transition from the wide lumen to the narrower exit channel, while variations in current recovery between events suggested intermediate channel states between conducting and blocking. Further, by incorporating sequence-specific overhangs within the channel lumen, we achieved unique asymmetric current profiles during ATP aptamer translocation events. Featured stages also highlighted the aptamer binding dynamics and ATP-induced release. The distinguished oligonucleotide passing behaviors afforded by the stacked DNA origami channel with interior decoration demonstrated the strategic and profitable attempts at DNA nanochannel engineering for nanodevice development and applications.


Subject(s)
DNA , Nanostructures , Nanotechnology , Oligonucleotides , DNA/chemistry , Oligonucleotides/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Aptamers, Nucleotide/chemistry , Adenosine Triphosphate/chemistry , Nucleic Acid Conformation
16.
ACS Chem Biol ; 19(6): 1351-1365, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38836425

ABSTRACT

A major obstacle in biotherapeutics development is maximizing cell penetration. Ideally, assays would allow for optimization of cell penetration in the cell type of interest early in the drug development process. However, few assays exist to compare cell penetration across different cell types independent of drug function. In this work, we applied the chloroalkane penetration assay (CAPA) in seven mammalian cell lines as well as primary cells. Careful controls were used to ensure that data could be compared across cell lines. We compared the nuclear penetration of several peptides and drug-like oligonucleotides and saw significant differences among the cell lines. To help explain these differences, we quantified the relative activities of endocytosis pathways in these cell lines and correlated them with the penetration data. Based on these results, we knocked down clathrin in a cell line with an efficient permeability profile and observed reduced penetration of peptides but not oligonucleotides. Finally, we used small-molecule endosomal escape enhancers and observed enhancement of cell penetration of some oligonucleotides, but only in some of the cell lines tested. CAPA data provide valuable points of comparison among different cell lines, including primary cells, for evaluating the cell penetration of various classes of peptides and oligonucleotides.


Subject(s)
Endocytosis , Humans , Cell Line , Cell Membrane Permeability , Cell-Penetrating Peptides/metabolism , Clathrin/metabolism , Oligonucleotides/metabolism , Peptides/metabolism , Hydrocarbons, Chlorinated/chemistry , Hydrocarbons, Chlorinated/metabolism
17.
Phys Rev Lett ; 132(20): 208401, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829088

ABSTRACT

In many biopolymer solutions, attractive interactions that stabilize finite-sized clusters at low concentrations also promote phase separation at high concentrations. Here we study a model biopolymer system that exhibits the opposite behavior, whereby self-assembly of DNA oligonucleotides into finite-sized, stoichiometric clusters tends to inhibit phase separation. We first use microfluidics-based experiments to map a novel phase transition in which the oligonucleotides condense as the temperature increases at high concentrations of divalent cations. We then show that a theoretical model of competition between self-assembly and phase separation quantitatively predicts changes in experimental phase diagrams arising from DNA sequence perturbations. Our results point to a general mechanism by which self-assembly shapes phase boundaries in complex biopolymer solutions.


Subject(s)
DNA , Models, Chemical , Phase Transition , DNA/chemistry , Hot Temperature , Oligonucleotides/chemistry , Phase Separation
18.
Biosens Bioelectron ; 260: 116406, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38805889

ABSTRACT

Chemically modified oligonucleotides can solve biosensing issues for the development of capture probes, antisense, CRISPR/Cas, and siRNA, by enhancing their duplex-forming ability, their stability against enzymatic degradation, and their specificity for targets with high sequence similarity as microRNA families. However, the use of modified oligonucleotides such as locked nucleic acids (LNA) for biosensors is still limited by hurdles in design and from performances on the material interface. Here we developed a fluorogenic biosensor for non-coding RNAs, represented by polymeric PEG microgels conjugated with molecular beacons (MB) modified with locked nucleic acids (MicroLOCK). By 3D modeling and computational analysis, we designed molecular beacons (MB) inserting spot-on LNAs for high specificity among targets with high sequence similarity (95%). MicroLOCK can reversibly detect microRNA targets in a tiny amount of biological sample (2 µL) at 25 °C with a higher sensitivity (LOD 1.3 fM) without any reverse transcription or amplification. MicroLOCK can hybridize the target with fast kinetic (about 30 min), high duplex stability without interferences from the polymer interface, showing high signal-to-noise ratio (up to S/N = 7.3). MicroLOCK also demonstrated excellent resistance to highly nuclease-rich environments, in real samples. These findings represent a great breakthrough for using the LNA in developing low-cost biosensing approaches and can be applied not only for nucleic acids and protein detection but also for real-time imaging and quantitative assessment of gene targeting both in vitro and in vivo.


Subject(s)
Biosensing Techniques , MicroRNAs , Oligonucleotides , Biosensing Techniques/methods , MicroRNAs/analysis , MicroRNAs/genetics , Oligonucleotides/chemistry , Humans , Microgels/chemistry , Limit of Detection , Nucleic Acid Hybridization
19.
Nucleic Acid Ther ; 34(3): 109-124, 2024.
Article in English | MEDLINE | ID: mdl-38752363

ABSTRACT

Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Oligonucleotides/chemistry , Oligonucleotides/pharmacokinetics , Oligonucleotides/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , SELEX Aptamer Technique/methods , Xenograft Model Antitumor Assays
20.
J Pharm Biomed Anal ; 245: 116180, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38703748

ABSTRACT

Oligonucleotides have emerged as important therapeutic options for inherited diseases. In recent years, RNA therapeutics, especially mRNA, have been pushed to the market. Analytical methods for these molecules have been published extensively in the last few years. Notably, mass spectrometry has proven as a state-of-the-art quality control method. For RNA based therapeutics, numerous methods are available, while DNA therapeutics lack of suitable MS-based methods when it comes to molecules exceeding approximately 60 nucleotides. We present a method which combines the use of common restriction enzymes and short enzyme-directing oligonucleotides to generate DNA digestion products with the advantages of high-resolution tandem mass spectrometry. The instrumentation includes ion pair reverse phase chromatography coupled to a time-of-flight mass spectrometer with a collision induced dissociation (CID) for sequence analysis. Utilizing this approach, we increased the sequence coverage from 23.3% for a direct CID-MS/MS experiment of a 100 nucleotide DNA molecule to 100% sequence coverage using the restriction enzyme mediated approach presented in this work. This approach is suitable for research and development and quality control purposes in a regulated environment, which makes it a versatile tool for drug development.


Subject(s)
DNA Restriction Enzymes , DNA , Oligonucleotides , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , DNA/chemistry , DNA/genetics , DNA Restriction Enzymes/metabolism , Oligonucleotides/chemistry , Nucleotides/analysis , Nucleotides/chemistry , Chromatography, Reverse-Phase/methods , Quality Control , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...