Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
1.
Reproduction ; 166(3): 209-220, 2023 09 01.
Article En | MEDLINE | ID: mdl-37427695

In brief: Bacterial infection can induce testicular inflammation and damage male fertility. This paper reveals the role of nuclear receptor subfamily 2 group C member 2 (NR2C2) in macrophage cells in orchitis caused by bacterial endotoxin lipopolysaccharide (LPS) infection. Abstract: Bacterial infection and induced inflammation are important causes of male infertility. Here, we described the characteristics of expression and the regulatory role of NR2C2 in testicular inflammatory injury induced by infection with the bacterial endotoxin LPS. We found that NR2C2 was highly expressed in the testes and the expression of NR2C2 was upregulated in testicular macrophages in the LPS-induced mouse orchitis model in vivo. In primary testicular macrophages and RAW264.7 cells in vitro, RNA interference with the Nr2c2 gene downregulated the expression of inflammatory factors such as IL-1ß and IL-6. In addition, the knockdown of NR2C2 in macrophages alleviated the inhibitory effect of the inflammatory supernatant secreted by the macrophages on the proliferation of spermatogonia GC-1 SPG cells. Mechanistically, NR2C2 activated NF-κB signaling by binding with DR elements in the promotor of the Nfκb gene and promoted the development of inflammation. These data are the first to confirm that during LPS-induced bacterial infection, NR2C2 plays a proinflammatory role by activating IL-1ß and IL-6 via the NF-κB pathway in macrophages, consequently inhibiting the proliferation of spermatogonia and damaging the quality of sperm. Our findings reveal the important role of NR2C2 in testicular inflammatory injury induced via LPS and provide a new potential target and a molecular basis for the treatment of male infertility caused by bacterial infection.


NF-kappa B , Orchitis , Humans , Male , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides/toxicity , Orchitis/metabolism , Interleukin-6/metabolism , Semen/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Endotoxins/adverse effects
2.
Reprod Toxicol ; 115: 1-7, 2023 01.
Article En | MEDLINE | ID: mdl-36372306

Busulfan is an alkylating agent commonly used in cancer chemotherapy. It is also an ideal agent for preparing transplant recipients of spermatogonial stem cells because of its high efficiency in destroying endogenous germ cells in the testis. However, its toxicity mechanism remains unclear, affecting its clinical use and applications. Based on reports of busulfan causing orchitis and a previous study by our team, this article summarizes the relationship between busulfan and orchitis, cytokines, the blood-testis barrier, and the cytoskeleton, unravels the regulatory pathways and mechanism behind busulfan-induced orchitis, and reveals the molecular mechanism underlying impaired spermatogenic function in orchitis, providing new ideas for the clinical application of busulfan while reducing its testicular toxicity.


Infertility, Male , Orchitis , Male , Humans , Busulfan/toxicity , Spermatogonia , Orchitis/chemically induced , Orchitis/metabolism , Testis , Infertility, Male/metabolism
3.
Theriogenology ; 189: 301-312, 2022 Sep 01.
Article En | MEDLINE | ID: mdl-35842953

Orchitis accounts for a high proportion of male animal reproductive disorders. Hence, it is urgent to identify drugs for the prevention and treatment of orchitis. Antimicrobial peptides (AMPs) are currently recognized as one of the most promising alternatives to antibiotics. However, the protective effects of AMPs on lipopolysaccharide (LPS)-induced orchitis have not been reported. In this study, we developed an LPS-induced orchitis model in which primary bovine Sertoli cells were used as model cells. MPX was indicated to effectively reduce the inflammatory response of Sertoli cells. MPX attenuated the gene expression of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß by suppressing the MAPK pathway, especially the phosphorylation of p38 and ERK. MPX also decreased the oxidative stress response caused by LPS and upregulated Occludin and Claudin-1 expression, thereby maintaining the integrity of the blood-testis barrier. Moreover, we found that MPX inhibited apoptosis in Sertoli cells. In a mouse model, we found that MPX significantly inhibited the disruptive effects of LPS, reducing seminiferous epithelium damage, vacuolations, hyperplasia, and apoptosis in spermatogenic cells and rescuing spermatogenesis. In addition, the expression of inflammatory factors such as IL-1ß, IL-18, IL-6 and TNF-α was decreased after MPX treatment in the mouse testes. MPX had no effect on other organs in mice, indicating its safety. This study was undertaken to investigate how MPX regulates the inflammatory response in Sertoli cells and provide a reference for the clinical prevention and treatment of male animal orchitis.


Cattle Diseases , Orchitis , Rodent Diseases , Animals , Antimicrobial Peptides , Blood-Testis Barrier/metabolism , Cattle , Cattle Diseases/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Male , Mice , Orchitis/drug therapy , Orchitis/metabolism , Orchitis/veterinary , Rodent Diseases/metabolism , Sertoli Cells/metabolism , Testis , Tumor Necrosis Factor-alpha/metabolism
4.
Front Immunol ; 12: 734546, 2021.
Article En | MEDLINE | ID: mdl-34925318

As an important source of air pollutant, airborne particulate matter (PM) has become a major threat to public health. Orchitis is characterized by acute or chronic testicular inflammation and is a primary cause of male infertility. Although accumulating evidence indicates that PM exposure is associated with increased male infertility rates, the mechanism by which PM is involved is not well understood. Here, we found that short-term PM exposure activated NF-κB signaling in mouse Leydig cells and testes and leading to asymptomatic orchitis. Analyzing the mitochondrial abundance and cGAMP levels in PM exposed mouse Leydig cells, we found that PM exposure induced mitochondrial injury and mtDNA release, leading to inflammation via the cGAS-STING axis. We also found that aspirin-induced acetylation of cGAS inhibited the inflammation in mice after PM exposure, especially in the testes. Moreover, aspirin pretreatment rescued offspring growth in PM-exposed mice. In summary, our study not only provides evidence that PM-induced asymptomatic orchitis in mice may be amenable to aspirin pre-treatment by acetylating cGAS, but also provides a potential explanation for male infertility caused by air pollutants.


Air Pollutants/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Aspirin/administration & dosage , Asymptomatic Diseases , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Orchitis/chemically induced , Orchitis/drug therapy , Particulate Matter/adverse effects , Signal Transduction/drug effects , Acetylation/drug effects , Animals , Cell Line , DNA, Mitochondrial/metabolism , Leydig Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , NF-kappa B/metabolism , Orchitis/metabolism , Treatment Outcome
5.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article En | MEDLINE | ID: mdl-34740971

Inflammation in the epididymis and testis contributes significantly to male infertility. Alternative therapeutic avenues treating epididymitis and orchitis are expected since current therapies using antibiotics have limitations associated to side effects and are commonly ineffective for inflammation due to nonbacterial causes. Here, we demonstrated that type 1 parathyroid hormone receptor (PTH1R) and its endogenous agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP), were mainly expressed in the Leydig cells of testis as well as epididymal epithelial cells. Screening the secretin family G protein-coupled receptor identified that PTH1R in the epididymis and testis was down-regulated in mumps virus (MuV)- or lipopolysaccharide (LPS)-induced inflammation. Remarkably, activation of PTH1R by abaloparatide (ABL), a Food and Drug Administration-approved treatment for postmenopausal osteoporosis, alleviated MuV- or LPS-induced inflammatory responses in both testis and epididymis and significantly improved sperm functions in both mouse model and human samples. The anti-inflammatory effects of ABL were shown to be regulated mainly through the Gq and ß-arrestin-1 pathway downstream of PTH1R as supported by the application of ABL in Gnaq± and Arrb1-/- mouse models. Taken together, our results identified an important immunoregulatory role for PTH1R signaling in the epididymis and testis. Targeting to PTH1R might have a therapeutic effect for the treatment of epididymitis and orchitis or other inflammatory disease in the male reproductive system.


Epididymitis/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Orchitis/metabolism , Receptor, Parathyroid Hormone, Type 1/metabolism , beta-Arrestin 1/metabolism , Animals , Infertility, Male/metabolism , Infertility, Male/virology , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mumps virus
6.
Reprod Biol Endocrinol ; 19(1): 146, 2021 Sep 18.
Article En | MEDLINE | ID: mdl-34537068

BACKGROUND: Phthalates such as di (2-ethylhexyl) phthalate (DEHP) are well known exogenous substances, disrupting reproductive system function and structure. The current research demonstrated the effect of ellagic acid (EA) on DEHP-induced testicular injury in mice. METHODS: Thirty-five healthy adult male mice were randomly divided to five groups; normal saline receiving group, DEHP (2 g/kg/day, dissolved in corn oil, p.o.) receiving group, DEHP (2 g/kg/day, dissolved in corn oil, p.o.) and EA receiving groups (25, 50 and 100 mg/kg/day, p.o.). Treatment duration of animals was 14 days. Body and testes weights and sperm characteristics and histological changes of testes were evaluated. Serum testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels were analyzed. In the testicular tissue, oxidative/nitrosative stress markers and inflammatory cytokine levels were measured. RESULTS: Ellagic acid significantly reduced DEHP-induced reduction of body and testes weights. The DEHP-induced reduction of spermatogonia, primary spermatocyte and sertoli cells numbers as well as reduction of sperm vitality and progressive motility were reversed by EA. Furthermore, EA inhibited DEHP-induced alterations in serum hormone levels. These effects were associated with the reduction of DEHP-induced increased level of oxidative stress and inflammatory responses. CONCLUSIONS: Ellagic acid considerably inhibits testicular toxicity of DEHP through reducing oxidative/nitrosative stress and inflammatory responses. Our data suggest that EA may be considered as a promising agent to inhibit male reproductive toxicity induced by endocrine disrupting chemicals such as DEHP.


Diethylhexyl Phthalate/toxicity , Ellagic Acid/pharmacology , Orchitis/chemically induced , Orchitis/prevention & control , Animals , Cytoprotection/drug effects , Epididymis/drug effects , Epididymis/metabolism , Inflammation/chemically induced , Inflammation/pathology , Inflammation/prevention & control , Male , Mice , Orchitis/metabolism , Orchitis/pathology , Oxidative Stress/drug effects , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Spermatogonia/drug effects , Spermatogonia/metabolism , Spermatozoa/drug effects , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/drug effects , Testis/metabolism , Testis/pathology
7.
Front Immunol ; 12: 729539, 2021.
Article En | MEDLINE | ID: mdl-34531872

Background: Varicocele (VC) is present in 35 - 40% of men with infertility. However, current surgical and antioxidant treatments are not completely effective. In addition to oxidative stress, it is likely that other factors such as testicular immune microenvironment disorder contribute to irreversible testicular. Evidence suggests that VC is associated with anti-sperm antibodies (ASAs), spermatogenesis and testosterone secretion abnormalities, and testicular cytokine production. Moreover, inhibition of inflammation can alleviate VC-mediated pathogenesis. The normal function of the testis depends on its immune tolerance mechanism. Testicular immune regulation is complex, and many infectious or non-infectious diseases may damage this precision system. Results: The testicular immune microenvironment is composed of common immune cells and other cells involved in testicular immunity. The former includes testicular macrophages, T cells, dendritic cells (DCs), and mast cells, whereas the latter include Leydig cells and Sertoli cells (SCs). In animal models and in patients with VC, most studies have revealed an abnormal increase in the levels of ASAs and pro-inflammatory cytokines such as interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha in the seminal plasma, testicular tissue, and even peripheral blood. It is also involved in the activation of potential inflammatory pathways, such as the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing (NLRP)-3 pathway. Finally, the development of VC-mediated infertility (VMI) may be facilitated by abnormal permeability of proteins, such as claudin-11, that constitute the blood-testis barrier (BTB). Conclusions: The testicular immune response, including the production of ASAs and inflammatory factors, activation of inflammatory pathways, and destruction of the BTB may be involved in the pathogenesis of VMI it is necessary to further explore how patient outcomes can be improved through immunotherapy.


Cellular Microenvironment/immunology , Fertility , Infertility, Male/immunology , Inflammation Mediators/metabolism , Orchitis/immunology , Testis/immunology , Varicocele/immunology , Animals , Humans , Immunotherapy , Infertility, Male/metabolism , Infertility, Male/physiopathology , Infertility, Male/therapy , Male , Orchitis/metabolism , Orchitis/physiopathology , Orchitis/therapy , Signal Transduction , Testis/metabolism , Testis/physiopathology , Varicocele/metabolism , Varicocele/physiopathology , Varicocele/therapy
8.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article En | MEDLINE | ID: mdl-34360623

Investigations in male patients with fertility disorders revealed a greater risk of osteoporosis. The rodent model of experimental autoimmune-orchitis (EAO) was established to analyze the underlying mechanisms of male infertility and causes of reduced testosterone concentration. Hence, we investigated the impact of testicular dysfunction in EAO on bone status. Male mice were immunized with testicular homogenate in adjuvant to induce EAO (n = 5). Age-matched mice were treated with adjuvant alone (adjuvant, n = 6) or remained untreated (control, n = 7). Fifty days after the first immunization specimens were harvested. Real-time reverse transcription-PCR indicated decreased bone metabolism by alkaline phosphatase and Cathepsin K as well as remodeling of cell-contacts by Connexin-43. Micro computed tomography demonstrated a loss of bone mass and mineralization. These findings were supported by histomorphometric results. Additionally, biomechanical properties of femora in a three-point bending test were significantly altered. In summary, the present study illustrates the induction of osteoporosis in the investigated mouse model. However, results suggest that the major effects on bone status were mainly caused by the complete Freund's adjuvant rather than the autoimmune-orchitis itself. Therefore, the benefit of the EAO model to transfer laboratory findings regarding bone metabolism in context with orchitis into a clinical application is limited.


Autoimmune Diseases/complications , Bone and Bones/metabolism , Orchitis/complications , Osteoporosis/immunology , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmune Diseases/physiopathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Bone and Bones/physiopathology , Disease Models, Animal , Male , Mice, Inbred C57BL , Orchitis/metabolism , Orchitis/pathology , Orchitis/physiopathology , Osteoporosis/diagnostic imaging , X-Ray Microtomography
9.
Mol Reprod Dev ; 88(6): 405-415, 2021 06.
Article En | MEDLINE | ID: mdl-34032349

The effect of stress on male fertility is a widespread public health issue, but less is known about the related signaling pathway. To investigate this, we established a hypercortisolism mouse model by supplementing the drinking water with corticosterone for four weeks. In the hypercortisolism mice, the serum corticosterone was much higher than in the control, and serum testosterone was significantly decreased. Moreover, corticosterone treatment induced decrease of sperm counts and increase of teratozoospermia. Increased numbers of multinucleated giant cells and apoptotic germ cells as well as downregulated meiotic markers suggested that corticosterone induced impaired spermatogenesis. Further, upregulation of macrophage-specific marker antigen F4/80 as well as inflammation-related genes suggested that corticosterone induced inflammation in the testis. Lactate content was found to be decreased in the testis and Sertoli cells after corticosterone treatment, and lactate metabolism-related genes were downregulated. In vitro phagocytosis assays showed that the phagocytic activity in corticosterone-treated Sertoli cells was downregulated and accompanied by decreased mitochondrial membrane potential, while pyruvate dehydrogenase kinase-4 inhibitor supplementation restored this process. Taken together, our results demonstrated that dysfunctional phagocytosis capacity and lactate metabolism in Sertoli cells participates in corticosterone-induced impairment of spermatogenesis.


Glucocorticoids/toxicity , Sertoli Cells/physiology , Spermatogenesis/drug effects , Animals , Calcium-Binding Proteins/analysis , Corticosterone/toxicity , Cushing Syndrome/blood , Cushing Syndrome/chemically induced , Cushing Syndrome/physiopathology , Dichloroacetic Acid/pharmacology , Follicle Stimulating Hormone/blood , Lactic Acid/metabolism , Luteinizing Hormone/blood , Male , Meiosis/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Orchitis/chemically induced , Orchitis/metabolism , Phagocytosis/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Receptors, G-Protein-Coupled/analysis , Sertoli Cells/metabolism , Sperm Count , Spermatozoa/pathology , Testis/metabolism , Testosterone/blood
10.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article En | MEDLINE | ID: mdl-33946947

The cation channel TRPV2 is known to be expressed by murine macrophages and is crucially involved in their functionality. Macrophages are frequent cells of the mouse testis, an immune-privileged and steroid-producing organ. TRPV2 expression by testicular macrophages and possible changes associated with age or inflammation have not been investigated yet. Therefore, we studied testes of young adult and old wild-type (WT) and AROM+ mice, i.e., transgenic mice overexpressing aromatase. In these animals, inflammatory changes are described in the testis, involving active macrophages, which increase with age. This is associated with impaired spermatogenesis and therefore AROM+ mice are a model for male infertility associated with sterile inflammation. In WT animals, testicular TRPV2 expression was mapped to interstitial CD206+ and peritubular MHC II+ macrophages, with higher levels in CD206+ cells. Expression levels of TRPV2 and most macrophage markers did not increase significantly in old mice, with the exception of CD206. As the number of TRPV2+ testicular macrophages was relatively small, their possible involvement in testicular functions and in aging in WT mice remains to be further studied. In AROM+ testis, TRPV2 was readily detected and levels increased significantly with age, together with macrophage markers and TNF-α. TRPV2 co-localized with F4/80 in macrophages and further studies showed that TRPV2 is mainly expressed by unusual CD206+MHC II+ macrophages, arising in the testis of these animals. Rescue experiments (aromatase inhibitor treatment and crossing with ERαKO mice) restored the testicular phenotype and also abolished the elevated expression of TRPV2, macrophage and inflammation markers. This suggests that TRPV2+ macrophages of the testis are part of an inflammatory cascade initiated by an altered sex hormone balance in AROM+ mice. The changes in testis are distinct from the described alterations in other organs of AROM+, such as prostate and spleen. When we monitored TRPV2 levels in another immune-privileged organ, namely the brain, we found that levels of TRPV2 were not elevated in AROM+ and remained stable during aging. In the adrenal, which similar to the testis produces steroids, we found slight, albeit not significant increases in TRPV2 in both AROM+ and WT mice, which were associated with age. Thus, the changes in the testis are specific for this organ.


Calcium Channels/physiology , Macrophages/metabolism , Orchitis/metabolism , TRPV Cation Channels/physiology , Testis/metabolism , Adrenal Glands/metabolism , Age Factors , Animals , Aromatase/genetics , Brain/metabolism , Calcium Channels/biosynthesis , Calcium Channels/genetics , Disease Models, Animal , Genotype , Infertility, Male/metabolism , Lectins, C-Type/analysis , Male , Mannose Receptor , Mannose-Binding Lectins/analysis , Mice , Mice, Transgenic , NADPH Oxidase 2/biosynthesis , NADPH Oxidase 2/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Cell Surface/analysis , Spermatogenesis , TRPV Cation Channels/biosynthesis , TRPV Cation Channels/genetics , Tumor Necrosis Factor-alpha/biosynthesis
11.
Front Immunol ; 12: 582858, 2021.
Article En | MEDLINE | ID: mdl-33679734

The structural and functional destruction of the blood-testis barrier (BTB) following uropathogenic E. coli (UPEC) infection may be a critical component of the pathologic progress of orchitis. Recent findings indicate that the mammalian target of the rapamycin (mTOR)-signaling pathway is implicated in the regulation of BTB assembly and restructuring. To explore the mechanisms underlying BTB damage induced by UPEC infection, we analyzed BTB integrity and the involvement of the mTOR-signaling pathway using in vivo and in vitro UPEC-infection models. We initially confirmed that soluble virulent factors secreted from UPEC trigger a stress response in Sertoli cells and disturb adjacent cell junctions via down-regulation of junctional proteins, including occludin, zonula occludens-1 (ZO-1), F-actin, connexin-43 (CX-43), ß-catenin, and N-cadherin. The BTB was ultimately disrupted in UPEC-infected rat testes, and blood samples from UPEC-induced orchitis in these animals were positive for anti-sperm antibodies. Furthermore, we herein also demonstrated that mTOR complex 1 (mTORC1) over-activation and mTORC2 suppression contributed to the disturbance in the balance between BTB "opening" and "closing." More importantly, rapamycin (a specific mTORC1 inhibitor) significantly restored the expression of cell-junction proteins and exerted a protective effect on the BTB during UPEC infection. We further confirmed that short-term treatment with rapamycin did not aggravate spermatogenic degeneration in infected rats. Collectively, this study showed an association between abnormal activation of the mTOR-signaling pathway and BTB impairment during UPEC-induced orchitis, which may provide new insights into a potential treatment strategy for testicular infection.


Blood-Testis Barrier/immunology , Escherichia coli Infections/immunology , Mechanistic Target of Rapamycin Complex 1/immunology , Mechanistic Target of Rapamycin Complex 2/immunology , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology , Animals , Blood-Testis Barrier/metabolism , Cells, Cultured , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Orchitis/immunology , Orchitis/metabolism , Orchitis/microbiology , Rats, Sprague-Dawley , Sertoli Cells/immunology , Sertoli Cells/metabolism , Sertoli Cells/microbiology , Spermatogenesis/immunology , Testis/immunology , Testis/metabolism , Tight Junction Proteins/immunology , Tight Junction Proteins/metabolism , Urinary Tract Infections/metabolism , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/physiology
12.
Eur Rev Med Pharmacol Sci ; 25(2): 1109-1113, 2021 Jan.
Article En | MEDLINE | ID: mdl-33577068

OBJECTIVE: The objective of this review is to provide currently available information on the potential effects of coronavirus disease 2019 (COVID-19) on male fertility. MATERIALS AND METHODS: This is a mini-review. Due to the similarity between the COVID-19 and severe acute respiratory syndrome (SARS) virus, we searched for the following keywords: "SARS-CoV, male reproductive system, infertility, COVID-19, SARS-CoV-2, and orchitis". By reviewing and analyzing the literature, we analyzed the influence of temperature on sperm, the expression of angiotensin-converting enzyme 2 (ACE2) in the testes, and the impact of SARS-CoV-2 on the male reproductive system. RESULTS: SARS-CoV-2 enters the body through the ACE2 receptor. The high expression of ACE2 on the surface of spermatogonia and supporting cells in the testes, as well as the immune response caused by COVID-19, can lead to testicular spermatogenesis dysfunction and reduced sperm count. CONCLUSIONS: COVID-19 infection can affect male reproductive function, and standard treatment strategies should be established in time to help male patients infected with COVID-19.


COVID-19/metabolism , Genitalia, Male/metabolism , Orchitis/metabolism , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Genitalia, Male/immunology , Humans , Male , Orchitis/etiology , Orchitis/immunology , Spermatozoa/immunology , Spermatozoa/metabolism
13.
Mol Hum Reprod ; 27(2)2021 02 05.
Article En | MEDLINE | ID: mdl-33313783

Experimental autoimmune orchitis (EAO) is a useful model to study organ-specific autoimmunity and chronic testicular inflammation. This model reflects testicular pathological changes reported in immunological infertility in men. Progression of EAO in rodents is associated with a significantly increased percentage of testicular endothelial cells and interstitial testicular blood vessels, indicating an ongoing angiogenic process. Vascular endothelial growth factor A (VEGFA), the main regulator of physiological and pathological angiogenesis, can stimulate endothelial cell proliferation, chemotaxis and vascular permeability. The aim of this study was to explore the role of VEGFA in the pathogenesis of testicular inflammation. Our results found VEGFA expression in Leydig cells, endothelial cells and macrophages in testis of rats with autoimmune orchitis. VEGFA level was significantly higher in testicular fluid and serum of rats at the end of the immunization period, preceding testicular damage. VEGF receptor (VEGFR) 1 is expressed mainly in testicular endothelial cells, whereas VEGFR2 was detected in germ cells and vascular smooth muscle cells. Both receptors were expressed in testicular interstitial cells. VEGFR2 increased after the immunization period in the testicular interstitium and VEGFR1 was downregulated in EAO testis. In-vivo-specific VEGFA inhibition by Bevacizumab prevented the increase in blood vessel number and reduced EAO incidence and severity. Our results unveil relevance of VEGFA-VEGFR axis during orchitis development, suggesting that VEGFA might be an early marker of testicular inflammation and Bevacizumab a therapeutic tool for treatment of testicular inflammation associated with subfertility and infertility.


Autoimmune Diseases/pathology , Neovascularization, Pathologic , Testis/blood supply , Testis/metabolism , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control , Bevacizumab/pharmacology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Leydig Cells/metabolism , Leydig Cells/pathology , Macrophages/metabolism , Macrophages/pathology , Male , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Orchitis/immunology , Orchitis/metabolism , Orchitis/prevention & control , Quail/embryology , Rats, Wistar , Signal Transduction , Testis/drug effects , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
14.
Front Immunol ; 11: 583276, 2020.
Article En | MEDLINE | ID: mdl-33363533

Testicular macrophages (TM) play a central role in maintaining testicular immune privilege and protecting spermatogenesis. Recent studies showed that their immunosuppressive properties are maintained by corticosterone in the testicular interstitial fluid, but the underlying molecular mechanisms are unknown. In this study, we treated mouse bone marrow-derived macrophages (BMDM) with corticosterone (50 ng/ml) and uncovered AMP-activated protein kinase (AMPK) activation as a critical event in M2 polarization at the phenotypic, metabolic, and cytokine production level. Primary TM exhibited remarkably similar metabolic and phenotypic features to corticosterone-treated BMDM, which were partially reversed by AMPK-inhibition. In a murine model of uropathogenic E. coli-elicited orchitis, intraperitoneal injection with corticosterone (0.1mg/day) increased the percentage of M2 TM in vivo, in a partially AMPK-dependent manner. This study integrates the influence of corticosterone on M2 macrophage metabolic pathways, phenotype, and function, and highlights a promising new avenue for the development of innovative therapeutics for orchitis patients.


Corticosterone/immunology , Escherichia coli Infections/immunology , Immune Tolerance/immunology , Macrophages/immunology , Orchitis/immunology , AMP-Activated Protein Kinases/immunology , AMP-Activated Protein Kinases/metabolism , Animals , Corticosterone/pharmacology , Male , Mice , Mice, Inbred C57BL , Orchitis/metabolism , Phenotype , Testis , Uropathogenic Escherichia coli/immunology
15.
J Reprod Dev ; 66(6): 599-605, 2020 Dec 22.
Article En | MEDLINE | ID: mdl-33012735

Autoimmune orchitis is a condition related to cellular immunity. A disease model involving transfer of T lymphocytes activated by known antigens would be useful for defining pathogenical molecules. Since no method for activating rat T cells using specific antigens is available, we started the study to develop the method. T cells were collected from draining lymph nodes of immunized rats, then co-cultured with syngeneic splenocytes as antigen-presenting cells (APC) in antigen-supplemented medium (= stimulation). The cells were then incubated in medium without antigens and APC (= resting). Repetitive stimulation and resting increased the number of the T cells more than 100-fold. The antigen-specific activation was demonstrated by cell proliferation assay and ELISA assay for interferon gamma. Flow cytometry revealed that > 95% of the cells expressed tumor necrosis factor alpha, a cytokine responsible for autoimmune orchitis. The present method will provide a new procedure to evaluate antigenicity of sperm molecules.


Antigens/metabolism , Autoimmune Diseases/metabolism , Lymphocyte Activation , Orchitis/metabolism , Spermatozoa/physiology , T-Lymphocytes/cytology , Animals , Antigen-Presenting Cells/immunology , Cell Proliferation , Cell Survival , Coculture Techniques , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Homozygote , Immunity, Cellular , In Vitro Techniques , Male , Rats , Rats, Wistar , Spermatozoa/immunology , Spleen/cytology , Spleen/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Oxid Med Cell Longev ; 2020: 7075836, 2020.
Article En | MEDLINE | ID: mdl-32922653

OBJECTIVE: The present study is aimed at investigating the anti-inflammatory, antioxidative, and antiapoptotic effects of methane on lipopolysaccharide- (LPS-) induced acute orchitis and its potential mechanisms. METHODS: Adult male rats were intraperitoneally (i.p.) injected with methane-rich saline (MS, 20 mL/kg) following LPS (5 mg/kg, i.p.). The survival rate was assessed every 12 h until 72 h after LPS induction, and surviving rats were sacrificed for further detection. The wet/dry (W/D) ratio was determined, and testicular damage was histologically assessed. Inflammatory cytokines in the testes and serum, including interleukin-1ß (IL-1ß), IL-6, IL-10, and tumor necrosis factor-α (TNF-α), were measured using ELISA and RT-qPCR. Oxidative stress was evaluated by the level of superoxide dismutase (SOD) and malondialdehyde (MDA). Testicular apoptosis was detected via TUNEL staining. The expression of prokineticin 2 (PK2)/prokineticin receptor 1 (PKR1) was also analyzed using RT-qPCR, western blotting, and immunohistochemistry. RESULTS: It was found that methane significantly prolonged rat survival, decreased the W/D ratio, alleviated LPS-induced histological changes, and reduced apoptotic cells in the testes. Additionally, methane suppressed and promoted the production of pro- and anti-inflammatory cytokines, respectively. Furthermore, methane significantly increased SOD levels, decreased MDA levels, and decreased testicular expression of PK2 and PKR1. Therefore, methane exerts therapeutic effects on acute orchitis and might be a new and convenient strategy for the treatment of inflammation-related testicular diseases.


Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis , Gastrointestinal Hormones/metabolism , Methane/pharmacology , Neuropeptides/metabolism , Orchitis/drug therapy , Orchitis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cytokines/blood , Cytokines/metabolism , Lipopolysaccharides , Male , Malondialdehyde/metabolism , Orchitis/chemically induced , Rats, Sprague-Dawley , Signal Transduction/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology
17.
Sci Rep ; 9(1): 15919, 2019 11 04.
Article En | MEDLINE | ID: mdl-31685866

Male meiotic germ cell including the spermatozoa represent a great challenge to the immune system, as they appear long after the establishment of normal immune tolerance mechanisms. The capacity of the testes to tolerate autoantigenic germ cells as well as survival of allogeneic organ engrafted in the testicular interstitium have led to consider the testis an immunologically privileged site. Disruption of this immune privilege following trauma, tumor, or autoimmune orchitis often results in male infertility. Strong evidence indicates that indoleamine 2,3-dioxygenase (IDO) has been implicated in fetal and allograft tolerance, tumor immune resistance, and regulation of autoimmune diseases. IDO and tryptophan 2,3-dioxygenase (TDO) catalyze the same rate-limiting step of tryptophan metabolism along a common pathway, which leads to tryptophan starvation and generation of catabolites collectively known as kynurenines. However, the relevance of tryptophan metabolism in testis pathophysiology has not yet been explored. Here we assessed the in vivo role of IDO/TDO in experimental autoimmune orchitis (EAO), a model of autoimmune testicular inflammation and immunologically impaired spermatogenesis. EAO was induced in adult Wistar rats with testicular homogenate and adjuvants. Control (C) rats injected with saline and adjuvants and normal untreated rats (N) were also studied. mRNA expression of IDO decreased in whole testes and in isolated Sertoli cells during EAO. TDO and IDO localization and level of expression in the testis were analyzed by immunostaining and Western blot. TDO is expressed in granulomas from EAO rats, and similar protein levels were observed in N, C, and EAO groups. IDO was detected in mononuclear and endothelial cells and reduced IDO expression was detected in EAO group compared to N and C rats. This phenomenon was concomitant with a significant reduction of IDO activity in EAO testis measured by tryptophan and kynurenine concentrations (HPLC). Finally, in vivo inhibition of IDO with 1-methyl-tryptophan increased severity of the disease, demonstrating down regulation of IDO-based tolerance when testicular immune regulation was disrupted. We present evidence that an IDO-based mechanism is involved in testicular immune privilege.


Immune Privilege , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Testis/enzymology , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Disease Models, Animal , Epididymis/pathology , Immune Privilege/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/analysis , Lymph Nodes/enzymology , Lymph Nodes/metabolism , Male , Orchitis/metabolism , Orchitis/pathology , Rats , Rats, Wistar , Sertoli Cells/cytology , Sertoli Cells/metabolism , Severity of Illness Index , Testis/metabolism , Testis/pathology , Tryptophan/analogs & derivatives , Tryptophan/analysis , Tryptophan/metabolism , Tryptophan/pharmacology , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism
18.
Hum Reprod ; 34(8): 1536-1550, 2019 08 01.
Article En | MEDLINE | ID: mdl-31340036

STUDY QUESTION: Does activin A contribute to testicular fibrosis under inflammatory conditions? SUMMARY ANSWER: Our results show that activin A and key fibrotic proteins are increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis and in murine experimental autoimmune orchitis (EAO) and that activin A stimulates fibrotic responses in peritubular cells (PTCs) and NIH 3T3 fibroblasts. WHAT IS KNOWN ALREADY: Fibrosis is a feature of EAO. Activin A, a regulator of fibrosis, was increased in testes of mice with EAO and its expression correlated with severity of the disease. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional and longitudinal study of adult mice immunized with testicular homogenate (TH) in adjuvant to induce EAO, collected at 30 (n = 6), 50 (n = 6) and 80 (n = 5) days after first immunization. Age-matched mice injected with adjuvant alone (n = 14) and untreated mice (n = 15) were included as controls. TH-immunized mice with elevated endogenous follistatin, injected with a non-replicative recombinant adeno-associated viral vector carrying a gene cassette of follistatin (rAAV-FST315; n = 3) or vector with an empty cassette (empty vector controls; n = 2) 30 days prior to the first immunization, as well as appropriate adjuvant (n = 2) and untreated (n = 2) controls, were also examined.Human testicular biopsies showing focal inflammatory lesions associated with impaired spermatogenesis (n = 7) were included. Biopsies showing intact spermatogenesis without inflammation, from obstructive azoospermia patients, served as controls (n = 7).Mouse primary PTC and NIH 3T3 fibroblasts were stimulated with activin A and follistatin 288 (FST288) to investigate the effect of activin A on the expression of fibrotic markers. Production of activin A by mouse primary Sertoli cells (SCs) was also investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: Testicular RNA and protein extracts collected from mice at days 30, 50 and 80 after first immunization were used for analysis of fibrotic marker genes and proteins, respectively. Total collagen was assessed by hydroxyproline assay and fibronectin; collagen I, III and IV, α-smooth muscle actin (α-SMA) expression and phosphorylation of suppressor of mothers against decapentaplegic (SMAD) family member 2 were measured by western blot. Immunofluorescence was used to detect fibronectin. Fibronectin (Fn), αSMA (Acta2), collagen I (Col1a2), III (Col3a1) and IV (Col4a1) mRNA in PTC and NIH 3T3 cells treated with activin A and/or FST288 were measured by quantitative RT-PCR (qRT-PCR). Activin A in SC following tumour necrosis factor (TNF) or FST288 stimulation was measured by ELISA. Human testicular biopsies were analysed by qRT-PCR for PTPRC (CD45) and activin A (INHBA), hydroxyproline assay and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE: Production of activin A by SC was stimulated by 25 and 50 ng/ml TNF (P < 0.01, P < 0.001, respectively) as compared to untreated cells. INHBA mRNA was increased in human testicular biopsies with leukocytic infiltrates and impaired spermatogenesis, compared with control biopsies (P < 0.05), accompanied by increased total collagen (P < 0.01) and fibronectin deposition. Total testicular collagen (P < 0.0001) and fibronectin protein expression (P < 0.05) were also increased in EAO, and fibronectin expression was correlated with the severity of the disease (r = 0.9028). In animals pre-treated with rAAV-FST315 prior to immunization with TH, protein expression of fibronectin was comparable to control. Stimulation of PTC and NIH 3T3 cells with activin A increased fibronectin mRNA (P < 0.05) and the production of collagen I (P < 0.001; P < 0.01) and fibronectin (P < 0.05). Moreover, activin A also increased collagen IV mRNA (P < 0.05) in PTC, while αSMA mRNA (P < 0.01) and protein (P < 0.0001) were significantly increased by activin A in NIH 3T3 cells. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: A limited number of human testicular specimens was available for the study. Part of the study was performed in vitro, including NIH 3T3 cells as a surrogate for testicular fibroblasts. WIDER IMPLICATIONS OF THE FINDINGS: Resident fibroblasts and PTC may contribute to the progression of testicular fibrosis following inflammation, and activin A is implicated as a key mediator of this process. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Health and Medical Research Council of Australia, the Victorian Government's Operational Infrastructure Support Program and the International Research Training Group between Justus Liebig University (Giessen) and Monash University (Melbourne) (GRK 1871/1-2) on `Molecular pathogenesis on male reproductive disorders' funded by the Deutsche Forschungsgemeinschaft and Monash University. The authors declare no competing financial interests.


Activins/metabolism , Infertility, Male/metabolism , Orchitis/metabolism , Testis/metabolism , Animals , Collagen/metabolism , Fibronectins/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Follistatin/genetics , Follistatin/metabolism , Humans , Infertility, Male/pathology , Male , Mice , Orchitis/pathology , Spermatogenesis , Testis/pathology
19.
J Leukoc Biol ; 104(4): 757-766, 2018 10.
Article En | MEDLINE | ID: mdl-30265772

Testicular macrophages (TM) comprise the largest immune cell population in the mammalian testis. They are characterized by a subdued proinflammatory response upon adequate stimulation, and a polarization toward the immunoregulatory and immunotolerant M2 phenotype. This enables them to play a relevant role in supporting the archetypical functions of the testis, namely spermatogenesis and steroidogenesis. During infection, the characteristic blunted immune response of TM reflects the need for a delicate balance between a sufficiently strong reaction to counteract invading pathogens, and the prevention of excessive proinflammatory cytokine levels with the potential to disturb or destroy spermatogenesis. Local microenvironmental factors that determine the special phenotype of TM have just begun to be unraveled, and are discussed in this review.


Cellular Microenvironment , Macrophages/physiology , Testis/immunology , Animals , Antigens, CD/analysis , Blood-Testis Barrier/immunology , Corticosterone/metabolism , Cytokines/metabolism , Humans , Immune System/embryology , Immunity, Innate , Immunophenotyping , Macrophages/classification , Male , Orchitis/immunology , Orchitis/metabolism , Prostaglandins/metabolism , Self Tolerance , Spermatogenesis , Spermatozoa/cytology , Spermatozoa/immunology , Testis/cytology , Testosterone/metabolism
20.
Toxicol Lett ; 295: 134-143, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-29885354

Increasing evidence shows that 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD) enhances inflammation, and inflammation has a significant negative impact on fertility. Therefore, the aim of this study was to investigate the effects of TCDD on testis inflammation. Pregnant mice and primary Sertoli cells were treated with TCDD, and male offspring and Sertoli cells were treated with lipopolysaccharides(LPS). We then measured testis apoptotic cells, proinflammatory cytokines, and observed the Klotho/PDLIM2/p65 pathway. In vivo results revealed that TCDD further enhanced LPS-increased testis apoptotic cells and concentrations of testicular proinflammatory cytokines (IL1ß, IL18, and IL12) (p < 0.05). An in vitro investigation showed the levels of proinflammatory cytokines were increased in TCDD + LPS-treated cells compared with LPS-treated cells (p < 0.05). Compared with the LPS-treated cells, expression of Klotho and PDLIM2 was significantly decreased in TCDD + LPS-treated cells (p < 0.05), while expression of p65 and NLRP3 were significantly increased in the cotreatment cells (p < 0.05). However, the addition of Klotho to the TCDD + LPS-cotreated cells significantly increased PDLIM2 and decreased p65 activation and NLRP3 (p < 0.05). Meanwhile, mRNA levels and the secretion of proinflammatory cytokines were both suppressed by exogenous Klotho (p < 0.05). Administration of Klotho decreased TCDD + LPS-induced cytokines and apoptosis in mice (p < 0.05). Taken together, TCDD may increase testicular inflammation by affecting the secretion of proinflammatory cytokines in Sertoli cells via the Klotho/PDLIM2/p65 pathway, which influences the testicular microenvironment and induces germ cell apoptosis.


Environmental Pollutants/toxicity , Glucuronidase/metabolism , Infertility, Male/chemically induced , Orchitis/chemically induced , Polychlorinated Dibenzodioxins/toxicity , Sertoli Cells/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis/drug effects , Cells, Cultured , Female , Fertility/drug effects , Infertility, Male/metabolism , Infertility, Male/pathology , Infertility, Male/physiopathology , Inflammation Mediators/metabolism , Interleukin-12/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Klotho Proteins , LIM Domain Proteins/metabolism , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Orchitis/metabolism , Orchitis/pathology , Orchitis/physiopathology , Pregnancy , Sertoli Cells/metabolism , Sertoli Cells/pathology , Signal Transduction/drug effects , Transcription Factor RelA/metabolism
...