Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.607
Filter
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39129362

ABSTRACT

Influenza viruses rapidly evolve to evade previously acquired human immunity. Maintaining vaccine efficacy necessitates continuous monitoring of antigenic differences among strains. Traditional serological methods for assessing these differences are labor-intensive and time-consuming, highlighting the need for efficient computational approaches. This paper proposes MetaFluAD, a meta-learning-based method designed to predict quantitative antigenic distances among strains. This method models antigenic relationships between strains, represented by their hemagglutinin (HA) sequences, as a weighted attributed network. Employing a graph neural network (GNN)-based encoder combined with a robust meta-learning framework, MetaFluAD learns comprehensive strain representations within a unified space encompassing both antigenic and genetic features. Furthermore, the meta-learning framework enables knowledge transfer across different influenza subtypes, allowing MetaFluAD to achieve remarkable performance with limited data. MetaFluAD demonstrates excellent performance and overall robustness across various influenza subtypes, including A/H3N2, A/H1N1, A/H5N1, B/Victoria, and B/Yamagata. MetaFluAD synthesizes the strengths of GNN-based encoding and meta-learning to offer a promising approach for accurate antigenic distance prediction. Additionally, MetaFluAD can effectively identify dominant antigenic clusters within seasonal influenza viruses, aiding in the development of effective vaccines and efficient monitoring of viral evolution.


Subject(s)
Antigens, Viral , Humans , Antigens, Viral/genetics , Antigens, Viral/immunology , Neural Networks, Computer , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/prevention & control , Computational Biology/methods , Orthomyxoviridae/immunology , Orthomyxoviridae/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Machine Learning
3.
Anal Chem ; 96(32): 13033-13041, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39086018

ABSTRACT

Fusion of enveloped viruses with endosomal membranes and subsequent release of the viral genome into the cytoplasm are crucial to the viral infection cycle. It is often modeled by performing fusion between virus particles and target lipid vesicles. We utilized fluorescence microscopy to characterize the kinetic aspects of the transfer of influenza viral ribonucleoprotein (vRNP) complexes to target vesicles and their spatial distribution within the fused volumes to gain deeper insight into the mechanistic aspects of endosomal escape. The fluorogenic RNA-binding dye QuantiFluor (Promega) was found to be well-suited for direct and sensitive microscopic observation of vRNPs which facilitated background-free detection and kinetic analysis of fusion events on a single particle level. To determine the extent to which the viral contents are transferred to the target vesicles through the fusion pore, we carried out virus-vesicle fusion in a side-by-side fashion. Measurement of the Euclidean distances between the centroids of superlocalized membrane and content dye signals within the fused volumes allowed determination of any symmetry (or the lack thereof) between them as expected in the event of transfer (or the lack thereof) of vRNPs, respectively. We found that, in the case of fusion between viruses and 100 nm target vesicles, ∼39% of the events led to transfer of viral contents to the target vesicles. This methodology provides a rapid, generic, and cell-free way to assess the inhibitory effects of antiviral drugs and therapeutics on the endosomal escape behavior of enveloped viruses.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Microscopy, Fluorescence/methods , Endosomes/metabolism , Endosomes/virology , Animals , Ribonucleoproteins/metabolism , Orthomyxoviridae/isolation & purification , Madin Darby Canine Kidney Cells , Kinetics
4.
Virol J ; 21(1): 185, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135112

ABSTRACT

The influenza virus (IFV) imposes a considerable health and economic burden globally, requiring a comprehensive understanding of its pathogenic mechanisms. Ferroptosis, an iron-dependent lipid peroxidation cell death pathway, holds unique implications for the antioxidant defense system, with possible contributions to inflammation. This exploration focuses on the dynamic interplay between ferroptosis and the host defense against viruses, emphasizing the influence of IFV infections on the activation of the ferroptosis pathway. IFV causes different types of cell death, including apoptosis, necrosis, and ferroptosis. IFV-induced ferroptotic cell death is mediated by alterations in iron homeostasis, intensifying the accumulation of reactive oxygen species and promoting lipid peroxidation. A comprehensive investigation into the mechanism of ferroptosis in viral infections, specifically IFV, has great potential to identify therapeutic strategies. This understanding may pave the way for the development of drugs using ferroptosis inhibitors, presenting an effective approach to suppress viral infections.


Subject(s)
Ferroptosis , Influenza, Human , Iron , Lipid Peroxidation , Orthomyxoviridae , Reactive Oxygen Species , Humans , Influenza, Human/virology , Influenza, Human/metabolism , Animals , Orthomyxoviridae/physiology , Orthomyxoviridae/pathogenicity , Reactive Oxygen Species/metabolism , Iron/metabolism , Apoptosis
5.
Cell Host Microbe ; 32(7): 1043-1045, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991500

ABSTRACT

In this issue of Cell Host & Microbe, Karakus et al. find that an influenza virus enters cells by exclusively binding to a protein instead of sugars.


Subject(s)
Influenza, Human , Virus Internalization , Humans , Influenza, Human/virology , Influenza A virus/physiology , Animals , Orthomyxoviridae/physiology
6.
Int J Biol Macromol ; 275(Pt 1): 133564, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955298

ABSTRACT

Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.


Subject(s)
Antiviral Agents , Mucins , Neuraminidase , Virion , Zanamivir , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Zanamivir/pharmacology , Zanamivir/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mucins/metabolism , Mucins/chemistry , Humans , Virion/drug effects , Animals , Serum Albumin, Bovine/chemistry , Dogs , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Madin Darby Canine Kidney Cells , Orthomyxoviridae/drug effects , Orthomyxoviridae/enzymology
7.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932115

ABSTRACT

In this study, we investigated the concentration of airborne influenza virus in daycare centers and influencing factors, such as common cold prevalence, air pollutants, and meteorological factors. A total of 209 air samples were collected from daycare centers in Kaohsiung and the influenza virus was analyzed using real-time quantitative polymerase chain reaction. Air pollutants and metrological factors were measured using real-time monitoring equipment. Winter had the highest positive rates of airborne influenza virus and the highest prevalence of the common cold, followed by summer and autumn. The concentration of CO was significantly positively correlated with airborne influenza virus. Daycare center A, with natural ventilation and air condition systems, had a higher concentration of airborne influenza A virus, airborne fungi, and airborne bacteria, as well as a higher prevalence of the common cold, than daycare center B, with a mechanical ventilation system and air purifiers, while the concentrations of CO2, CO, and UFPs in daycare center A were lower than those in daycare center B. We successfully detected airborne influenza virus in daycare centers, demonstrating that aerosol sampling for influenza can provide novel epidemiological insights and inform the management of influenza in daycare centers.


Subject(s)
Air Microbiology , Child Day Care Centers , Influenza, Human , Seasons , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza, Human/transmission , Influenza A virus/isolation & purification , Influenza A virus/genetics , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Air Pollutants/analysis , Common Cold/epidemiology , Common Cold/virology , Common Cold/transmission , Child, Preschool , Prevalence , Environmental Monitoring
8.
Viruses ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38932148

ABSTRACT

The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.


Subject(s)
Antiviral Agents , Immunity, Innate , Macrophages , Membrane Proteins , Animals , Humans , Immunity, Innate/drug effects , Mice , Antiviral Agents/pharmacology , Macrophages/immunology , Macrophages/drug effects , Macrophages/virology , Membrane Proteins/agonists , Membrane Proteins/metabolism , Membrane Proteins/genetics , THP-1 Cells , Virus Replication/drug effects , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/drug therapy , Dogs , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology , Benzimidazoles/pharmacology , Signal Transduction/drug effects
9.
J Oleo Sci ; 73(7): 953-961, 2024.
Article in English | MEDLINE | ID: mdl-38945924

ABSTRACT

Handwashing represents an important personal hygiene measure for preventing infection. Herein, we report the persistence of antibacterial and antiviral effects after handwashing with fatty acid salt-based hand soap. To this end, we developed a new in vitro test method to measure persistence, utilizing coacervation formed by anionic surfactants and cationic polymers to retain highly effective soap components against each bacterium and virus on the skin. Coacervation with fatty acid salts and poly diallyldimethylammonium chloride (PDADMAC) as a cationic polymer allowed the persistence of antibacterial and antiviral effects against E. coli, S. aureus, and influenza virus even 4 h after handwashing. Furthermore, we confirmed an increase in the number of residual components effective against each bacterium and virus on the skin. In summary, the current findings describe an effective approach for enhancing the protective effects of handwashing.


Subject(s)
Anti-Bacterial Agents , Antiviral Agents , Escherichia coli , Hand Disinfection , Polyethylenes , Quaternary Ammonium Compounds , Skin , Soaps , Staphylococcus aureus , Surface-Active Agents , Soaps/pharmacology , Escherichia coli/drug effects , Hand Disinfection/methods , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Antiviral Agents/pharmacology , Skin/drug effects , Skin/microbiology , Surface-Active Agents/pharmacology , Humans , Fatty Acids/pharmacology , Fatty Acids/analysis , Time Factors , Orthomyxoviridae/drug effects
10.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849624

ABSTRACT

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Subject(s)
Endocytosis , Mice, Knockout , Receptors, Metabotropic Glutamate , Animals , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Mice , Humans , Virus Internalization , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Clathrin/metabolism , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/metabolism , HEK293 Cells , Actins/metabolism , Dogs , Madin Darby Canine Kidney Cells , Receptors, Virus/metabolism , Receptors, Virus/genetics , Influenza, Human/virology , Influenza, Human/metabolism , Orthomyxoviridae/physiology , Orthomyxoviridae/genetics , Orthomyxoviridae/metabolism
11.
Angew Chem Int Ed Engl ; 63(29): e202403133, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38713874

ABSTRACT

Sialosides containing C8-modified sialic acids are challenging synthetic targets but potentially useful probes for diagnostic substrate profiling of sialidases and elucidating the binding specificity of sialic acid-interacting proteins. Here, we demonstrate efficient chemoenzymatic methods for synthesizing para-nitrophenol-tagged α2-3- and α2-6-linked sialyl galactosides containing C8-acetamido, C8-azido, or C8-amino derivatized N-acetylneuraminic acid (Neu5Ac). High-throughput substrate specificity studies showed that the C8-modification of sialic acid significantly changes its recognition by sialidases from humans, various bacteria, and different influenza A and B viruses. Sialosides carrying Neu5Ac with a C8-azido modification were generally well tolerated by all the sialidases we tested, whereas sialosides containing C8-acetamido-modified Neu5Ac were only cleaved by selective bacterial sialidases. In contrast, sialosides with C8-amino-modified Neu5Ac were cleaved by a combination of selective bacterial and influenza A virus sialidases. These results indicate that sialosides terminated with a C8-amino or C8-acetamido-modified sialic acid can be used with other sialosides for diagnostic profiling of disease-causing sialidase-producing pathogens.


Subject(s)
Neuraminidase , Sialic Acids , Neuraminidase/metabolism , Substrate Specificity , Humans , Sialic Acids/chemistry , Sialic Acids/metabolism , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Bacteria/enzymology , Orthomyxoviridae/enzymology , Influenza A virus/enzymology
12.
J Colloid Interface Sci ; 670: 563-575, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776691

ABSTRACT

The interactions of viral fusion peptides from influenza (E4K and Ac-E4K) and human immunodeficiency virus (gp41 and Ac-gp41) with planar lipid bilayers and monolayers was investigated herein. A combination of surface-sensitive techniques, including quartz crystal microbalance with dissipation (QCM-D), Langmuir-Blodgett area-pressure isotherms with Micro-Brewster angle microscopy, and neutron reflectometry, was employed. Differences in the interactions of the viral fusion peptides with lipid bilayers featuring ordered and disordered phases, as well as lipid rafts, were revealed. The HIV fusion peptide (gp41) exhibited strong binding to the DOPC/DOPS bilayer, comprising a liquid disordered phase, with neutron reflectometry (NR) showing interaction with the bilayer's headgroup area. Conversely, negligible binding was observed with lipid bilayers in a liquid ordered phase. Notably, the influenza peptide (E4K) demonstrated slower binding kinetics with DOPC/DOPS bilayers and distinct interactions compared to gp41, as observed through QCM-D. This suggests different mechanisms of interaction with the lipid bilayers: one peptide interacts more within the headgroup region, while the other is more involved in transmembrane interactions. These findings hold implications for understanding viral fusion mechanisms and developing antimicrobials and antivirals targeting membrane interactions. The differential binding behaviours of the viral fusion peptides underscore the importance of considering membrane composition and properties in therapeutic strategy design.


Subject(s)
Antiviral Agents , HIV Envelope Protein gp41 , Lipid Bilayers , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Humans , Orthomyxoviridae/drug effects , Orthomyxoviridae/metabolism , Quartz Crystal Microbalance Techniques
13.
Influenza Other Respir Viruses ; 18(5): e13313, 2024 May.
Article in English | MEDLINE | ID: mdl-38757747

ABSTRACT

BACKGROUND: Influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are both respiratory viruses with similar clinical manifestations and modes of transmission. This study describes influenza data before and during the coronavirus disease pandemic (COVID-19) in Cameroon and SARS-CoV-2 data during the pandemic period. METHODS: The study ran from 2017 to 2022, and data were divided into two periods: before (2017-2019) and during (2020-2022) the COVID-19 pandemic. Nasopharyngeal samples collected from persons with respiratory illness were tested for influenza using the Centers for Disease Control and Prevention (CDC) typing and subtyping assays. During the COVID-19 pandemic, the respiratory specimens were simultaneously tested for SARS-CoV-2 using the DaAn gene protocol or the Abbott real-time SARS-CoV-2 assay. The WHO average curve method was used to compare influenza virus seasonality before and during the pandemic. RESULTS: A total of 6246 samples were tested. Influenza virus detection rates were significantly higher in the pre-pandemic period compared to the pandemic period (30.8% vs. 15.5%; p < 0.001). Meanwhile, the SARS-CoV-2 detection rate was 2.5%. A change in the seasonality of influenza viruses was observed from a bi-annual peak before the pandemic to no clear seasonal pattern during the pandemic. The age groups 2-4 and 5-14 years were significantly associated with higher influenza positivity rates in both pre-pandemic and pandemic periods. For SARS-CoV-2, all age groups above 15 years were the most affected population. CONCLUSION: The COVID-19 pandemic had a significant impact on the seasonal influenza by changing the seasonality of the virus and reducing its detection rates.


Subject(s)
COVID-19 , Influenza, Human , SARS-CoV-2 , Humans , Cameroon/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Adolescent , Adult , Child , Child, Preschool , Middle Aged , Young Adult , Female , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Infant , Aged , Nasopharynx/virology , Seasons , Pandemics , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/classification
14.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731896

ABSTRACT

Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.


Subject(s)
Host-Pathogen Interactions , Orthomyxoviridae , Ubiquitination , Virus Replication , Humans , Orthomyxoviridae/metabolism , Orthomyxoviridae/physiology , Influenza, Human/metabolism , Influenza, Human/virology , Proteolysis , Animals
15.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793649

ABSTRACT

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Subject(s)
Influenza Vaccines , Virion , Animals , Dogs , Madin Darby Canine Kidney Cells , Virion/isolation & purification , Chromatography, Ion Exchange/methods , Virus Cultivation/methods , Orthomyxoviridae/isolation & purification , Cell Culture Techniques/methods
16.
Influenza Other Respir Viruses ; 18(5): e13315, 2024 May.
Article in English | MEDLINE | ID: mdl-38798083

ABSTRACT

BACKGROUND: Novel influenza viruses pose a potential pandemic risk, and rapid detection of infections in humans is critical to characterizing the virus and facilitating the implementation of public health response measures. METHODS: We use a probabilistic framework to estimate the likelihood that novel influenza virus cases would be detected through testing in different community and healthcare settings (urgent care, emergency department, hospital, and intensive care unit [ICU]) while at low frequencies in the United States. Parameters were informed by data on seasonal influenza virus activity and existing testing practices. RESULTS: In a baseline scenario reflecting the presence of 100 novel virus infections with similar severity to seasonal influenza viruses, the median probability of detecting at least one infection per month was highest in urgent care settings (72%) and when community testing was conducted at random among the general population (77%). However, urgent care testing was over 15 times more efficient (estimated as the number of cases detected per 100,000 tests) due to the larger number of tests required for community testing. In scenarios that assumed increased clinical severity of novel virus infection, median detection probabilities increased across all healthcare settings, particularly in hospitals and ICUs (up to 100%) where testing also became more efficient. CONCLUSIONS: Our results suggest that novel influenza virus circulation is likely to be detected through existing healthcare surveillance, with the most efficient testing setting impacted by the disease severity profile. These analyses can help inform future testing strategies to maximize the likelihood of novel influenza detection.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/virology , United States/epidemiology , Orthomyxoviridae/isolation & purification , Orthomyxoviridae/genetics , Orthomyxoviridae/classification , Epidemiological Monitoring
17.
Influenza Other Respir Viruses ; 18(4): e13285, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38616564

ABSTRACT

BACKGROUND: Pneumonia is a leading cause of morbidity and mortality in children < 5 years. We describe nasopharyngeal carriage of respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and influenza virus among children with fast-breathing pneumonia in Karachi, Pakistan. METHODS: We performed a cross-sectional analysis of nasopharyngeal swabs from children aged 2-59 months with fast-breathing pneumonia, enrolled in the randomized trial of amoxicillin versus placebo for fast-breathing pneumonia (RETAPP) (NCT02372461) from 2014 to 2016. Swabs were collected using WHO standardized methods, processed at the Aga Khan University, Pakistan. Viral detection was performed using LUMINEX xTAG respiratory viral panel assay and logistic regression identified clinical and sociodemographic predictors. FINDINGS: Of the 1000 children tested, 92.2% (n = 922) were positive for viral carriage. RSV, hMPV, and influenza virus were detected in 59 (6.4%), 56 (6.1%), and 58 (6.3%) children and co-infections in three samples (two RSV-hMPV and one influenza-hMPV). RSV carriage was common in infants (56%), we observed a higher occurrence of fever in children with hMPV and influenza virus (80% and 88%, respectively) and fast breathing in RSV (80%) carriage. RSV carriage was positively associated with a history of fast/difficulty breathing (aOR: 1.96, 95% CI 1.02-3.76) and low oxygen saturation (aOR: 2.52, 95% CI 1.32-4.82), hMPV carriage was positively associated with a complete vaccination status (aOR: 2.22, 95% CI 1.23-4.00) and body temperature ≥ 37.5°C (aOR: 2.34, 95% CI 1.35-4.04) whereas influenza viral carriage was associated with body temperature ≥ 37.5°C (aOR: 4.48, 95% CI 2.53-7.93). CONCLUSION: We observed a high nasopharyngeal viral carriage among children with WHO-defined fast-breathing pneumonia in Pakistan. Fever, difficulty in breathing, hypoxia and vaccination status are important clinical predictors for viral nonsevere community-acquired pneumonia.


Subject(s)
Influenza, Human , Metapneumovirus , Orthomyxoviridae , Respiratory Syncytial Virus, Human , Child , Child, Preschool , Humans , Infant , Cross-Sectional Studies , Fever , Influenza, Human/epidemiology , Pakistan/epidemiology , World Health Organization
18.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622728

ABSTRACT

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Subject(s)
Alphainfluenzavirus , Drugs, Chinese Herbal , Influenza A virus , Influenza, Human , Orthomyxoviridae , Pneumonia , Mice , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Pneumonia/drug therapy , Pneumonia/genetics , Inflammation , Systems Biology , Gene Expression Profiling
19.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38661717

ABSTRACT

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Subject(s)
CD4-Positive T-Lymphocytes , Lung , Orthomyxoviridae Infections , Plasma Cells , Animals , Plasma Cells/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Lung/immunology , Lung/virology , Lung/pathology , Mice , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred C57BL , Killer Cells, Natural/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Memory B Cells/immunology , Lymphocyte Activation/immunology , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology
20.
J Med Virol ; 96(4): e29605, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634474

ABSTRACT

Interferon lambda (IFNλ), classified as a type III IFN, is a representative cytokine that plays an important role in innate immunity along with type I IFN. IFNλ can elicit antiviral states by inducing peculiar sets of IFN-stimulated genes (ISGs). In this study, an adenoviral vector expression system with a tetracycline operator system was used to express human IFNλ4 in cells and mice. The formation of recombinant adenovirus (rAd-huIFNλ4) was confirmed using immunohistochemistry assays and transmission electron microscopy. Its purity was verified by quantifying host cell DNA and host cell proteins, as well as by confirming the absence of the replication-competent adenovirus. The transduction of rAd-huIFNλ4 induced ISGs and inhibited four subtypes of the influenza virus in both mouse-derived (LA-4) and human-derived cells (A549). The antiviral state was confirmed in BALB/c mice following intranasal inoculation with 109 PFU of rAd-huIFNλ4, which led to the inhibition of four subtypes of the influenza virus in mouse lungs, with reduced inflammatory lesions. These results imply that human IFNλ4 could induce antiviral status by modulating ISG expression in mice.


Subject(s)
Antiviral Agents , Influenza, Human , Interferon Lambda , Orthomyxoviridae , Animals , Humans , Mice , Antiviral Agents/pharmacology , Immunity, Innate , Influenza, Human/immunology , Influenza, Human/prevention & control , Interferon Lambda/metabolism , Interferon Lambda/pharmacology , Interferon Type I/genetics , Interferons/metabolism , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL