Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.008
Filter
1.
Int J Implant Dent ; 10(1): 35, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967690

ABSTRACT

Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.


Subject(s)
Dental Implants , Osseointegration , Osteoblasts , Surface Properties , Osteoblasts/physiology , Osteoblasts/cytology , Humans , Cell Differentiation , Cell Proliferation , Titanium/chemistry , Osteogenesis/physiology
2.
J Orthop Surg Res ; 19(1): 330, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825686

ABSTRACT

OBJECTIVE: The present study aimed to investigate the underlying mechanism of mechanical stimulation in regulating osteogenic differentiation. MATERIALS AND METHODS: Osteoblasts were exposed to compressive force (0-4 g/cm2) for 1-3 days or CGRP for 1 or 3 days. Expression of receptor activity modifying protein 1 (RAMP1), the transcription factor RUNX2, osteocalcin, p38 and p-p38 were analyzed by western blotting. Calcium mineralization was analyzed by alizarin red straining. RESULTS: Using compressive force treatments, low magnitudes (1 and 2 g/cm2) of compressive force for 24 h promoted osteoblast differentiation and mineral deposition whereas higher magnitudes (3 and 4 g/cm2) did not produce osteogenic effect. Through western blot assay, we observed that the receptor activity-modifying protein 1 (RAMP1) expression was upregulated, and p38 mitogen-activated protein kinase (MAPK) was phosphorylated during low magnitudes compressive force-promoted osteoblast differentiation. Further investigation of a calcitonin gene-related peptide (CGRP) peptide incubation, a ligand for RAMP1, showed that CGRP at concentration of 25 and 50 ng/ml could increase expression levels of RUNX2 and osteocalcin, and percentage of mineralization, suggesting its osteogenic potential. In addition, with the same conditions, CGRP also significantly upregulated RAMP1 and phosphorylated p38 expression levels. Also, the combination of compressive forces (1 and 2 g/cm2) with 50 ng/ml CGRP trended to increase RAMP1 expression, p38 activity, and osteogenic marker RUNX2 levels, as well as percentage of mineralization compared to compressive force alone. This suggest that RAMP1 possibly acts as an upstream regulator of p38 signaling during osteogenic differentiation. CONCLUSION: These findings suggest that CGRP-RAMP1/p38MAPK signaling implicates in osteoblast differentiation in response to optimal magnitude of compressive force. This study helps to define the underlying mechanism of compressive stimulation and may also enhance the application of compressive stimulation or CGRP peptide as an alternative approach for accelerating tooth movement in orthodontic treatment.


Subject(s)
Cell Differentiation , Osteoblasts , Osteogenesis , Receptor Activity-Modifying Protein 1 , p38 Mitogen-Activated Protein Kinases , Osteoblasts/physiology , Osteoblasts/metabolism , Osteoblasts/cytology , Cell Differentiation/physiology , Receptor Activity-Modifying Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Osteogenesis/physiology , Calcitonin Gene-Related Peptide/metabolism , MAP Kinase Signaling System/physiology , Stress, Mechanical , Animals , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Signal Transduction/physiology , Osteocalcin/metabolism
3.
Sensors (Basel) ; 24(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38894171

ABSTRACT

Adherent cells perceive mechanical feedback from the underlying matrix and convert it into biochemical signals through a process known as mechanotransduction. The response to changes in the microenvironment relies on the cell's mechanical properties, including elasticity, which was recently identified as a biomarker for various diseases. Here, we propose the design, development, and characterization of a new system for the measurement of adherent cells' strain drop, a parameter correlated with cells' elasticity. To consider the interplay between adherent cells and the host extracellular matrix, cell stretching was combined with adhesion on substrates with different stiffnesses. The technique is based on the linear stretching of silicone chambers, high-speed image acquisition, and feedback for image centering. The system was characterized in terms of the strain homogeneity, impact of collagen coating, centering capability, and sensitivity. Subsequently, it was employed to measure the strain drop of two osteosarcoma cell lines, low-aggressive osteoblast-like SaOS-2 and high-aggressive 143B, cultured on two different substrates to recall the stiffness of the bone and lung extracellular matrices. Results demonstrated good substrate homogeneity, a negligible effect of the collagen coating, and an accurate image centering. Finally, the experimental results showed an average strain drop that was lower in the 143B cells in comparison with the SaOS-2 cells in all the tested conditions.


Subject(s)
Osteosarcoma , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Extracellular Matrix/metabolism , Mechanotransduction, Cellular/physiology , Cell Adhesion/physiology , Elasticity , Stress, Mechanical , Bone Neoplasms/pathology , Collagen/chemistry , Collagen/metabolism , Osteoblasts/cytology , Osteoblasts/physiology
4.
Bull Exp Biol Med ; 176(5): 620-625, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733480

ABSTRACT

We studied the interaction of human buccal mesenchymal stem cells (MSCs) and osteoblasts differentiated from them with the surface of titanium samples. MSCs were isolated by enzymatic method from buccal fat pads. The obtained cell culture was presented by MSCs, which was confirmed by flow cytometry and differentiation into adipocytes and osteoblasts. Culturing of buccal MSCs on titanium samples was accompanied by an increase in the number of cells for 15 days and the formation of a developed network of F-actin fibers in the cells. The viability of buccal MSCs decreased by 8 days, but was restored by 15 days. Culturing of osteoblasts obtained as a result of buccal MSC differentiation on the surface of titanium samples was accompanied by a decrease in their viability and proliferation. Thus, MSCs from buccal fat pads can be used to coat implants to improve osseointegration during bone reconstruction in craniofacial surgery and dentistry. To improve the integration of osteoblasts, modification of the surface of titanium samples is required.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osseointegration , Osteoblasts , Titanium , Titanium/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Humans , Osseointegration/physiology , Osteoblasts/cytology , Osteoblasts/physiology , Cells, Cultured , Cell Proliferation , Dental Implants , Cell Survival , Adipocytes/cytology , Adipocytes/physiology , Mouth Mucosa/cytology , Osteogenesis/physiology
5.
Int J Numer Method Biomed Eng ; 40(6): e3821, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637289

ABSTRACT

Both cell migration and osteogenic differentiation are critical for successful bone regeneration. Therefore, understanding the mechanobiological aspects that govern these two processes is essential in designing effective scaffolds that promote faster bone regeneration. Studying these two factors at different locations is necessary to manage bone regeneration in various sections of a scaffold. Hence, a multiscale computational model was used to observe the mechanical responses of osteoblasts placed in different positions of the trabecular bone and gyroid scaffold. Fluid shear stresses in scaffolds at cell seeded locations (representing osteogenic differentiation) and strain energy densities in cells at cell substrate interface (representing cell migration) were observed as mechanical response parameters in this study. Comparison of these responses, as two critical factors for bone regeneration, between the trabecular bone and gyroid scaffold at different locations, is the overall goal of the study. This study reveals that the gyroid scaffold exhibits higher osteogenic differentiation and cell migration potential compared to the trabecular bone. However, the responses in the gyroid only mimic the trabecular bone in two out of nine positions. These findings can guide us in predicting the ideal cell seeded sites within a scaffold for better bone regeneration and in replicating a replaced bone condition by altering the physical parameters of a scaffold.


Subject(s)
Bone Regeneration , Cancellous Bone , Cell Differentiation , Cell Movement , Osteoblasts , Osteogenesis , Tissue Scaffolds , Bone Regeneration/physiology , Osteoblasts/physiology , Osteoblasts/cytology , Cell Differentiation/physiology , Tissue Scaffolds/chemistry , Cell Movement/physiology , Cancellous Bone/physiology , Osteogenesis/physiology , Humans , Porosity , Models, Biological , Stress, Mechanical
6.
Life Sci Space Res (Amst) ; 41: 127-135, 2024 May.
Article in English | MEDLINE | ID: mdl-38670639

ABSTRACT

Understanding how skeletal tissues respond to microgravity is ever more important with the increased interest in human space travel. Here, we exposed larval Danio rerio at 3.5 dpf to simulated microgravity (SMG) using a 3D mode of rotation in a ground-based experiment and then studied different cellular, molecular, and morphological bone responses both immediately after exposure and one week later. Our results indicate an overall decrease in ossification in several developing skeletal elements immediately after SMG exposure with the exception of the otoliths, however ossification returns to normal levels seven days after exposure. Coincident with the reduction in overall ossification tnfsf11 (RANKL) expression is highly elevated after 24 h of SMG exposure and also returns to normal levels seven days after exposure. We also show that genes associated with osteoblasts are unaffected immediately after SMG exposure. Thus, the observed reduction in ossification is primarily the result of a high level of bone resorption. This study sheds insight into the nuances of how osteoblasts and osteoclasts in the skeleton of a vertebrate organism respond to an external environmental disturbance, in this case simulated microgravity.


Subject(s)
Larva , Osteogenesis , Weightlessness Simulation , Zebrafish , Animals , Larva/growth & development , Larva/physiology , Osteoblasts/physiology , Osteoclasts/physiology , RANK Ligand/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Weightlessness/adverse effects
7.
J Dent Res ; 103(5): 467-476, 2024 May.
Article in English | MEDLINE | ID: mdl-38616679

ABSTRACT

Implant osseointegration is reduced in patients with systemic conditions that compromise bone quality, such as osteoporosis, disuse syndrome, and type 2 diabetes. Studies using rodent models designed to mimic these compromised conditions demonstrated reduced bone-to-implant contact (BIC) or a decline in bone mineral density. These adverse effects are a consequence of disrupted intercellular communication. A variety of approaches have been developed to compensate for the altered microenvironment inherent in compromised conditions, including the use of biologics and implant surface modification. Chemical and physical modification of surface properties at the microscale, mesoscale, and nanoscale levels to closely resemble the surface topography of osteoclast resorption pits found in bone has proven to be a highly effective strategy for improving implant osseointegration. The addition of hydrophilicity to the surface further enhances osteoblast response at the bone-implant interface. These surface modifications, applied either alone or in combination, improve osseointegration by increasing proliferation and osteoblastic differentiation of osteoprogenitor cells and enhancing angiogenesis while modulating osteoclast activity to achieve net new bone formation, although the specific effects vary with surface treatment. In addition to direct effects on surface-attached cells, the communication between bone marrow stromal cells and immunomodulatory cells is sensitive to these surface properties. This article reports on the advances in titanium surface modifications, alone and in combination with novel therapeutics in animal models of human disease affecting bone quality. It offers clinically translatable perspectives for clinicians to consider when using different surface modification strategies to improve long-term implant performance in compromised patients. This review supports the use of surface modifications, bioactive coatings, and localized therapeutics as pragmatic approaches to improve BIC and enhance osteogenic activity from both structural and molecular standpoints.


Subject(s)
Bone-Implant Interface , Dental Implants , Disease Models, Animal , Osseointegration , Surface Properties , Osseointegration/physiology , Animals , Osteoblasts/physiology , Humans , Osteogenesis/physiology , Osteoclasts , Dental Implantation, Endosseous
8.
Theranostics ; 14(6): 2544-2559, 2024.
Article in English | MEDLINE | ID: mdl-38646641

ABSTRACT

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Subject(s)
Adaptor Proteins, Signal Transducing , Cell Differentiation , Chondrocytes , Fracture Healing , Osteogenesis , Stem Cells , TRPP Cation Channels , Animals , Fracture Healing/physiology , Mice , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Chondrocytes/metabolism , Stem Cells/metabolism , Osteogenesis/physiology , Mice, Knockout , Chondrogenesis/physiology , Periosteum/metabolism , Osteoblasts/metabolism , Osteoblasts/physiology , Disease Models, Animal , Male
9.
Nat Rev Endocrinol ; 20(7): 399-413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499689

ABSTRACT

Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.


Subject(s)
Chondrocytes , Osteoblasts , Humans , Animals , Osteoblasts/metabolism , Osteoblasts/physiology , Chondrocytes/metabolism , Chondrocytes/physiology , Bone and Bones/metabolism , Osteoclasts/metabolism , Osteoclasts/physiology , Bone Remodeling/physiology , Bone Development/physiology , Cell Differentiation/physiology , Homeostasis/physiology , Adipocytes/metabolism , Adipocytes/physiology
10.
Endocr Rev ; 45(1): 95-124, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-37459436

ABSTRACT

The homeostasis of bone microenvironment is the foundation of bone health and comprises 2 concerted events: bone formation by osteoblasts and bone resorption by osteoclasts. In the early 21st century, leptin, an adipocytes-derived hormone, was found to affect bone homeostasis through hypothalamic relay and the sympathetic nervous system, involving neurotransmitters like serotonin and norepinephrine. This discovery has provided a new perspective regarding the synergistic effects of endocrine and nervous systems on skeletal homeostasis. Since then, more studies have been conducted, gradually uncovering the complex neuroendocrine regulation underlying bone homeostasis. Intriguingly, bone is also considered as an endocrine organ that can produce regulatory factors that in turn exert effects on neuroendocrine activities. After decades of exploration into bone regulation mechanisms, separate bioactive factors have been extensively investigated, whereas few studies have systematically shown a global view of bone homeostasis regulation. Therefore, we summarized the previously studied regulatory patterns from the nervous system and endocrine system to bone. This review will provide readers with a panoramic view of the intimate relationship between the neuroendocrine system and bone, compensating for the current understanding of the regulation patterns of bone homeostasis, and probably developing new therapeutic strategies for its related disorders.


Subject(s)
Bone Resorption , Bone and Bones , Humans , Osteoblasts/physiology , Neurosecretory Systems , Homeostasis
11.
Cells ; 12(21)2023 11 05.
Article in English | MEDLINE | ID: mdl-37947654

ABSTRACT

This review focuses on understanding the macroscopic and microscopic characteristics of bone tissue and reviews current knowledge of its physiology. It explores how these features intricately collaborate to maintain the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, which plays a pivotal role in shaping not only our physical framework but also overall health. In this work, a comprehensive exploration of microscopic and macroscopic features of bone tissue is presented.


Subject(s)
Bone Resorption , Osteoclasts , Humans , Osteoclasts/physiology , Bone and Bones , Osteoblasts/physiology , Cell Differentiation/physiology
12.
Article in English | MEDLINE | ID: mdl-37037204

ABSTRACT

Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients' adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Bone Resorption , Nanoparticles , Osteoporosis , Humans , Osteoclasts/physiology , Bone Resorption/drug therapy , Osteoblasts/physiology , Osteoporosis/drug therapy , Nanoparticles/therapeutic use , Cell Differentiation
13.
Anat Sci Int ; 98(4): 521-528, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37022568

ABSTRACT

Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.


Subject(s)
Actins , Osteoblasts , Osteoblasts/physiology , Bone and Bones , Cell Division
14.
Cells Dev ; 174: 203836, 2023 06.
Article in English | MEDLINE | ID: mdl-36972848

ABSTRACT

It is known that cellular events underlying the processes of bone maintenance, remodeling, and repair have their basis in the embryonic production of bone. Shh signaling is widely described developing important morphogenetic control in bone by modifying the activity of osteoblast. Furthermore, identifying whether it is associated with the modulation of nuclear control is very important to be the basis for further applications. Experimentally, osteoblasts were exposed with cyclopamine (CICLOP) considering up to 1 day and 7 days, here considered an acute and chronic responses respectively. Firstly, we have validated the osteogenic model in vitro by exposing the osteoblasts to classical differentiating solution up to 7 days to allow the analysis of alkaline phosphatase and mineralization. Conversely, our data shows that differentiating osteoblasts present higher activity of inflammasome-related genes, while Shh signaling members were lower, suggesting a negative feedback between them. Thereafter, to better know about the role of Shh signaling on this manner, functional assays using CICLOP (5 µM) were performed and the data validates the previously hypothesis that Shh represses inflammasome related genes activities. Altogether, our data supports the anti-inflammatory effect of Shh signaling by suppressing Tnfα, Tgfß and inflammasome related genes during osteoblast differentiation, and this comprehension might support the understanding the molecular and cellular mechanisms related in bone regeneration by reporting molecular-related osteoblast differentiation.


Subject(s)
Hedgehogs , Inflammasomes , Animals , Inflammasomes/pharmacology , Osteogenesis/genetics , Osteoblasts/physiology
15.
JCI Insight ; 8(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36729662

ABSTRACT

The energetic costs of bone formation require osteoblasts to coordinate their activities with tissues, like adipose, that can supply energy-dense macronutrients. In the case of intermittent parathyroid hormone (PTH) treatment, a strategy used to reduce fracture risk, bone formation is preceded by a change in systemic lipid homeostasis. To investigate the requirement for fatty acid oxidation by osteoblasts during PTH-induced bone formation, we subjected mice with osteoblast-specific deficiency of mitochondrial long-chain ß-oxidation as well as mice with adipocyte-specific deficiency for the PTH receptor or adipose triglyceride lipase to an anabolic treatment regimen. PTH increased the release of fatty acids from adipocytes and ß-oxidation by osteoblasts, while the genetic mouse models were resistant to the hormone's anabolic effect. Collectively, these data suggest that PTH's anabolic actions require coordinated signaling between bone and adipose, wherein a lipolytic response liberates fatty acids that are oxidized by osteoblasts to fuel bone formation.


Subject(s)
Osteogenesis , Parathyroid Hormone , Mice , Animals , Osteoblasts/physiology , Bone and Bones , Signal Transduction
16.
Prog Biophys Mol Biol ; 177: 168-180, 2023 01.
Article in English | MEDLINE | ID: mdl-36462638

ABSTRACT

Static magnetic fields (SMFs), magnetic fields with constant intensity and orientation, have been extensively studied in the field of bone biology both fundamentally and clinically as a non-invasive physical factor. A large number of animal experiments and clinical studies have shown that SMFs have effective therapeutic effects on bone-related diseases such as non-healing fractures, bone non-union of bone implants, osteoporosis and osteoarthritis. The maintenance of bone health in adults depends on the basic functions of bone cells, such as bone formation by osteoblasts and bone resorption by osteoclasts. Numerous studies have revealed that SMFs can regulate the proliferation, differentiation, and function of bone tissue cells, including bone marrow mesenchymal stem cells (BMSCs), osteoblasts, bone marrow monocytes (BMMs), osteoclasts, and osteocytes. In this paper, the effects of SMFs on bone-related diseases and bone tissue cells are reviewed from both in vivo studies and in vitro studies, and the possible mechanisms are analyzed. In addition, some challenges that need to be further addressed in the research of SMF and bone are also discussed.


Subject(s)
Osteoclasts , Osteocytes , Animals , Osteoblasts/physiology , Cell Differentiation , Osteogenesis , Magnetic Fields
17.
Int J Nanomedicine ; 17: 5375-5389, 2022.
Article in English | MEDLINE | ID: mdl-36419718

ABSTRACT

The maintenance of bone homeostasis includes both bone resorption by osteoclasts and bone formation by osteoblasts. These two processes are in dynamic balance to maintain a constant amount of bone for accomplishing its critical functions in daily life. Multiple cell type communications are involved in these two complex and continuous processes. In recent decades, an increasing number of studies have shown that osteogenic and osteoclastic extracellular vesicles play crucial roles in regulating bone homeostasis through paracrine, autosecretory and endocrine signaling. Elucidating the functional roles of extracellular vesicles in the maintenance of bone homeostasis may contribute to the design of new strategies for bone regeneration. Hence, we review the recent understandings of the classification, production process, extraction methods, structure, contents, functions and applications of extracellular vesicles in bone homeostasis. We highlight the contents of various bone-derived extracellular vesicles and their interactions with different cells in the bone microenvironment during bone homeostasis. We also summarize the recent advances in EV-loaded biomaterial scaffolds for bone regeneration and repair.


Subject(s)
Bone and Bones , Extracellular Vesicles , Extracellular Vesicles/metabolism , Osteoclasts/physiology , Osteoblasts/physiology , Homeostasis
18.
Physiol Res ; 71(6): 835-848, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36281726

ABSTRACT

Fluid shear stress (FSS) plays an important role in osteoblast apoptosis. However, the role of miRNA in osteoblast apoptosis under FSS and possible molecular mechanisms remain unknown. Our aim of the study was to explore whether miR-146a-5p regulates osteoblast apoptosis under FSS and its molecular mechanisms. FSS could down-regulate the expression of miR-146a-5p in MC3T3-E1 cells. We confirm that up-regulation of miR-146a-5p promotes osteoblasts apoptosis and down-regulation of miR-146a-5p inhibits osteoblasts apoptosis. We further demonstrated that FSS inhibits osteoblast apoptosis by down-regulated miR-146a-5p. Dual-luciferase reporter assay validated that SMAD4 is a direct target gene of miR-146a-5p. In addition, mimic-146a-5p suppressed FSS-induced up-regulation of SMAD4 protein levels, which suggests that FSS elevated SMAD4 protein expression levels via regulation miR-146a-5p. Further investigations showed that SMAD4 could inhibit osteoblast apoptosis. We demonstrated that miR-146a-5p regulates osteoblast apoptosis via targeting SMAD4. Taken together, our present study showed that FSS-induced down-regulation miR-146a-5p inhibits osteoblast apoptosis via target SMAD4. These findings may provide novel mechanisms for FSS to inhibit osteoblast apoptosis, and also may provide a potential therapeutic target for osteoporosis.


Subject(s)
MicroRNAs , Smad4 Protein , Down-Regulation , Smad4 Protein/genetics , Smad4 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Osteoblasts/physiology
19.
Front Endocrinol (Lausanne) ; 13: 885879, 2022.
Article in English | MEDLINE | ID: mdl-35937818

ABSTRACT

Progressive bone loss during aging makes osteoporosis one of the most common and life impacting conditions in geriatric populations. The bone homeostasis is maintained through persistent remodeling mediated by bone-forming osteoblast and bone-resorbing osteoclast. Inflammaging, a condition characterized by increased pro-inflammatory markers in the blood and other tissues during aging, has been reported to be associated with skeletal stem/progenitor cell dysfunction, which will result in impaired bone formation. However, the role of age-related inflammation and metabolites in regulation of osteoclast remains largely unknown. In the present study, we observed dichotomous phenotypes of anti-inflammatory metabolite itaconate in responding to inflammaging. Itaconate is upregulated in macrophages during aging but has less reactivity in responding to RANKL stimulation in aged macrophages. We confirmed the inhibitory effect of itaconate in regulating osteoclast differentiation and activation, and further verified the rescue role of itaconate in lipopolysaccharides induced inflammatory bone loss animal model. Our findings revealed that itaconate is a crucial regulatory metabolite during inflammaging that inhibits osteoclast to maintain bone homeostasis.


Subject(s)
Osteoclasts , Succinates , Aging , Animals , Osteoblasts/physiology , Osteoclasts/metabolism , Succinates/metabolism , Succinates/pharmacology , Succinates/therapeutic use
20.
Biointerphases ; 17(3): 031004, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618545

ABSTRACT

This investigation is aimed to determine the effect of the modification of titanium surface with NaOH on the metabolism of osteoblasts treated with zoledronic acid (ZA). Machined and NaOH-treated titanium disks were used. Surfaces were characterized by scanning electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy (XPS) analysis. Human osteoblasts were seeded onto the disks. After 24 h, cells were treated with ZA at 5 µM for 7 days. At this point, cell viability, collagen synthesis, total protein production, alkaline phosphatase activity, and mineral nodule deposition were assessed. The results of surface roughness were descriptively and statistically analyzed (t-Student), while the XPS results were qualitatively described. Cell metabolism data were analyzed by the analysis of variance two-way and Tukey tests at a 5% significance level. The results demonstrated that NaOH-treatment increased surface roughness (p < .05) and confirmed the presence of sodium titanate and a pH switch on the NaOH-treated disks. This modification also resulted in higher cell viability, collagen synthesis, total protein production, and alkaline phosphatase by osteoblasts when compared to cells seeded onto machined disks (p < 0.05). In the presence of ZA, all cellular metabolism and differentiation parameters were significantly reduced for cells seeded on both surfaces (p < 0.05); however, the cells seeded onto modified surfaces showed higher values for these parameters, except for mineral nodule deposition (p < 0.05). NaOH modification improved cell adhesion and metabolism of osteogenic cells even in the presence of ZA. The surface modification of titanium with NaOH solution may be an interesting strategy to improve metabolism and differentiation of osteoblasts and accelerate osseointegration process, mainly for tissues exposed to ZA.


Subject(s)
Alkaline Phosphatase , Titanium , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/pharmacology , Collagen , Humans , Osteoblasts/physiology , Sodium Hydroxide/pharmacology , Surface Properties , Titanium/chemistry , Titanium/pharmacology , Zoledronic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...