Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.381
1.
Support Care Cancer ; 32(7): 415, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847977

PURPOSE: Anemia is relatively common in cancer patients, and is associated with poor survival in patients with various malignancies. However, how anemia would affect prognosis and response to neoadjuvant chemotherapy (NAC) in osteosarcoma (OS) is still without substantial evidence. METHODS: We retrospectively analysed 242 patients with stage II OS around the knee joint in our institute. Changed hemoglobin (Hb) levels (before and after NAC) were recorded to assess the prognostic value in DFS (disease-free survival) and tumor response to NAC. Univariate and multivariate analyses were conducted to identify prognostic factors related with outcome in OS patients. RESULTS: The mean Hb level significantly decreased after NAC (134.5 ± 15.3 g/L vs. 117.4 ± 16.3 g/L). The percentage of mild (21%), moderate (4.2%) and severe (0%) anemia patients markedly increased after NAC: 41%, 24% and 4.1% respectively. There was higher percentage of ≥ 5% Hb decline in patients with tumor necrosis rate < 90% (141 out of 161), compared with those with tumor necrosis rate ≥ 90% (59 out of 81). Further univariate and survival analysis demonstrated that Hb decline had a significant role in prediction survival in OS patients. Patients with ≥ 5% Hb decline after NAC had an inferior DFS compared with those with < 5% Hb decline. CONCLUSION: In osteosarcoma, patients with greater Hb decrease during neoadjuvant treatment were shown to have worse DFS and a poorer response to NAC than those without. Attempts to correct anemia and their effects on outcomes for osteosarcoma patients should be explored in future studies.


Anemia , Bone Neoplasms , Hemoglobins , Knee Joint , Neoadjuvant Therapy , Osteosarcoma , Humans , Osteosarcoma/drug therapy , Osteosarcoma/mortality , Retrospective Studies , Male , Female , Neoadjuvant Therapy/methods , Hemoglobins/analysis , Adult , Prognosis , Anemia/etiology , Adolescent , Bone Neoplasms/drug therapy , Bone Neoplasms/mortality , Young Adult , Child , Knee Joint/pathology , Disease-Free Survival , Middle Aged , Multivariate Analysis , Chemotherapy, Adjuvant/methods , Severity of Illness Index
2.
BMC Musculoskelet Disord ; 25(1): 437, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835052

BACKGROUND: Osteosarcoma (OS) is the most common bone malignant tumor in children, and its prognosis is often poor. Anoikis is a unique mode of cell death.However, the effects of Anoikis in OS remain unexplored. METHOD: Differential analysis of Anoikis-related genes was performed based on the metastatic and non-metastatic groups. Then LASSO logistic regression and SVM-RFE algorithms were applied to screen out the characteristic genes. Later, Univariate and multivariate Cox regression was conducted to identify prognostic genes and further develop the Anoikis-based risk score. In addition, correlation analysis was performed to analyze the relationship between tumor microenvironment, drug sensitivity, and prognostic models. RESULTS: We established novel Anoikis-related subgroups and developed a prognostic model based on three Anoikis-related genes (MAPK1, MYC, and EDIL3). The survival and ROC analysis results showed that the prognostic model was reliable. Besides, the results of single-cell sequencing analysis suggested that the three prognostic genes were closely related to immune cell infiltration. Subsequently, aberrant expression of two prognostic genes was identified in osteosarcoma cells. Nilotinib can promote the apoptosis of osteosarcoma cells and down-regulate the expression of MAPK1. CONCLUSIONS: We developed a novel Anoikis-related risk score model, which can assist clinicians in evaluating the prognosis of osteosarcoma patients in clinical practice. Analysis of the tumor immune microenvironment and chemotherapeutic drug sensitivity can provide necessary insights into subsequent mechanisms. MAPK1 may be a valuable therapeutic target for neoadjuvant chemotherapy in osteosarcoma.


Anoikis , Bone Neoplasms , Mitogen-Activated Protein Kinase 1 , Neoadjuvant Therapy , Osteosarcoma , Tumor Microenvironment , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Humans , Anoikis/drug effects , Anoikis/genetics , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 1/genetics , Tumor Microenvironment/drug effects , Prognosis , Male , Female , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Child , Adolescent
3.
Cell Death Dis ; 15(5): 349, 2024 May 20.
Article En | MEDLINE | ID: mdl-38769167

Osteosarcoma is a malignant bone tumor that primarily inflicts the youth. It often metastasizes to the lungs after chemotherapy failure, which eventually shortens patients' lives. Thus, there is a dire clinical need to develop a novel therapy to tackle osteosarcoma metastasis. Methionine dependence is a special metabolic characteristic of most malignant tumor cells that may offer a target pathway for such therapy. Herein, we demonstrated that methionine deficiency restricted the growth and metastasis of cultured human osteosarcoma cells. A genetically engineered Salmonella, SGN1, capable of overexpressing an L-methioninase and hydrolyzing methionine led to significant reduction of methionine and S-adenosyl-methionine (SAM) specifically in tumor tissues, drastically restricted the growth and metastasis in subcutaneous xenograft, orthotopic, and tail vein-injected metastatic models, and prolonged the survival of the model animals. SGN1 also sharply suppressed the growth of patient-derived organoid and xenograft. Methionine restriction in the osteosarcoma cells initiated severe mitochondrial dysfunction, as evident in the dysregulated gene expression of respiratory chains, increased mitochondrial ROS generation, reduced ATP production, decreased basal and maximum respiration, and damaged mitochondrial membrane potential. Transcriptomic and molecular analysis revealed the reduction of C1orf112 expression as a primary mechanism underlies methionine deprivation-initiated suppression on the growth and metastasis as well as mitochondrial functions. Collectively, our findings unraveled a molecular linkage between methionine restriction, mitochondrial function, and osteosarcoma growth and metastasis. A pharmacological agent, such as SGN1, that can achieve tumor specific deprivation of methionine may represent a promising modality against the metastasis of osteosarcoma and potentially other types of sarcomas as well.


Bone Neoplasms , Methionine , Mitochondria , Osteosarcoma , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Osteosarcoma/drug therapy , Methionine/deficiency , Methionine/metabolism , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Mice , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Cell Proliferation/drug effects , Neoplasm Metastasis , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Mice, Nude , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic/drug effects
4.
Jt Dis Relat Surg ; 35(2): 443-447, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38727127

While the usual etiology of slipped capital femoral epiphysis (SCFE) is idiopathic, there are many other factors that increase the predisposition to slippage. Chemotherapy can be one of them. In this article, we report a rare case of acute SCFE after tumor prosthesis implantation in a patient who received chemotherapy. A 10-year-old girl with osteosarcoma of the right distal femur underwent (neo-) adjuvant chemotherapy, wide tumor resection, and reconstruction using a growing tumor prosthesis and a short non-cemented femoral stem. Half a year after implantation, she developed aseptic loosening. Revision surgery was performed using a hydroxyapatite (HA)-coated cementless femoral stem. Postoperative plain radiographs revealed SCFE that was treated by closed reduction and screw fixation. The patient recovered without complications, and unaffected hip showed no radiographic signs of slippage on follow-up. The forces of implanting a tumor prosthesis, particularly with a non-cemented stem, can increase the risk of an acute SCFE. The controversy over prophylactic pinning of the uninvolved hip in chemotherapy-associated SCFE is unresolved. Pinning can be considered only in the presence of abnormal prodromal radiological findings.


Bone Neoplasms , Femoral Neoplasms , Osteosarcoma , Slipped Capital Femoral Epiphyses , Humans , Female , Child , Slipped Capital Femoral Epiphyses/surgery , Slipped Capital Femoral Epiphyses/diagnostic imaging , Femoral Neoplasms/surgery , Osteosarcoma/drug therapy , Osteosarcoma/surgery , Bone Neoplasms/drug therapy , Bone Neoplasms/surgery , Reoperation , Prosthesis Failure , Radiography , Prosthesis Design , Chemotherapy, Adjuvant/adverse effects , Treatment Outcome
5.
Int J Biol Macromol ; 269(Pt 2): 132019, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729498

The clinical use of chemotherapy for refractory osteosarcoma (OS) is limited due to its multiorgan toxicity. To overcome this challenge, new dosage forms and combination treatments, such as phototherapy, are being explored to improve targeted delivery and cytocompatibility of chemotherapeutic agents. In addition, inducing ferroptosis in iron-rich tumors could be a promising strategy to enhance OS therapy. In this study, a novel formulation was developed using natural biological H-ferritin (HFn) encapsulating the photosensitizer IR-780 and the chemotherapy drug gemcitabine (Gem) for OS-specific targeted therapy (HFn@Gem/IR-780 NPs). HFn@Gem/IR-780 NPs were designed to specifically bind and internalize into OS cells by interacting with transferrin receptor 1 (TfR1) which is overexpressed on the surface of OS cell membranes. The Gem and IR-780 were then released responsively under mildly acidic conditions in tumors. HFn@Gem/IR-780 NPs achieved cascaded antitumor therapeutic efficacy through the combination of chemotherapy and phototherapy under near-infrared irradiation in vitro and in vivo. Importantly, HFn@Gem/IR-780 NPs demonstrated excellent safety profile with significantly decreased drug exposure to normal organs, indicating its potential for reducing systemic toxicity. Thus, utilizing HFn as a vehicle to encapsulate highly effective antitumor drugs provides a promising approach for the treatment of OS metastasis and relapse.


Deoxycytidine , Ferroptosis , Gemcitabine , Nanoparticles , Osteosarcoma , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Ferroptosis/drug effects , Animals , Humans , Cell Line, Tumor , Mice , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Nanoparticles/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Neoplasm Metastasis , Xenograft Model Antitumor Assays , Indoles
6.
Cell Mol Life Sci ; 81(1): 236, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795203

Chemoresistance is the main obstacle in the clinical treatment of osteosarcoma (OS). In this study, we investigated the role of EF-hand domain-containing protein 1 (EFHD1) in OS chemotherapy resistance. We found that the expression of EFHD1 was highly correlated with the clinical outcome after chemotherapy. We overexpressed EFHD1 in 143B cells and found that it increased their resistance to cell death after drug treatment. Conversely, knockdown of EFHD1 in 143BR cells (a cisplatin-less-sensitive OS cell line derived from 143B cells) increased their sensitivity to treatment. Mechanistically, EFHD1 bound to adenine nucleotide translocase-3 (ANT3) and inhibited its conformational change, thereby inhibiting the opening of the mitochondrial membrane permeability transition pore (mPTP). This effect could maintain mitochondrial function, thereby favoring OS cell survival. The ANT3 conformational inhibitor carboxyatractyloside (CATR), which can promote mPTP opening, enhanced the chemosensitivity of EFHD1-overexpressing cells when combined with cisplatin. The ANT3 conformational inhibitor bongkrekic acid (BKA), which can inhibit mPTP opening, restored the resistance of EFHD1 knockdown cells. In conclusion, our results suggest that EFHD1-ANT3-mPTP might be a promising target for OS therapy in the future.


Cell Proliferation , Cisplatin , Drug Resistance, Neoplasm , Mitochondrial Membrane Transport Proteins , Mitochondrial Permeability Transition Pore , Osteosarcoma , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Mitochondrial Permeability Transition Pore/metabolism , Drug Resistance, Neoplasm/drug effects , Cell Proliferation/drug effects , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Cell Line, Tumor , Cisplatin/pharmacology , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Adenine Nucleotide Translocator 3/metabolism , Adenine Nucleotide Translocator 3/genetics , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Animals , Mice , Protein Binding
7.
Folia Med (Plovdiv) ; 66(2): 196-202, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38690814

INTRODUCTION: Osteosarcoma (OS) and Ewing sarcoma (ES) represent the pediatric population's most common malignant bone tumors. 18-Fluorodeoxyglucose positron emission tomography has been shown to be effective in both the diagnostic and staging phases of cancer treatment. In recent years, some studies have also explored the possibility that FDG-PET could have a prognostic role.


Bone Neoplasms , Fluorodeoxyglucose F18 , Osteosarcoma , Positron-Emission Tomography , Radiopharmaceuticals , Sarcoma, Ewing , Humans , Sarcoma, Ewing/diagnostic imaging , Sarcoma, Ewing/pathology , Sarcoma, Ewing/drug therapy , Osteosarcoma/diagnostic imaging , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Necrosis , Prognosis
8.
Cell Death Dis ; 15(5): 381, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816365

Osteosarcoma (OS) therapy presents numerous challenges, due largely to a low survival rate following metastasis onset. Nerve growth factor (NGF) has been implicated in the metastasis and progression of various cancers; however, the mechanism by which NGF promotes metastasis in osteosarcoma has yet to be elucidated. This study investigated the influence of NGF on the migration and metastasis of osteosarcoma patients (88 cases) as well as the underlying molecular mechanisms, based on RNA-sequencing and gene expression data from a public database (TARGET-OS). In osteosarcoma patients, the expression of NGF was significantly higher than that of other growth factors. This observation was confirmed in bone tissue arrays from 91 osteosarcoma patients, in which the expression levels of NGF and matrix metallopeptidase-2 (MMP-2) protein were significantly higher than in normal bone, and strongly correlated with tumor stage. In summary, NGF is positively correlated with MMP-2 in human osteosarcoma tissue and NGF promotes osteosarcoma cell metastasis by upregulating MMP-2 expression. In cellular experiments using human osteosarcoma cells (143B and MG63), NGF upregulated MMP-2 expression and promoted wound healing, cell migration, and cell invasion. Pre-treatment with MEK and ERK inhibitors or siRNA attenuated the effects of NGF on cell migration and invasion. Stimulation with NGF was shown to promote phosphorylation along the MEK/ERK signaling pathway and decrease the expression of microRNA-92a-1-5p (miR-92a-1-5p). In in vivo experiments involving an orthotopic mouse model, the overexpression of NGF enhanced the effects of NGF on lung metastasis. Note that larotrectinib (a tropomyosin kinase receptor) strongly inhibited the effect of NGF on lung metastasis. In conclusion, it appears that NGF promotes MMP-2-dependent cell migration by inhibiting the effects of miR-92a-1-5p via the MEK/ERK signaling cascade. Larotrectinib emerged as a potential drug for the treatment of NGF-mediated metastasis in osteosarcoma.


Bone Neoplasms , Cell Movement , Matrix Metalloproteinase 2 , Nerve Growth Factor , Osteosarcoma , Pyrazoles , Pyrimidines , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/genetics , Nerve Growth Factor/metabolism , Animals , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/genetics , Mice, Nude , Male , Neoplasm Metastasis , Female , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C
9.
Int J Pharm ; 657: 124183, 2024 May 25.
Article En | MEDLINE | ID: mdl-38692500

We developed cyclic RGD-tagged polymeric micellar nanoassemblies for sustained delivery of Doxorubicin (Dox) endowed with significant cytotoxic effect against MG63, SAOS-2, and U2-OS osteosarcoma cells without compromising the viability of healthy osteoblasts (hFOBs). Targeted polymeric micellar nanoassemblies (RGD-NanoStar@Dox) enabled Dox to reach the nucleus of MG63, SAOS-2, and U2-OS cells causing the same cytotoxic effect as free Dox, unlike untargeted micellar nanoassemblies (NanoStar@Dox) which failed to reach the nucleus and resulted ineffective, demonstrating the crucial role of cyclic RGD peptide in driving cellular uptake and accumulation mechanisms in osteosarcoma cells. Micellar nanoassemblies were obtained by nanoformulation of three-armed star PLA-PEG copolymers properly synthetized with and without decoration with the cyclic-RGDyK peptide (Arg-Gly-Asp-D-Tyr-Lys). The optimal RGD-NanoStar@Dox nanoformulation obtained by nanoprecipitation method (8 % drug loading; 35 % encapsulation efficiency) provided a prolonged and sustained drug release with a rate significantly lower than the free drug under the same experimental conditions. Moreover, the nanosystem preserved Dox from the natural degradation occurring under physiological conditions (i.e., dimerization and consequent precipitation) serving as a slow-release "drug reservoir" ensuring an extended biological activity over the time.


Bone Neoplasms , Cell Survival , Doxorubicin , Micelles , Oligopeptides , Osteosarcoma , Polyethylene Glycols , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Doxorubicin/chemistry , Osteosarcoma/drug therapy , Humans , Polyethylene Glycols/chemistry , Cell Line, Tumor , Oligopeptides/chemistry , Oligopeptides/administration & dosage , Bone Neoplasms/drug therapy , Cell Survival/drug effects , Nanoparticles/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Drug Liberation , Drug Carriers/chemistry
10.
Int J Biol Macromol ; 270(Pt 2): 132029, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704064

Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.


Apoptosis , Copper , Osteosarcoma , Tumor Microenvironment , Animals , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Mice , Tumor Microenvironment/drug effects , Copper/chemistry , Copper/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Basidiomycota/chemistry , RAW 264.7 Cells , Gels/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry
11.
Asian Pac J Cancer Prev ; 25(5): 1497-1505, 2024 May 01.
Article En | MEDLINE | ID: mdl-38809621

BACKGROUND: Several studies of multi-drug regimens for osteosarcoma have shown different efficacies and are still controversial. Meanwhile, chemotherapy options have remained largely unchanged over a couple of decades. This study is designed to ascertain the outcome and safety of Methotrexate, Doxorubicin, and Cisplatin regimen for chemotherapy in osteosarcoma patients through the utilization of meta-analysis. METHODS: We interrogated trials that compared the MAP regimen with other regimens as chemotherapy for osteosarcoma from several databases encompassing PubMed, Science Direct, and grey literature (Google Scholar) until December 2022. The analyzed outcomes including Event-Free Survival (EFS), Overall Survival (OS), Tumor Necrosis (TN) rate, and Adverse Event (AE) were then analyzed using RevMan 5.4 software in fixed or random effect models. RESULTS: Our meta-analysis comprised 8 prospective articles that evaluated a cumulative number of 2920 OS patients. The analysis results indicated no meaningful difference in 5-year EFS (OR=0.99, 95% CI=0.77-1.27, [P = 0.91]) and neoadjuvant chemotherapy response (TN) (OR=0.76, 95% CI=0.49-1.17, [P = 0.22]) between the MAP and control groups. Furthermore, 5-year OS analysis revealed a significant association in the control group (OR=0.82, 95% CI=0.68-0.99, [P = 0.04]). However, the control group was associated with statistically meaningful AE compared to the MAP group, particularly in thrombocytopenia (OR=0.46, 95% CI=0.23-0.90, [P = 0.02]) and fever (OR=0.34, 95% CI=0.26-0.46, [P < 0.00001]). CONCLUSION: The present meta-analysis showed that the MAP regimen remains preferable in treating osteosarcoma patients despite no significant outcome compared to the other regimens considering the less frequent AE in the MAP regimen.


Antineoplastic Combined Chemotherapy Protocols , Bone Neoplasms , Cisplatin , Doxorubicin , Methotrexate , Osteosarcoma , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/mortality , Humans , Methotrexate/administration & dosage , Methotrexate/adverse effects , Doxorubicin/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/administration & dosage , Cisplatin/administration & dosage , Cisplatin/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Patient Safety , Prognosis , Survival Rate , Treatment Outcome
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124389, 2024 Sep 05.
Article En | MEDLINE | ID: mdl-38710137

Over the years, osteosarcoma therapy has had a significative improvement with the use of a multidrug regime strategy, increasing the survival rates from less than 20 % to circa 70 %. Different types of development of new antineoplastic agents are critical to achieve irreversible damage to cancer cells, while preserving the integrity of their healthy counterparts. In the present study, complexes with two and three Pd(II) centres linked by the biogenic polyamines: spermine (Pd2SpmCl4) and spermidine (Pd3Spd2Cl6) were tested against non-malignant (osteoblasts, HOb) and cancer (osteosarcoma, MG-63) human cell lines. Either alone or in combination according to the EURAMOS-1 protocol, they were used versus cisplatin as a drug reference. By evaluating the cytotoxic effects of both therapeutic approaches (single and drug combination) in HOb and MG-63 cell lines, the selective anti-tumoral potential is assessed. To understand the different treatments at a molecular level, Synchrotron Radiation Fourier Transform Infrared and Raman microspectroscopies were applied. Principal component analysis and hierarchical cluster analysis are applied to the vibrational data, revealing the major metabolic changes caused by each drug, which were found to rely on DNA, lipids, and proteins, acting as biomarkers of drug-to-cell impact. The main changes were observed for the B-DNA native conformation to either Z-DNA (higher in the presence of polynuclear complexes) or A-DNA (preferably after cisplatin exposure). Additionally, a higher effect upon variation in proteins content was detected in drug combination when compared to single drug administration proving the efficacy of the EURAMOS-1 protocol with the new drugs tested.


Antineoplastic Agents , Osteosarcoma , Spectrum Analysis, Raman , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Osteosarcoma/metabolism , Spectrum Analysis, Raman/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Spectroscopy, Fourier Transform Infrared/methods , Vibration , Spermine/pharmacology , Spermine/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Spermidine/pharmacology , Spermidine/chemistry , Principal Component Analysis , Cell Survival/drug effects
13.
Colloids Surf B Biointerfaces ; 239: 113937, 2024 Jul.
Article En | MEDLINE | ID: mdl-38749166

Osteosarcoma conventional chemotherapeutics are known for their side effects, limited options, and induction of drug resistance. This creates the need to develop new therapeutics capable of effectively destroying cancer cells with low toxicity, improving patient survival rate and their life quality. This work reports a novel drug delivery nanoplataform made of Natural Melanin Nanoparticles (MNPs), obtained from Sepia officinalis ink, with 99% incorporation efficiency of doxorubicin (Dox) without the use of non-toxic solvents. A significant photothermal effect was shown by a 36ºC increment after 10 min of laser irradiation, surpassing reported values for synthetic melanin. A sustained drug release of ca. 23% with photothermal stimuli was observed, compared to 15% without stimuli, after 48 h. This nanoplatform is obtained as a food industry side product, which makes it a natural cost-effective biomedical material. Natural MPs were applied in an osteosarcoma cell line (SaOs-2), and internalized by the cells in less than 2 h, showing cytocompatibility up to 1000 µg/mL after 72 h of contact with cells. On the contrary, when natural MNPs loaded with Dox (Dox-MNPs) were placed in contact with the SaOs-2 cells and were simultaneously receiving NIR light it was observed a 93% reduction in cancer cells in 48 h, revealing a synergistic effect between chemotherapy and phototherapy. To our knowledge this is the first time that natural MNPs extracted from Sepia officinalis were tested on an osteosarcoma cell line as chemo-photothermal agent, showing these NPs are an effective, cost-effective, reproducible, non-toxic nanoplatform for osteosarcoma treatment using combined effects.


Cell Survival , Doxorubicin , Melanins , Nanoparticles , Osteosarcoma , Sepia , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Melanins/metabolism , Nanoparticles/chemistry , Sepia/chemistry , Cell Survival/drug effects , Cell Line, Tumor , Drug Liberation , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Particle Size , Cost-Benefit Analysis , Drug Screening Assays, Antitumor
14.
Clin Transl Med ; 14(5): e1670, 2024 May.
Article En | MEDLINE | ID: mdl-38689429

BACKGROUND: Treatment for osteosarcoma, a paediatric bone cancer with no therapeutic advances in over three decades, is limited by a lack of targeted therapies. Osteosarcoma frequently metastasises to the lungs, and only 20% of patients survive 5 years after the diagnosis of metastatic disease. We found that WNT5B is the most abundant WNT expressed in osteosarcoma tumours and its expression correlates with metastasis, histologic subtype and reduced survival. METHODS: Using tumor-spheroids to model cancer stem-like cells, we performed qPCR, immunoblotting, and immunofluorescence to monitor changes in gene and protein expression. Additionally, we measured sphere size, migration and forming efficiency to monitor phenotypic changes. Therefore, we characterised WNT5B's relevance to cancer stem-like cells, metastasis, and chemoresistance and evaluated its potential as a therapeutic target. RESULTS: In osteosarcoma cell lines and patient-derived spheres, WNT5B is enriched in stem cells and induces the expression of the stemness gene SOX2. WNT5B promotes sphere size, sphere-forming efficiency, and cell proliferation, migration, and chemoresistance to methotrexate (but not cisplatin or doxorubicin) in spheres formed from conventional cell lines and patient-derived xenografts. In vivo, WNT5B increased osteosarcoma lung and liver metastasis and inhibited the glycosaminoglycan hyaluronic acid via upregulation of hyaluronidase 1 (HYAL1), leading to changes in the tumour microenvironment. Further, we identified that WNT5B mRNA and protein correlate with the receptor ROR1 in primary tumours. Targeting WNT5B through inhibition of WNT/ROR1 signalling with an antibody to ROR1 reduced stemness properties, including chemoresistance, sphere size and SOX2 expression. CONCLUSIONS: Together, these data define WNT5B's role in driving osteosarcoma cancer stem cell expansion and methotrexate resistance and provide evidence that the WNT5B pathway is a promising candidate for treating osteosarcoma patients. KEY POINTS: WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2. WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo. The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis. Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.


Drug Resistance, Neoplasm , Osteosarcoma , Wnt Proteins , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Humans , Drug Resistance, Neoplasm/genetics , Wnt Proteins/metabolism , Wnt Proteins/genetics , Animals , Mice , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/drug therapy , Neoplasm Metastasis/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Cell Line, Tumor
15.
Cancer J ; 30(3): 133-139, 2024.
Article En | MEDLINE | ID: mdl-38753746

PURPOSE: In this study, we used a series of immunohistochemical measurements of 2 cell cycle regulators, p16 and p21, to evaluate their prognostic value, separately and in combination, for the disease outcomes. METHOD: A total of 101 patients with high-grade osteosarcoma were included in this study. Clinicopathologic data were collected, and immunohistochemistry for p16 and p21 was performed and interpreted by 3 independent pathologists. Statistical analysis was performed to assess the strength of each of these markers relative to disease outcome. RESULTS: Our results indicate that more than 90% expression (high) of p16 by immunohistochemistry on the initial biopsy has a strong predictive value for good histologic response to chemotherapy. The patients are also more likely to survive the past 5 years and less likely to develop metastasis than patients with less than 90% p16 (low) expression. The results for p21, on the other hand, show a unique pattern of relationship to the clinicopathologic outcomes of the disease. Patients with less than 1% (low) or more than 50% (high) expression of p21 by immunohistochemistry show a higher chance of metastasis, poor necrotic response to chemotherapy, and an overall decreased survival rate when compared with p21 expression between 1% and 50% (moderate). Our results also showed that the expression of p16 and combined p16 and p21 demonstrates a stronger predictive relationship to 5-year survival than tumor histologic necrosis and p21 alone. DISCUSSION: The results of this study, once proven to be reproducible by a larger number of patients, will be valuable in the initial assessment and risk stratification of the patients for treatment and possibly the clinical trials.


Biomarkers, Tumor , Bone Neoplasms , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p21 , Osteosarcoma , Humans , Osteosarcoma/mortality , Osteosarcoma/pathology , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/diagnosis , Osteosarcoma/therapy , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Male , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Adult , Prognosis , Adolescent , Bone Neoplasms/pathology , Bone Neoplasms/mortality , Bone Neoplasms/metabolism , Child , Biomarkers, Tumor/metabolism , Young Adult , Middle Aged , Immunohistochemistry , Neoplasm Grading , Cell Cycle Checkpoints , Aged
16.
Medicine (Baltimore) ; 103(20): e38261, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758844

OBJECTIVE: To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS: Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS: Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION: Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.


Bone Neoplasms , Computational Biology , Drugs, Chinese Herbal , Molecular Docking Simulation , Morus , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Gene Expression Regulation, Neoplastic , Medicine, Chinese Traditional/methods , Survivin/metabolism , Survivin/genetics , Cyclin D1/metabolism , Cyclin D1/genetics
17.
Sci Rep ; 14(1): 11056, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744935

Osteosarcoma is the most common malignant bone cancer in pediatric patients. Patients who respond poorly to chemotherapy experience worse clinical outcomes with a high mortality rate. The major challenge is the lack of effective drugs for these patients. To introduce new drugs for clinical approval, preclinical studies based on in vitro models must demonstrate the potency of the tested drugs, enabling the drugs to enter phase 1 clinical trials. Patient-derived cell culture is a promising testing platform for in vitro studies, as they more accurately recapitulate cancer states and genetic profiles compared to cell lines. In the present study, we established patient-derived osteosarcoma cells (PDC) from a patient who had previously been diagnosed with retinoblastoma. We identified a new variant of a germline mutation in the RB1 gene in the tissue of the patient. The biological effects of this PDC were studied to observe whether the cryopreserved PDC retained a feature of fresh PDC. The cryopreserved PDC preserved the key biological effects, including cell growth, invasive capability, migration, and mineralization, that define the conserved phenotypes compared to fresh PDC. From whole genome sequencing analysis of osteosarcoma tissue and patient-derived cells, we found that cryopreserved PDC was a minor population in the origin tissue and was selectively grown under the culture conditions. The cryopreserved PDC has a high resistance to conventional chemotherapy. This study demonstrated that the established cryopreserved PDC has the aggressive characteristics of osteosarcoma, in particular the chemoresistance phenotype that might be used for further investigation in the chemoresistant mechanism of osteosarcoma. In conclusion, the approach we applied for primary cell culture might be a promising method to generate in vitro models for functional testing of osteosarcoma.


Bone Neoplasms , Osteosarcoma , Retinoblastoma , Humans , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Retinoblastoma/genetics , Retinoblastoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Cell Line, Tumor , Retinoblastoma Binding Proteins/genetics , Cell Proliferation , Germ-Line Mutation , Cryopreservation , Male , Gene Expression Profiling , Cell Movement/genetics
18.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750519

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Bone Regeneration , Calcium Phosphates , Osteogenesis , Osteosarcoma , Tissue Scaffolds , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Animals , Bone Regeneration/drug effects , Tissue Scaffolds/chemistry , Rabbits , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Osteogenesis/drug effects , Polyesters/chemistry , Humans , Cell Differentiation/drug effects , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Cell Line, Tumor , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Schwann Cells/drug effects , Nanofibers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Selenium/chemistry , Selenium/pharmacology
19.
Drug Dev Res ; 85(3): e22195, 2024 May.
Article En | MEDLINE | ID: mdl-38704831

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Hemodynamics , Neovascularization, Pathologic , Noscapine , Zebrafish , Animals , Humans , Noscapine/pharmacology , Cell Line, Tumor , Hemodynamics/drug effects , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/pharmacology , Hypoxia , Cell Movement/drug effects , Embryo, Nonmammalian/drug effects , Osteosarcoma/drug therapy , Angiogenesis
20.
Oncol Res ; 32(4): 691-702, 2024.
Article En | MEDLINE | ID: mdl-38560565

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Bone Neoplasms , Chlorophyllides , Nanoparticles , Neoplasms , Osteosarcoma , Photochemotherapy , Humans , CD47 Antigen , Cell Line, Tumor , Osteosarcoma/drug therapy , Immunotherapy , Bone Neoplasms/drug therapy , Hydrogen-Ion Concentration , Tumor Microenvironment
...