Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 208.520
1.
Food Res Int ; 188: 114341, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823851

Spatiotemporal assessment of lipid and protein oxidation is key for understanding quality deterioration in emulsified food products containing polyunsaturated fatty acids. In this work, we first mechanistically validated the use of the lipid oxidation-sensitive fluorophore BODIPY 665/676 as a semi-quantitative marker for local peroxyl radical formation. Next, we assessed the impact of microfluidic and colloid mill emulsification (respectively producing mono- and polydisperse droplets) on local protein and lipid oxidation kinetics in whey protein isolate (WPI)-stabilized emulsions. We further used BODIPY 581/591 C11 and CAMPO-AFDye 647 as colocalisation markers for lipid and protein oxidation. The polydisperse emulsions showed an inverse relation between droplet size and lipid oxidation rate. Further, we observed less protein and lipid oxidation occurring in similar sized droplets in monodisperse emulsions. This observation was linked to more heterogeneous protein packing at the droplet surface during colloid mill emulsification, resulting in larger inter-droplet heterogeneity in both protein and lipid oxidation. Our findings indicate the critical roles of emulsification methods and droplet sizes in understanding and managing lipid oxidation.


Emulsions , Oxidation-Reduction , Particle Size , Whey Proteins , Whey Proteins/chemistry , Emulsions/chemistry , Boron Compounds/chemistry , Kinetics , Peroxides/chemistry , Lipids/chemistry
2.
Food Res Int ; 188: 114461, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823861

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
3.
J Oleo Sci ; 73(6): 847-855, 2024.
Article En | MEDLINE | ID: mdl-38825538

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of 13C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired 13CO2 levels. *C18:2-EE-OOH and *C18:1-EE-OOH were ß-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid ß-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via ß-oxidation.


Carbon Dioxide , Carbon Isotopes , Linoleic Acid , Oleic Acid , Oxidation-Reduction , Animals , Oleic Acid/metabolism , Oleic Acid/chemistry , Linoleic Acid/metabolism , Linoleic Acid/chemistry , Carbon Dioxide/metabolism , Carbon Dioxide/chemistry , Mice , Male , Hydrogen Peroxide/metabolism
4.
J Oleo Sci ; 73(6): 857-863, 2024.
Article En | MEDLINE | ID: mdl-38825539

The hybridization of lipids with graphene is expected to produce a promising, novel biomaterial. However, there are limited examples of the covalent introduction of lipid molecules, especially the immobilization of lipid molecules, onto graphene on a substrate. Therefore, we investigated the hybridization of a silane coupling agent having phospholipid moieties with graphene oxide on substrates prepared by photo-oxidation using chlorine dioxide. Three silane coupling agents with different carbon chain lengths (C4, C6, C8) were synthesized and phospholipid molecules were introduced onto graphene on a substrate. Phospholipid-immobilized graphene on a grid for TEM (transmission electron microscope) was used for EM analysis of proteins (glyceraldehyde 3-phosphate dehydrogenase and ß-galactosidase), enabling the observation of sufficient particles compared to the conventional graphene grid.


Graphite , Phospholipids , Silanes , Graphite/chemistry , Phospholipids/chemistry , Silanes/chemistry , beta-Galactosidase/metabolism , Microscopy, Electron, Transmission , Oxidation-Reduction , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis
5.
Zhonghua Nei Ke Za Zhi ; 63(6): 593-599, 2024 Jun 01.
Article Zh | MEDLINE | ID: mdl-38825928

Objective: To investigate the feasibility of 3.0 T glutamate chemical exchange saturation transfer (GluCEST) imaging in evaluating renal redox metabolism in renal ischemia-reperfusion injury (IRI). Methods: Rabbits in the IRI group (n=56) underwent surgery by clamping the left renal artery for 45 min and then releasing to establish IRI. Rabbits in the sham group (n=8) underwent the same operation without clamping the left renal artery. GluCEST MRI was performed before and at 1 h, 12 h, 1 day, 3 days, 7 days, and 14 days after the operations, with eight rabbits in the IRI group sacrificed immediately after each scanning and eight in the sham group sacrificed at 14 days after scanning. The left kidneys were removed for histopathological examination and reactive oxygen species (ROS) fluorescence staining. Differences in the magnetic resonance ratio asymmetry (MTRasym) of the renal cortex and outer medulla among different groups were compared. Correlations between the MTRasym and ROS were analyzed. Results: The MTRasym of the renal cortex in the sham and IRI subgroups were higher than that of the outer medulla (t=8.16, P<0.001; t=4.78, P=0.002; t=4.94, P=0.002; t=5.76, P=0.001, t=6.68, P<0.001; t=6.40, P<0.001; t=5.16, P=0.001; t=3.30, P=0.013). The MTRasym of the renal cortex and outer medulla in the IRI-1h, IRI-12h, IRI-1d, IRI-3d, IRI-7d, and IRI-14d groups were lower than in the sham and IRI-pre groups (all P<0.05). The MTRasym of the renal cortex and outer medulla in the IRI-1h group were lower than in the IRI-12h, IRI-1d, IRI-3d, IRI-7d, and IRI-14d groups (all P<0.05). The MTRasym of the renal cortex in the IRI-12h group was lower than in the IRI-7d and IRI-14d groups (1.84%±0.09% vs.2.42%±0.19%, 2.41%±0.31%, all P<0.05). The MTRasym of the renal cortex in the IRI-1d group was lower than in the IRI-7d group (1.99%±0.17% vs. 2.42%±0.19%, P=0.008). The MTRasym of the outer medulla in the IRI-12h group was lower than in the IRI-3d, IRI-7d, and IRI-14d groups (1.32%±0.27% vs. 1.79%±0.31%, 1.98%±0.18%, 1.66%±0.40%, respectively, all P<0.05]. The MTRasym of the outer medulla in the IRI-7d group was higher than in the IRI-1d and IRI-14d groups (1.98%±0.18% vs. 1.52%±0.31%, 1.66%±0.40%, all P<0.05). The MTRasym of the renal cortex and outer medulla had a strong negative correlation with the mean fluorescence intensity of ROS (ρ=-0.889, P<0.001; ρ=-0.784, P<0.001). Conclusion: 3.0 T GluCEST imaging can indirectly reflect the changes of renal redox metabolism in renal IRI.


Kidney , Magnetic Resonance Imaging , Oxidation-Reduction , Reperfusion Injury , Animals , Rabbits , Reperfusion Injury/metabolism , Magnetic Resonance Imaging/methods , Kidney/metabolism , Kidney/diagnostic imaging , Male , Disease Models, Animal
6.
Food Res Int ; 188: 114485, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823871

Whey protein isolate (WPI) is mainly composed of ß-lactoglobulin (ß-LG), α-lactalbumin (α-LA) and bovine serum albumin (BSA). The aim of this study was to compare and analyze the influence of WPI and its three main constituent proteins, as well as proportionally reconstituted WPI (R-WPI) on resveratrol. It was found that the storage stability of resveratrol was protected by WPI, not affected by R-WPI, but reduced by individual whey proteins at 45°C for 30 days. The rank of accelerated degradation of resveratrol by individual whey proteins was BSA > α-LA > ß-LG. The antioxidant activity, localization of resveratrol and oxidation of carrier proteins were determined by ABTS, H2O2 assay, synchronous fluorescence, carbonyl and circular dichroism. The non-covalent interactions and disulfide bonds between constituent proteins improved the antioxidant activity of the R-WPI-resveratrol complex, the oxidation stability of the carrier and the solvent shielding effect on resveratrol, which synergistically inhibited the degradation of resveratrol in R-WPI system. The results gave insight into elucidating the interaction mechanism of resveratrol with protein carriers.


Antioxidants , Lactalbumin , Lactoglobulins , Oxidation-Reduction , Resveratrol , Serum Albumin, Bovine , Whey Proteins , Resveratrol/chemistry , Resveratrol/pharmacology , Whey Proteins/chemistry , Lactalbumin/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Lactoglobulins/chemistry , Serum Albumin, Bovine/chemistry , Circular Dichroism
7.
Water Sci Technol ; 89(10): 2593-2604, 2024 May.
Article En | MEDLINE | ID: mdl-38822602

The number of published literature on the effect of ultrasonic cavitation and advanced oxidation pretreatment on the dewatering performance of anaerobically digested sludge is very limited. This study aims at determining the optimum operating conditions of large-scale filtering centrifuges in wastewater treatment plants. The optimum dose of hydrogen peroxide, ultrasonic power, ultrasonic duration, ultrasonic pulse and particle size distribution for improved dewatering performance were determined in this study. In addition, shear stress-shear rate and viscosity-shear rate rheograms were developed to show the rheological flow properties for varying ultrasonic power and treatment duration. Optimum sonication power, time, pulse and amplitude were determined to be 14 W, 1 min, 55/5 and 20%, respectively. At a pH of 6.8, the optimum concentration of hydrogen peroxide was found to be 43.5 g/L. The optimum hydrogen peroxide dose in the combined conditioning experiments was determined to be 500 mg/L at a pH of 3. Under these optimum conditions, capillary suction time was reduced significantly by 71.1%. This study helps to reduce polymer consumption and provides the optimum pretreatment and dewatering operating conditions, and better monitoring and control in the dewatering unit has significant impact in the overall economy of wastewater treatment plants.


Hydrogen Peroxide , Oxidation-Reduction , Sewage , Waste Disposal, Fluid , Sewage/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Ultrasonics/methods , Hydrogen-Ion Concentration
8.
Yakugaku Zasshi ; 144(6): 651-657, 2024.
Article Ja | MEDLINE | ID: mdl-38825474

Microbial exudates including siderophore, which changes chemical species of actinides and lanthanides. We have investigated effects of desferrioxamine B (DFOB; one of the siderophores) and siderophore-like organic molecules (SLOM) on the adsorption of lanthanides by microbial cells, aluminium oxide (Al2O3), and manganese (Mn) oxides. When DFOB was present, the distribution coefficients of cerium (Ce) were measured to be lower than those of neighboring elements of lanthanum (La) and praseodymium (Pr) (Negative anomaly of Ce adsorption). Even though initial oxidation state of Ce in the solution was III, that was changed to IV after the addition of DFOB, indicating that Ce(III) was oxidized by forming complex with DFOB. When lanthanides were adsorbed by biogenic Mn(IV) oxides, negative anomaly of Ce adsorption was observed in the sorption in alkaline solution. Ce(III) was oxidized to forme the complexes of Ce(IV) with SLOM in the solution. These results show that siderophore possesses high performance of oxidation of Ce(III) to Ce(IV) during association, affectiong the adsorption behavior of Ce. After Fukushima accident, radioactive Cs accumulation by Eleutherococcus sciadophylloides (Koshiabura) caused by the dissolution of Fe from soil around the roots, that was dominated by siderophore releasing microorganisms (SB). These SBs may enhance dissolution of iron (Fe) and uranium (U) phases in the nuclear fuel debris formed in the nuclear reactors in Fukushima Daiichi nuclear power plant. Thus, in the interaction between microorganisms and radionuclides, SLOMs discharged by microorganisms are deeply involved in the chemical state change of radionuclides.


Oxidation-Reduction , Siderophores , Adsorption , Deferoxamine/metabolism , Aluminum Oxide/chemistry , Lanthanoid Series Elements/chemistry , Manganese Compounds/chemistry , Oxides , Cerium , Radioisotopes
9.
J Toxicol Sci ; 49(6): 261-268, 2024.
Article En | MEDLINE | ID: mdl-38825485

Zolpidem, N,N-dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide, is a hypnotic agent widely used in clinical practice but is detected in many clinical cases of fatal intoxication and suicide. In forensic toxicology, the precise determination of zolpidem concentration in blood is a must to provide concrete evidence of death by zolpidem poisoning. However, the concentrations of zolpidem in blood at autopsy often differ from those at the estimated time of death. In the present study, we found that zolpidem was degraded by hemoglobin (Hb) via the Fenton reaction at various temperatures. The mechanism underlying zolpidem degradation involved the oxidation of its linker moiety. The MS and MS/MS spectra obtained by liquid chromatography quadrupole-Orbitrap mass spectrometry (LC-Q-Orbitrap-MS) showed the formation of 2-hydroxy-N,N-dimethyl-2-(6-methyl-2-(p-tolyl)imidazo[1,2-a]pyridin-3-yl)acetamide (2-OH ZOL) in Hb/H2O2 solution incubated with zolpidem and in the blood of several individuals who died from ingestion of zolpidem. These results suggest that 2-OH ZOL is the post-mortem product of zolpidem degradation by Hb via the Fenton reaction.


Hemoglobins , Hydrogen Peroxide , Tandem Mass Spectrometry , Zolpidem , Zolpidem/metabolism , Humans , Hemoglobins/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Hypnotics and Sedatives/blood , Hypnotics and Sedatives/chemistry , Forensic Toxicology/methods , Pyridines/blood , Autopsy , Chromatography, Liquid , Oxidation-Reduction , Postmortem Changes , Iron/metabolism
10.
Nat Microbiol ; 9(6): 1526-1539, 2024 Jun.
Article En | MEDLINE | ID: mdl-38839975

Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.


Carbon Cycle , Hydrothermal Vents , Polychaeta , Symbiosis , Hydrothermal Vents/microbiology , Animals , Polychaeta/metabolism , Oxidation-Reduction , Citric Acid Cycle , Sulfides/metabolism , Gene Expression Regulation, Bacterial , Hydrogenase/metabolism , Hydrogenase/genetics , Chemoautotrophic Growth , Gene Expression Profiling , Nitrates/metabolism , Photosynthesis , Bacteria/metabolism , Bacteria/genetics
11.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38833473

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Copper , Glutathione , Homeostasis , Oxidation-Reduction , Animals , Mice , Humans , Glutathione/metabolism , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxidative Stress/drug effects , Drug Synergism , Immunogenic Cell Death/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism
12.
J Long Term Eff Med Implants ; 34(4): 57-63, 2024.
Article En | MEDLINE | ID: mdl-38842233

The surface of dental implants has undergone multiple modifications across the timeline to enhance osseointegration, thereby enhancing the success of dental implants. This study compared the surface roughness, wettability and topography of sandblasted acid-etched, and oxidized titanium dental implants. Three commercially available implants-namely, SLA, SLActive, and TiUnite-were evaluated for surface roughness in terms of Ra, Rq, and Rz; wettability in terms of contact angle (CA); and topography using scanning electron microscopy (SEM). Roughness and wettability values were compared between the three surfaces by ANOVA and pairwise comparison by Tukey's HSD post hoc testing using SPSS Software. A p value of < 0.01 was considered to be statistically significant. The TiUnite surface exhibited the highest roughness values (Ra = 1.91 ± 0.006 µm, Rq = 2.99 ± 0.005 µm, Rz = 8.37 ± 0.003 µm) followed by the SLA and SLActive surfaces. The contact angles of the SLA, SLActive, and TiUnite dental implants were 98.44 ± 0.52°, 9 ± 0.03°, and 94.39 ± 0.08°, respectively. These data demonstrated statistically significant differences between the three surfaces (p < 0.01). There were no distinct differences in SEM features between the SLA and SLActive surfaces. However, the TiUnite surface exhibited a distinctly porous morphology. Oxidized dental implants differ from sandblasted acid-etched implants in terms of roughness, wettability, and surface topography.


Acid Etching, Dental , Dental Implants , Microscopy, Electron, Scanning , Oxidation-Reduction , Surface Properties , Titanium , Wettability , Titanium/chemistry , Materials Testing , Humans
13.
Mikrochim Acta ; 191(7): 365, 2024 06 04.
Article En | MEDLINE | ID: mdl-38831060

Copper-cobalt bimetallic nitrogen-doped carbon-based nanoenzymatic materials (CuCo@NC) were synthesized using a one-step pyrolysis process. A three-channel colorimetric sensor array was constructed for the detection of seven antioxidants, including cysteine (Cys), uric acid (UA), tea polyphenols (TP), lysine (Lys), ascorbic acid (AA), glutathione (GSH), and dopamine (DA). CuCo@NC with peroxidase activity was used to catalyze the oxidation of TMB by H2O2 at three different ratios of metal sites. The ability of various antioxidants to reduce the oxidation products of TMB (ox TMB) varied, leading to distinct absorbance changes. Linear discriminant analysis (LDA) results showed that the sensor array was capable of detecting seven antioxidants in buffer and serum samples. It could successfully discriminate antioxidants with a minimum concentration of 10 nM. Thus, multifunctional sensor arrays based on CuCo@NC bimetallic nanoenzymes not only offer a promising strategy for identifying various antioxidants but also expand their applications in medical diagnostics and environmental analysis of food.


Antioxidants , Carbon , Colorimetry , Copper , Nitrogen , Nitrogen/chemistry , Colorimetry/methods , Carbon/chemistry , Antioxidants/chemistry , Antioxidants/analysis , Copper/chemistry , Cobalt/chemistry , Hydrogen Peroxide/chemistry , Humans , Catalysis , Limit of Detection , Glutathione/chemistry , Glutathione/blood , Dopamine/blood , Dopamine/analysis , Dopamine/chemistry , Benzidines/chemistry , Polyphenols/chemistry , Polyphenols/analysis , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analysis , Oxidation-Reduction , Uric Acid/blood , Uric Acid/chemistry , Uric Acid/analysis , Cysteine/chemistry , Cysteine/blood
14.
Water Environ Res ; 96(6): e11058, 2024 Jun.
Article En | MEDLINE | ID: mdl-38831682

Ni-Mn@KL ozone catalyst was prepared for the efficient treatment of reverse osmosis membrane concentrates. The working conditions and reaction mechanism of the ozone-catalyzed oxidation by Ni-Mn@KL were systematically studied. Then, a comprehensive CRITIC weighting-coupling coordination evaluation model was established. Ni-Mn@KL was characterized by scanning electron microscopy, BET, X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive spectrometry, and X-ray fluorescence spectrometry and found to have large specific surface area and homogeneous surface dispersion of striped particles. Under the optimum working conditions with an initial pH of 7.9 (raw water), a reaction height-to-diameter ratio of 10:1, an ozone-aeration intensity of 0.3 L/min, and a catalyst filling rate of 10%, the maximum COD removal rate was 60.5%. Free-radical quenching experiments showed that OH oxidation played a dominant role in the Ni-Mn@KL-catalyzed ozone-oxidation system, and the reaction system conformed to the second-order reaction kinetics law. Ni-Mn@KL catalysts were further confirmed to have good catalytic performance and mechanical performance after repeated utilization. PRACTITIONER POINTS: Ni-Mn@KL catalyst can achieve effective treatment of RO film concentrated liquid. High COD removal rate of RO membrane concentrated liquid was obtained at low cost. Ni-Mn@KL catalyst promotes ozone decomposition to produce ·OH and O2 -· oxidized organic matter. The Ni-Mn@KL catalyst can maintain good stability after repeated use. A CRITIC weight-coupling coordination model was established to evaluate the catalytic ozonation.


Membranes, Artificial , Osmosis , Ozone , Water Purification , Ozone/chemistry , Catalysis , Water Purification/methods , Waste Disposal, Fluid/methods , Oxidation-Reduction
15.
Mol Biol Rep ; 51(1): 723, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833199

BACKGROUND: Glioblastoma multiforme, a deadly form of brain tumor, is characterized by aggressive growth and poor prognosis. Oxidative stress, a disruption in the balance between antioxidants and oxidants, is a crucial factor in its pathogenesis. Silymarin, a flavonoid extracted from milk thistle, has shown therapeutic potential in inhibiting cancer cell growth, promoting apoptosis, and reducing inflammation. It also regulates oxidative stress. This study aims to investigate the regulatory effects of silymarin on oxidative stress parameters, especially the transcription factor Nrf2 and its related enzymes in GBM cancer cells, to develop a new anti-cancer compound with low toxicity. METHODS AND RESULTS: First, the cytotoxicity of silymarin on U-87 MG cells was investigated by MTT and the results showed an IC50 of 264.6 µM. Then, some parameters of the redox system were measured with commercial kits, and the obtained results showed that silymarin increased the activity of catalase and superoxide dismutase enzymes, as well as the total antioxidant capacity levels; while the malondialdehyde level that is an indicator of lipid peroxidation was decreased by this compound. The expression level of Nrf2 and HO-1 and glutaredoxin and thioredoxin enzymes were checked by real-time PCR method, and the expression level increased significantly after treatment. CONCLUSIONS: Our findings suggest that silymarin may exert its cytotoxic and anticancer effects by enhancing the Nrf2/HO-1 pathway through antioxidant mechanisms in U-87 MG cells.


Antioxidants , Glioblastoma , NF-E2-Related Factor 2 , Oxidation-Reduction , Oxidative Stress , Silymarin , Silymarin/pharmacology , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Oxidation-Reduction/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects , Cell Survival/drug effects , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Catalase/metabolism , Catalase/genetics
16.
PLoS One ; 19(6): e0299312, 2024.
Article En | MEDLINE | ID: mdl-38843202

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Arecaceae , Cellulose , Fruit , Lignin , Oxidation-Reduction , Cellulose/chemistry , Fruit/chemistry , Arecaceae/chemistry , Lignin/chemistry , Nanofibers/chemistry , Palm Oil/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Hydrogen Peroxide/chemistry
17.
Planta Med ; 90(7-08): 554-560, 2024 Jun.
Article En | MEDLINE | ID: mdl-38843795

A selective Oxone-induced oxidation of oleocanthal and oleacein, the two main secoiridoids of olive oil, to their bis-oxidized products is described. This protocol is based on a Baeyer-Villiger mechanism and the concentration of Oxone in the final solution. The bis-oxidation of the aldehydic compounds could be extended for the synthesis of various semisynthetic analogs. The obtained acids exhibit strong antioxidant activity, being efficient free radical scavengers.


Aldehydes , Olive Oil , Oxidation-Reduction , Aldehydes/chemistry , Olive Oil/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Phenols/chemistry , Furans/chemistry , Cyclopentane Monoterpenes/chemistry
18.
J Environ Sci (China) ; 145: 152-163, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844316

Groundwater contamination near landfills is commonly caused by leachate leakage, and permeable reactive barriers (PRBs) are widely used for groundwater remediation. However, the deactivation and blockage of the reactive medium in PRBs limit their long-term effectiveness. In the current study, a new methodology was proposed for the in situ regeneration of PRB to remediate leachate-contaminated groundwater. CO2 coupled with oxidants was applied for the dispersion and regeneration of the fillers; by injecting CO2 to disperse the fillers, the permeability of the PRB was increased and the oxidants could flow evenly into the PRB. The results indicate that the optimum filler proportion was zero-valent iron (ZVI)/zeolites/activated carbon (AC) = 3:8:10 and the optimum oxidant proportion was COD/Na2S2O8/H2O2/Fe2+ = 1:5:6:5; the oxidation system of Fe2+/H2O2/S2O82- has a high oxidation efficiency and persistence. The average regeneration rate of zeolites was 72.71%, and the average regeneration rate of AC was 68.40%; the permeability of PRB also increased. This technology is effective for the remediation of landfills in China that have large contaminated areas, an uneven pollutant concentration distribution, and a long pollution duration. The purification mode of long-term adsorption and short-time in situ oxidation can be applied to the remediation of long-term high-concentration organically polluted groundwater, where pollution sources are difficult to cut off.


Carbon Dioxide , Environmental Restoration and Remediation , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Environmental Restoration and Remediation/methods , Carbon Dioxide/analysis , Oxidants/chemistry , China , Oxidation-Reduction
19.
J Environ Sci (China) ; 145: 107-116, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844311

High energy consumption has seriously hindered the development of Fenton-like reactions for the removal of refractory organic pollutants in water. To solve this problem, we designed a novel Fenton-like catalyst (Cu-PAN3) by coprecipitation and carbon thermal reduction. The catalyst exhibits excellent Fenton-like catalytic activity and stability for the degradation of various pollutants with low H2O2 consumption. The experimental results indicate that the dual reaction centers (DRCs) are composed of Cu-N-C and Cu-O-C bridges between copper and graphene-like carbon, which form electron-poor/rich centers on the catalyst surface. H2O2 is mainly reduced at electron-rich Cu centers to free radicals for pollutant degradation. Meanwhile, pollutants can be oxidized by donating electrons to the electron-poor C centers of the catalyst, which inhibits the ineffective decomposition of H2O2 at the electron-poor centers. This therefore significantly reduces the consumption of H2O2 and reduces energy consumption.


Hydrogen Peroxide , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Iron/chemistry , Oxidation-Reduction , Copper/chemistry , Models, Chemical
20.
J Environ Sci (China) ; 145: 180-192, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844318

A pilot-scale filtration system was adopted to prepare filter media with catalytic activity to remove manganese (Mn2+) and ammonium (NH4+-N). Three different combinations of oxidants (KMnO4 and K2FeO4) and reductants (MnSO4 and FeCl2) were used during the start-up period. Filter R3 started up by KMnO4 and FeCl2 (Mn7+→MnOx) exhibited excellent catalytic property, and the NH4+-N and Mn2+ removal efficiency reached over 80% on the 10th and 35th days, respectively. Filter R1 started up by K2FeO4 and MnSO4 (MnOx←Mn2+) exhibited the worst catalytic property. Filter R2 started up by KMnO4 and MnSO4 (Mn7+→MnOx←Mn2+) were in between. According to Zeta potential results, the Mn-based oxides (MnOx) formed by Mn7+→MnOx performed the highest pHIEP and pHPZC. The higher the pHIEP and pHPZC, the more unfavorable the cation adsorption. However, it was inconsistent with its excellent Mn2+ and NH4+-N removal abilities, implying that catalytic oxidation played a key role. Combined with XRD and XPS analysis, the results showed that the MnOx produced by the reduction of KMnO4 showed early formation of buserite crystals, high degree of amorphous, high content of Mn3+ and lattice oxygen with the higher activity to form defects. The above results showed that MnOx produced by the reduction of KMnO4 was more conducive to the formation of active species for catalytic oxidation of NH4+-N and Mn2+ removal. This study provides new insights on the formation mechanisms of the active MnOx that could catalytic oxidation of NH4+-N and Mn2+.


Ammonium Compounds , Filtration , Manganese , Oxides , Manganese/chemistry , Oxides/chemistry , Ammonium Compounds/chemistry , Filtration/methods , Water Pollutants, Chemical/chemistry , Potassium Permanganate/chemistry , Manganese Compounds/chemistry , Oxidation-Reduction , Waste Disposal, Fluid/methods , Potassium Compounds/chemistry , Adsorption , Ferric Compounds/chemistry , Iron Compounds
...