Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.961
1.
Biochemistry (Mosc) ; 89(4): 701-710, 2024 Apr.
Article En | MEDLINE | ID: mdl-38831506

Many microorganisms are capable of anaerobic respiration in the absence of oxygen, by using different organic compounds as terminal acceptors in electron transport chain. We identify here an anaerobic respiratory chain protein responsible for acrylate reduction in the marine bacterium Shewanella woodyi. When the periplasmic proteins of S. woodyi were separated by ion exchange chromatography, acrylate reductase activity copurified with an ArdA protein (Swoo_0275). Heterologous expression of S. woodyi ardA gene (swoo_0275) in Shewanella oneidensis MR-1 cells did not result in the appearance in them of periplasmic acrylate reductase activity, but such activity was detected when the ardA gene was co-expressed with an ardB gene (swoo_0276). Together, these genes encode flavocytochrome c ArdAB, which is thus responsible for acrylate reduction in S. woodyi cells. ArdAB was highly specific for acrylate as substrate and reduced only methacrylate (at a 22-fold lower rate) among a series of other tested 2-enoates. In line with these findings, acrylate and methacrylate induced ardA gene expression in S. woodyi under anaerobic conditions, which was accompanied by the appearance of periplasmic acrylate reductase activity. ArdAB-linked acrylate reduction supports dimethylsulfoniopropionate-dependent anaerobic respiration in S. woodyi and, possibly, other marine bacteria.


Acrylates , Shewanella , Shewanella/enzymology , Shewanella/genetics , Shewanella/metabolism , Electron Transport , Acrylates/metabolism , Anaerobiosis , Oxidoreductases/metabolism , Oxidoreductases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
2.
PeerJ ; 12: e17462, 2024.
Article En | MEDLINE | ID: mdl-38827302

Cytokinin oxidase/dehydrogenase (CKX), responsible for irreversible cytokinin degradation, also controls plant growth and development and response to abiotic stress. While the CKX gene has been studied in other plants extensively, its function in cotton is still unknown. Therefore, a genome-wide study to identify the CKX gene family in the four cotton species was conducted using transcriptomics, quantitative real-time PCR (qRT-PCR) and bioinformatics. As a result, in G. hirsutum and G. barbadense (the tetraploid cotton species), 87 and 96 CKX genes respectively and 62 genes each in G. arboreum and G. raimondii, were identified. Based on the evolutionary studies, the cotton CKX gene family has been divided into five distinct subfamilies. It was observed that CKX genes in cotton have conserved sequence logos and gene family expansion was due to segmental duplication or whole genome duplication (WGD). Collinearity and multiple synteny studies showed an expansion of gene families during evolution and purifying selection pressure has been exerted. G. hirsutum CKX genes displayed multiple exons/introns, uneven chromosomal distribution, conserved protein motifs, and cis-elements related to growth and stress in their promoter regions. Cis-elements related to resistance, physiological metabolism and hormonal regulation were identified within the promoter regions of the CKX genes. Expression analysis under different stress conditions (cold, heat, drought and salt) revealed different expression patterns in the different tissues. Through virus-induced gene silencing (VIGS), the GhCKX34A gene was found to improve cold resistance by modulating antioxidant-related activity. Since GhCKX29A is highly expressed during fibre development, we hypothesize that the increased expression of GhCKX29A in fibres has significant effects on fibre elongation. Consequently, these results contribute to our understanding of the involvement of GhCKXs in both fibre development and response to abiotic stress.


Gene Expression Regulation, Plant , Gossypium , Oxidoreductases , Stress, Physiological , Gossypium/genetics , Stress, Physiological/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Cotton Fiber , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Phylogeny , Genome, Plant/genetics
3.
Sci Rep ; 14(1): 12753, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830975

Six Transmembrane Epithelial Antigen of Prostate 2 (STEAP2) belongs to a family of metalloreductases, which indirectly aid in uptake of iron and copper ions. Its role in hepatocellular carcinoma (HCC) remains to be characterized. Here, we report that STEAP2 expression was upregulated in HCC tumors compared with paired adjacent non-tumor tissues by RNA sequencing, RT-qPCR, Western blotting, and immunostaining. Public HCC datasets demonstrated upregulated STEAP2 expression in HCC and positive association with tumor grade. Transient and stable knockdown (KD) of STEAP2 in HCC cell lines abrogated their malignant phenotypes in vitro and in vivo, while STEAP2 overexpression showed opposite effects. STEAP2 KD in HCC cells led to significant alteration of genes associated with extracellular matrix organization, cell adhesion/chemotaxis, negative enrichment of an invasiveness signature gene set, and inhibition of cell migration/invasion. STEAP2 KD reduced intracellular copper levels and activation of stress-activated MAP kinases including p38 and JNK. Treatment with copper rescued the reduced HCC cell migration due to STEAP2 KD and activated p38 and JNK. Furthermore, treatment with p38 or JNK inhibitors significantly inhibited copper-mediated cell migration. Thus, STEAP2 plays a malignant-promoting role in HCC cells by driving migration/invasion via increased copper levels and MAP kinase activities. Our study uncovered a novel molecular mechanism contributing to HCC malignancy and a potential therapeutic target for HCC treatment.


Carcinoma, Hepatocellular , Cell Movement , Copper , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Copper/metabolism , Cell Line, Tumor , Animals , Gene Expression Regulation, Neoplastic , Mice , Disease Progression , Male , Oxidoreductases/metabolism , Oxidoreductases/genetics , Female
4.
Nat Commun ; 15(1): 3802, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714719

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Cryoelectron Microscopy , Ferritins , Nuclear Receptor Coactivators , Ferritins/metabolism , Ferritins/chemistry , Ferritins/genetics , Humans , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/chemistry , Nuclear Receptor Coactivators/genetics , Protein Binding , Binding Sites , Iron/metabolism , Autophagy , Models, Molecular , HEK293 Cells , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Proteolysis , Mutation
5.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714951

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
6.
Nat Commun ; 15(1): 4092, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750010

Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.


Nitrous Oxide , Serratia , Soil Microbiology , Nitrous Oxide/metabolism , Hydrogen-Ion Concentration , Serratia/metabolism , Serratia/genetics , Oxidation-Reduction , Soil/chemistry , Fermentation , Coculture Techniques , Pyruvic Acid/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Nitrogen/metabolism
7.
Nat Commun ; 15(1): 4158, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755143

Photosynthetic organisms, fungi, and animals comprise distinct pathways for vitamin C biosynthesis. Besides this diversity, the final biosynthetic step consistently involves an oxidation reaction carried out by the aldonolactone oxidoreductases. Here, we study the origin and evolution of the diversified activities and substrate preferences featured by these flavoenzymes using molecular phylogeny, kinetics, mutagenesis, and crystallographic experiments. We find clear evidence that they share a common ancestor. A flavin-interacting amino acid modulates the reactivity with the electron acceptors, including oxygen, and determines whether an enzyme functions as an oxidase or a dehydrogenase. We show that a few side chains in the catalytic cavity impart the reaction stereoselectivity. Ancestral sequence reconstruction outlines how these critical positions were affixed to specific amino acids along the evolution of the major eukaryotic clades. During Eukarya evolution, the aldonolactone oxidoreductases adapted to the varying metabolic demands while retaining their overarching vitamin C-generating function.


Ascorbic Acid , Evolution, Molecular , Phylogeny , Ascorbic Acid/biosynthesis , Ascorbic Acid/metabolism , Kinetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry , Crystallography, X-Ray , Oxidation-Reduction , Animals , Catalytic Domain , Substrate Specificity , Models, Molecular
8.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791581

Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.


Anthocyanins , Arabidopsis , Carthamus tinctorius , Droughts , Flavonols , Gene Expression Regulation, Plant , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Flavonols/metabolism , Anthocyanins/metabolism , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Plants, Genetically Modified , Oxidoreductases/metabolism , Oxidoreductases/genetics , Drought Resistance
9.
Appl Microbiol Biotechnol ; 108(1): 347, 2024 May 28.
Article En | MEDLINE | ID: mdl-38805033

Crop roots selectively recruit certain microbial taxa that are essential for supporting their growth. Within the recruited microbes, some taxa are consistently enriched in the rhizosphere across various locations and crop genotypes, while others are unique to specific planting sites or genotypes. Whether these differentially enriched taxa are different in community composition and how they interact with nutrient cycling need further investigation. Here, we sampled bulk soil and the rhizosphere soil of five soybean varieties grown in Shijiazhuang and Xuzhou, categorized the rhizosphere-enriched microbes into shared, site-specific, and variety-specific taxa, and analyzed their correlation with the diazotrophic communities and microbial genes involved in nitrogen (N) cycling. The shared taxa were dominated by Actinobacteria and Thaumarchaeota, the site-specific taxa were dominated by Actinobacteria in Shijiazhuang and by Nitrospirae in Xuzhou, while the variety-specific taxa were more evenly distributed in several phyla and contained many rare operational taxonomic units (OTUs). The rhizosphere-enriched taxa correlated with most diazotroph orders negatively but with eight orders including Rhizobiales positively. Each group within the shared, site-specific, and variety-specific taxa negatively correlated with bacterial amoA and narG in Shijiazhuang and positively correlated with archaeal amoA in Xuzhou. These results revealed that the shared, site-specific, and variety-specific taxa are distinct in community compositions but similar in associations with rhizosphere N-cycling functions. They exhibited potential in regulating the soybean roots' selection for high-efficiency diazotrophs and the ammonia-oxidizing and denitrification processes. This study provides new insights into soybean rhizosphere-enriched microbes and their association with N cycling. KEY POINTS: • Soybean rhizosphere affected diazotroph community and enriched nifH, amoA, and nosZ. • Shared and site- and variety-specific taxa were dominated by different phyla. • Rhizosphere-enriched taxa were similarly associated with N-cycle functions.


Bacteria , Glycine max , Rhizosphere , Soil Microbiology , Glycine max/microbiology , Glycine max/growth & development , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Plant Roots/microbiology , Nitrogen Cycle , Nitrogen/metabolism , Archaea/genetics , Archaea/classification , Archaea/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Nitrogen Fixation , Oxidoreductases/genetics , Microbiota
10.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713233

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Aldehydes , Ergot Alkaloids , Aldehydes/metabolism , Aldehydes/chemistry , Catalytic Domain , Ergot Alkaloids/biosynthesis , Ergot Alkaloids/chemistry , Ergot Alkaloids/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Oxidation-Reduction , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry
11.
Arch Microbiol ; 206(6): 281, 2024 May 28.
Article En | MEDLINE | ID: mdl-38805057

As a legume crop widely cultured in the world, faba bean (Vicia faba L.) forms root nodules with diverse Rhizobium species in different regions. However, the symbionts associated with this plant in Mexico have not been studied. To investigate the diversity and species/symbiovar affiliations of rhizobia associated with faba bean in Mexico, rhizobia were isolated from this plant grown in two Mexican sites in the present study. Based upon the analysis of recA gene phylogeny, two genotypes were distinguished among a total of 35 isolates, and they were identified as Rhizobium hidalgonense and Rhizobium redzepovicii, respectively, by the whole genomic sequence analysis. Both the species harbored identical nod gene cluster and the same phylogenetic positions of nodC and nifH. So, all of them were identified into the symbiovar viciae. As a minor group, R. hidalgonense was only isolated from slightly acid soil and R. redzepovicii was the dominant group in both the acid and neutral soils. In addition, several genes related to resistance to metals (zinc, copper etc.) and metalloids (arsenic) were detected in genomes of the reference isolates, which might offer them some adaptation benefits. As conclusion, the community composition of faba bean rhizobia in Mexico was different from those reported in other regions. Furthermore, our study identified sv. viciae as the second symbiovar in the species R. redzepovicii. These results added novel evidence about the co-evolution, diversification and biogeographic patterns of rhizobia in association with their host legumes in distinct geographic regions.


Phylogeny , Rhizobium , Soil Microbiology , Symbiosis , Vicia faba , Vicia faba/microbiology , Rhizobium/genetics , Rhizobium/isolation & purification , Rhizobium/classification , Mexico , Bacterial Proteins/genetics , Root Nodules, Plant/microbiology , Soil/chemistry , N-Acetylglucosaminyltransferases/genetics , Oxidoreductases/genetics , Rec A Recombinases/genetics , Multigene Family
12.
Ecotoxicol Environ Saf ; 279: 116385, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38772137

Heterotrophic nitrifying bacteria are found to be promising candidates for implementation in wastewater treatment systems due to their tolerance to extreme environments. A novel acid-resistant bacterium, Pseudomonas citronellolis YN-21, was isolated and reported to have exceptional heterotrophic nitrification capabilities in acidic condition. At pH 5, the highest NH4+ removal rate of 7.84 mg/L/h was displayed by YN-21, which was significantly higher than the NH4+ removal rates of other strains in neutral and alkaline environments. Remarkably, a distinct accumulation of NH2OH and NO3- was observed during NH4+ removal by strain YN-21, while traditional amo and hao genes were not detected in the genome, suggesting the possible presence of alternative nitrifying genes. Moreover, excellent nitrogen removal performance was displayed by YN-21 even under high concentrations of metal ion stress. Consequently, a broad application prospect in the treatment of leather wastewater and mine tailwater is offered by YN-21.


Nitrification , Pseudomonas , Wastewater , Pseudomonas/genetics , Pseudomonas/metabolism , Wastewater/microbiology , Hydrogen-Ion Concentration , Heterotrophic Processes , Oxidoreductases/genetics , Oxidoreductases/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Genes, Bacterial
13.
Chembiochem ; 25(11): e202400142, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38742957

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.


Butylene Glycols , Escherichia coli , Succinic Acid , Butylene Glycols/metabolism , Butylene Glycols/chemistry , Succinic Acid/metabolism , Succinic Acid/chemistry , Escherichia coli/metabolism , Escherichia coli/genetics , Biocatalysis , Alcohol Dehydrogenase/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Fermentation
14.
Microbes Environ ; 39(5)2024.
Article En | MEDLINE | ID: mdl-38811235

The extremely halophilic archaeon Haloarcula japonica accumulates the C50 carotenoid, bacterioruberin (BR). To reveal the BR biosynthetic pathway, unidentified phytoene desaturase candidates were functionally characterized in the present study. Two genes encoding the potential phytoene desaturases, c0507 and d1086, were found from the Ha. japonica genome sequence by a homology search using the Basic Local Align Search Tool. Disruption mutants of c0507 and d1086 and their complemented strains transformed with expression plasmids for c0507 and d1086 were subsequently constructed. High-performance liquid chromatography (HPLC) ana-lyses of carotenoids produced by these strains revealed that C0507 and D1086 were both bifunctional enzymes with the same activities as both phytoene desaturase (CrtI) and 3,4-desaturase (CrtD). C0507 and D1086 complemented each other during BR biosynthesis in Ha. japonica. This is the first study to identify two distinct enzymes with both CrtI and CrtD activities in an extremely halophilic archaeon.


Carotenoids , Haloarcula , Oxidoreductases , Carotenoids/metabolism , Haloarcula/genetics , Haloarcula/enzymology , Haloarcula/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Biosynthetic Pathways/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Genetic Complementation Test , Phylogeny
15.
Planta ; 259(6): 147, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714547

MAIN CONCLUSION: CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the taste and quality of tea. In this study, a NAC TF gene CsNAC086 was isolated from tea plants and confirmed its regulatory role in the expression of flavonol synthase which is a key gene involved in the biosynthesis of flavonols in tea plant. Yeast transcription-activity assays showed that CsNAC086 has self-activation activity. The transcriptional activator domain of CsNAC086 is located in the non-conserved C-terminal region (positions 171-550), while the conserved NAC domain (positions 1-170) does not have self-activation activity. Silencing the CsNAC086 gene using antisense oligonucleotides significantly decreased the expression of CsFLS. As a result, the concentration of flavonols decreased significantly. In overexpressing CsNAC086 tobacco leaves, the expression of NtFLS was significantly increased. Compared with wild-type tobacco, the flavonols concentration increased. Yeast one-hybrid assays showed CsNAC086 did not directly regulate the gene expression of CsFLS. These findings indicate that CsNAC086 plays a role in regulating flavonols biosynthesis in tea plants, which has important implications for selecting and breeding of high-flavonols-concentration containing tea-plant cultivars.


Camellia sinensis , Flavonols , Gene Expression Regulation, Plant , Nicotiana , Plant Proteins , Camellia sinensis/genetics , Camellia sinensis/metabolism , Flavonols/biosynthesis , Flavonols/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plants, Genetically Modified
16.
J Agric Food Chem ; 72(22): 12685-12695, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38771136

Halogenation plays a unique role in the design of agrochemicals. Enzymatic halogenation reactions have attracted great attention due to their excellent specificity and mild reaction conditions. S-adenosyl-l-methionine (SAM)-dependent halogenases mediate the nucleophilic attack of halide ions (X-) to SAM to produce 5'-XDA. However, only 11 SAM-dependent fluorinases and 3 chlorinases have been reported, highlighting the desire for additional halogenases. SAM-dependent hydroxide adenosyltransferase (HATase) has a similar reaction mechanism as halogenases but uses water as a substrate instead of halide ions. Here, we explored a HATase from the thermophile Thermotoga maritima MSB8 and transformed it into a halogenase. We identified a key dyad W8L/V71T for the halogenation reaction. We also obtained the best performing mutants for each halogenation reaction: M1, M2 and M4 for Cl-, Br- and I-, respectively. The M4 mutant retained the thermostability of HATase in the iodination reaction at 80 °C, which surpasses the natural halogenase SalL. QM/MM revealed that these mutants bind halide ions with more suitable angles for nucleophilic attack of C5' of SAM, thus conferring halogenation capabilities. Our work achieved the halide ion specificity of halogenases and generated thermostable halogenases for the first time, which provides new opportunities to expand the halogenase repertoire from hydroxylase.


Bacterial Proteins , Thermotoga maritima , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Thermotoga maritima/chemistry , Halogenation , Substrate Specificity , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Oxidoreductases/genetics , Biocatalysis
17.
J Agric Food Chem ; 72(22): 12425-12433, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38781442

Phytoene desaturase (PDS) is a critical functional enzyme in blocking ζ-carotene biosynthesis and is one of the bleaching herbicide targets. At present, norflurazon (NRF) is the only commercial pyridazine herbicide targeting PDS. Therefore, developing new and diverse pyridazine herbicides targeting PDS is urgently required. In this study, diflufenican (BF) was used as the lead compound, and a scaffold-hopping strategy was employed to design and synthesize some pyridazine derivatives based on the action mode of BF and PDS. The preemergence herbicidal activity tests revealed that compound 6-chloro-N-(2,4-difluorophenyl)-3-(3-(trifluoromethyl)phenoxy)pyridazine-4-carboxamide (B1) with 2,4-diF substitution in the benzeneamino ring showed 100% inhibition rates against the roots and stems of Echinochloa crus-galli and Portulaca oleracea at 100 µg/mL, superior to the inhibition rates of BF. Meanwhile, compound B1 demonstrated excellent postemergence herbicidal activity against broadleaf weeds, which was similar to that of BF (inhibition rate of 100%) but superior to that of NRF. This indicated that 6-Cl in the pyridazine ring is the key group for postemergence herbicidal activity. In addition, compound B1 could induce downregulation of PDS gene expression, 15-cis-phytoene accumulation, and Y(II) deficiency and prevent photosynthesis. Therefore, B1 can be considered as a promising candidate for developing high-efficiency PDS inhibitors.


Echinochloa , Herbicides , Oxidoreductases , Plant Proteins , Plant Weeds , Pyridazines , Herbicides/pharmacology , Herbicides/chemistry , Pyridazines/pharmacology , Pyridazines/chemistry , Echinochloa/drug effects , Echinochloa/enzymology , Echinochloa/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Oxidoreductases/genetics , Oxidoreductases/metabolism , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Plant Weeds/drug effects , Plant Weeds/enzymology , Plant Weeds/genetics , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Roots/chemistry , Plant Roots/drug effects , Molecular Structure
18.
Nat Commun ; 15(1): 4226, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762502

Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.


Methane , Nitrous Oxide , Nitrous Oxide/metabolism , Methane/metabolism , Hydrogen-Ion Concentration , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxygen/metabolism , Oxidation-Reduction , Anaerobiosis , Methanol/metabolism , Hydrogen/metabolism , Oxygenases/metabolism , Oxygenases/genetics
19.
ISME J ; 18(1)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38709871

Chirality, a fundamental property of matter, is often overlooked in the studies of marine organic matter cycles. Dihydroxypropanesulfonate (DHPS), a globally abundant organosulfur compound, serves as an ecologically important currency for nutrient and energy transfer from phytoplankton to bacteria in the ocean. However, the chirality of DHPS in nature and its transformation remain unclear. Here, we developed a novel approach using chiral phosphorus-reagent labeling to separate DHPS enantiomers. Our findings demonstrated that at least one enantiomer of DHPS is present in marine diatoms and coccolithophores, and that both enantiomers are widespread in marine environments. A novel chiral-selective DHPS catabolic pathway was identified in marine Roseobacteraceae strains, where HpsO and HpsP dehydrogenases at the gateway to DHPS catabolism act specifically on R-DHPS and S-DHPS, respectively. R-DHPS is also a substrate for the dehydrogenase HpsN. All three dehydrogenases generate stable hydrogen bonds between the chirality-center hydroxyls of DHPS and highly conserved residues, and HpsP also form coordinate-covalent bonds between the chirality-center hydroxyls and Zn2+, which determines the mechanistic basis of strict stereoselectivity. We further illustrated the role of enzymatic promiscuity in the evolution of DHPS metabolism in Roseobacteraceae and SAR11. This study provides the first evidence of chirality's involvement in phytoplankton-bacteria metabolic currencies, opening a new avenue for understanding the ocean organosulfur cycle.


Diatoms , Phytoplankton , Rhodobacteraceae , Phytoplankton/metabolism , Stereoisomerism , Diatoms/metabolism , Rhodobacteraceae/metabolism , Rhodobacteraceae/genetics , Haptophyta/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Biotransformation , Metabolic Networks and Pathways , Alkanesulfonates
20.
Biotechnol J ; 19(4): e2300557, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581092

The halogenase-based catalysis is one of the most environmentally friendly methods for the synthesis of halogenated products, among which flavin-dependent halogenases (FDHs) have attracted great interest as one of the most promising biocatalysts due to the remarkable site-selectivity and wide substrate range. However, the complexity of constructing the NAD+-NADH-FAD-FADH2 bicoenzyme cycle system has affected the engineering applications of FDHs. In this work, a coenzyme self-sufficient tri-enzyme fusion was constructed and successfully applied to the continuous halogenation of L-tryptophan. SpFDH was firstly identified derived from Streptomyces pratensis, a highly selective halogenase capable of generating 6-chloro-tryptophan from tryptophan. Then, using gene fusion technology, SpFDH was fused with glucose dehydrogenase (GDH) and flavin reductase (FR) to form a tri-enzyme fusion, which increased the yield by 1.46-fold and making the coenzymes self-sufficient. For more efficient halogenation of L-tryptophan, a continuous halogenation bioprocess of L-tryptophan was developed by immobilizing the tri-enzyme fusion and attaching it to a continuous catalytic device, which resulted in a reaction yield of 97.6% after 12 h reaction. An FDH from S. pratensis was successfully applied in the halogenation and our study provides a concise strategy for the preparation of halogenated tryptophan mediated by multienzyme cascade catalysis.


Halogenation , Tryptophan , Coenzymes , Oxidoreductases/genetics , Oxidoreductases/metabolism , Flavins/metabolism
...