Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.896
Filter
1.
J Environ Sci (China) ; 149: 35-45, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181648

ABSTRACT

Post-etching method using dilute acid solutions is an effective technology to modulate the surface compositions of metal-oxide catalysts. Here the α-MnO2 catalyst treated with 0.1 mol/L nitric acid exhibits higher ozone decomposition activity at high relative humidity than the counterpart treated with acetic acid. Besides the increases in surface area and lattice dislocation, the improved activity can be due to relatively higher Mn valence on the surface and newly-formed Brønsted acid sites adjacent to oxygen vacancies. The remnant nitro species deposited on the catalyst by nitric acid treatment is ideal hydrophobic groups at ambient conditions. The decomposition route is also proposed based on the DRIFTS and DFT calculations: ozone is facile to adsorb on the oxygen vacancy, and the protonic H of Brønsted acid sites bonds to the terminal oxygen of ozone to accelerate its cleavage to O2, reducing the reaction energy barrier of O2 desorption.


Subject(s)
Humidity , Manganese Compounds , Oxides , Ozone , Ozone/chemistry , Oxides/chemistry , Manganese Compounds/chemistry , Catalysis , Models, Chemical
2.
J Environ Sci (China) ; 149: 314-329, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181645

ABSTRACT

Extensive spatiotemporal analyses of long-trend surface ozone in the Yangtze River Delta (YRD) region and its meteorology-related and emission-related have not been systematically analyzed. In this study, by using 8-year-long (2015-2022) surface ozone observation data, we attempted to reveal the variation of multiple timescale components using the Kolmogorov-Zurbenko filter, and the effects of meteorology and emissions were quantitatively isolated using multiple linear regression with meteorological variables. The results showed that the short-term, seasonal, and long-term components accounted for daily maximum 8-hr average O3 (O3-8 hr) concentration, 46.4%, 45.9%, and 1.0%, respectively. The meteorological impacts account for an average of 71.8% of O3-8 hr, and the YRD's eastern and northern sections are meteorology-sensitive areas. Based on statistical analysis technology with empirical orthogonal function, the contribution of meteorology, local emission, and transport in the long-term component of O3-8 hr were 0.21%, 0.12%, and 0.6%, respectively. The spatiotemporal analysis indicated that a distinct decreasing spatial pattern could be observed from coastal cities towards the northwest, influenced by the monsoon and synoptic conditions. The central urban agglomeration north and south of the YRD was particularly susceptible to local pollution. Among the cities studied, Shanghai, Anqing, and Xuancheng, located at similar latitudes, were significantly impacted by atmospheric transmission-the contribution of Shanghai, the maximum accounting for 3.6%.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , China , Ozone/analysis , Air Pollutants/analysis , Rivers/chemistry , Seasons , Meteorology , Air Pollution/statistics & numerical data , Air Pollution/analysis
3.
J Environ Sci (China) ; 149: 419-430, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181654

ABSTRACT

A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel Ox-CRDS detector. To minimize the wall loss of Ox in the chambers, the inner surfaces of both chambers are coated with Teflon film. The performance of the OPR-CRDS system was characterized. It was found that even though the photolysis frequency (J value) decreased by 10%, the decrease in the P(O3) caused by the ultraviolet-blocking film coating was less than 3%. The two chambers had a good consistency in the mean residence time and the measurement of NO2 and Ox under the condition of no sunlight. The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr. To further verify the accuracy of the system, the direct measurement values of the OPR-CRDS system were compared with the calculation results based on radical (OH, HO2, and RO2) reactions, and a good correlation was obtained between the measured and calculated values. Finally, the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta (China) for 40 days, the time series and change characteristics of the P(O3) were obtained directly, and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated. It is expected that the new instrument will be beneficial to investigations of the relationship between P(O3) and its precursors.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Ozone/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Air Pollutants/analysis , Spectrum Analysis/methods , China , Atmosphere/chemistry , Photolysis
4.
J Environ Sci (China) ; 149: 444-455, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181656

ABSTRACT

Oxidation of organic amines (OAs) or aromatic hydrocarbons (AHs) produces carbonyls, which further react with OAs to form carbonyl-amine condensation products, threatening environmental quality and human health. However, there is still a lack of systematic understanding of the carbonyl-amine condensation reaction processes of OAs or between OAs and AHs, and subsequent environmental health impact. This work systematically investigated the carbonyl-amine condensation coupled ozonolysis kinetics, reaction mechanism, secondary organic aerosol (SOA) formation and cytotoxicity from the mixture of dipropylamine (DPA) and styrene (STY) by a combined method of product mass spectrometry identification, particle property analysis and cell exposure evaluation. The results from ozonolysis of DPA and STY mixture revealed that STY inhibited the ozonolysis of DPA to different degrees to accelerate its own decay rate. The barycenter of carbonyl-amine condensation reactions was shifted from inside of DPA to between DPA and STY, which accelerated STY ozonolysis, but slowed down DPA ozonolysis. For the first time, ozonolysis of DPA and STY mixture to complex carbonyl-amine condensation products through the reactions of DPA with its carbonyl products, DPA with STY's carbonyl products and DPA's bond breakage product with STY's carbonyl products was confirmed. These condensation products significantly contributed to the formation and growth of SOA. The SOA containing particulate carbonyl-amine condensation products showed definite cytotoxicity. These findings are helpful to deeply and comprehensively understand the transformation, fate and environmental health effects of mixed organics in atmospheric environment.


Subject(s)
Aerosols , Air Pollutants , Amines , Ozone , Styrene , Ozone/chemistry , Amines/chemistry , Amines/toxicity , Kinetics , Styrene/chemistry , Styrene/toxicity , Air Pollutants/chemistry , Air Pollutants/toxicity , Humans , Oxidation-Reduction , Models, Chemical
5.
J Environ Sci (China) ; 148: 126-138, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095151

ABSTRACT

Severe ground-level ozone (O3) pollution over major Chinese cities has become one of the most challenging problems, which have deleterious effects on human health and the sustainability of society. This study explored the spatiotemporal distribution characteristics of ground-level O3 and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021. Then, a high-performance convolutional neural network (CNN) model was established by expanding the moment and the concentration variations to general factors. Finally, the response mechanism of O3 to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables. The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern. When the wind direction (WD) ranges from east to southwest and the wind speed (WS) ranges between 2 and 3 m/sec, higher O3 concentration prone to occur. At different temperatures (T), the O3 concentration showed a trend of first increasing and subsequently decreasing with increasing NO2 concentration, peaks at the NO2 concentration around 0.02 mg/m3. The sensitivity of NO2 to O3 formation is not easily affected by temperature, barometric pressure and dew point temperature. Additionally, there is a minimum [Formula: see text] at each temperature when the NO2 concentration is 0.03 mg/m3, and this minimum [Formula: see text] decreases with increasing temperature. The study explores the response mechanism of O3 with the change of driving variables, which can provide a scientific foundation and methodological support for the targeted management of O3 pollution.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Neural Networks, Computer , Ozone , Ozone/analysis , Air Pollutants/analysis , China , Air Pollution/statistics & numerical data , Spatio-Temporal Analysis
6.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095158

ABSTRACT

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Subject(s)
Aerosols , Air Pollutants , Bicyclic Monoterpenes , Humidity , Hydroxyl Radical , Oxidation-Reduction , Aerosols/chemistry , Hydroxyl Radical/chemistry , Bicyclic Monoterpenes/chemistry , Air Pollutants/chemistry , Air Pollutants/analysis , Ozone/chemistry , Models, Chemical , Atmosphere/chemistry , Monoterpenes/chemistry
7.
J Environ Sci (China) ; 148: 502-514, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095184

ABSTRACT

Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns (SWPs), however, the consistency of different classification methods is rarely examined. In this study, we apply two widely-used objective methods, the self-organizing map (SOM) and K-means clustering analysis, to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022. We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities. In the case of classifying six SWPs, the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods, and the difference in the mean frequency of each SWP is less than 7%. The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature, lower cloud cover, relative humidity, and wind speed, and stronger subsidence compared to climatology mean. We find that during 2015-2022, the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 day/year, faster than the increases in the ozone exceedance days (3.0 day/year). The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6. In particular, the significant increase in ozone-favorable SWPs in 2022, especially the Subtropical High type which typically occurs in September, is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022. Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Weather , Ozone/analysis , China , Air Pollutants/analysis , Air Pollution/statistics & numerical data
8.
J Environ Sci (China) ; 148: 529-540, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095186

ABSTRACT

Monolithic catalysts with excellent O3 catalytic decomposition performance were prepared by in situ loading of Co-doped KMn8O16 on the surface of nickel foam. The triple-layer structure with Co-doped KMn8O16/Ni6MnO8/Ni foam was grown spontaneously on the surface of nickel foam by tuning the molar ratio of KMnO4 to Co(NO3)2·6H2O precursors. Importantly, the formed Ni6MnO8 structure between KMn8O16 and nickel foam during in situ synthesis process effectively protected nickel foam from further etching, which significantly enhanced the reaction stability of catalyst. The optimum amount of Co doping in KMn8O16 was available when the molar ratio of Mn to Co species in the precursor solution was 2:1. And the Mn2Co1 catalyst had abundant oxygen vacancies and excellent hydrophobicity, thus creating outstanding O3 decomposition activity. The O3 conversion under dry conditions and relative humidity of 65%, 90% over a period of 5 hr was 100%, 94% and 80% with the space velocity of 28,000 hr-1, respectively. The in situ constructed Co-doped KMn8O16/Ni foam catalyst showed the advantages of low price and gradual applicability of the preparation process, which provided an opportunity for the design of monolithic catalyst for O3 catalytic decomposition.


Subject(s)
Manganese Compounds , Nickel , Oxides , Ozone , Oxides/chemistry , Nickel/chemistry , Manganese Compounds/chemistry , Ozone/chemistry , Catalysis , Humidity , Cobalt/chemistry , Models, Chemical , Air Pollutants/chemistry
9.
J Environ Sci (China) ; 147: 451-461, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003061

ABSTRACT

Ketoprofen (KET), as a non-steroidal anti-inflammatory drug frequently detected in aqueous environments, is a threat to human health due to its accumulation and low biodegradability, which requires the transformation and degradation of KET in aqueous environments. In this paper, the reaction process of ozone-initiated KET degradation in water was investigated using density functional theory (DFT) method at the M06-2X/6-311++g(3df,2p)//M06-2X/6-31+g(d,p) level. The detailed reaction path of KET ozonation is proposed. The thermodynamic results show that ozone-initiated KET degradation is feasible. Under ultraviolet irradiation, the reaction of ozone with water can also produce OH radicals (HO·) that can react with KET. The degradation reaction of KET caused by HO· was further studied. The kinetic calculation illustrates that the reaction rate (1.99 × 10-1 (mol/L)-1 sec-1) of KET ozonation is relatively slow, but the reaction rate of HO· reaction is relatively high, which can further improve the degradation efficiency. On this basis, the effects of pollutant concentration, ozone concentration, natural organic matter, and pH value on degradation efficiency under UV/O3 process were analyzed. The ozonolysis reaction of KET is not sensitive to pH and is basically unaffected. Finally, the toxicity prediction of oxidation compounds produced by degradation reaction indicates that most of the degradation products are harmless, and a few products containing benzene rings are still toxic and have to be concerned. This study serves as a theoretical basis for analyzing the migration and transformation process of anti-inflammatory compounds in the water environment.


Subject(s)
Ketoprofen , Ozone , Water Pollutants, Chemical , Ketoprofen/chemistry , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Models, Chemical , Water Purification/methods
10.
J Environ Sci (China) ; 147: 642-651, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003079

ABSTRACT

Nowadays, it is still a challenge to prepared high efficiency and low cost formaldehyde (HCHO) removal catalysts in order to tackle the long-living indoor air pollution. Herein, δ-MnO2 is successfully synthesized by a facile ozonation strategy, where Mn2+ is oxidized by ozone (O3) bubble in an alkaline solution. It presents one of the best catalytic properties with a low 100% conversion temperature of 85°C for 50 ppm of HCHO under a GHSV of 48,000 mL/(g·hr). As a comparison, more than 6 times far longer oxidation time is needed if O3 is replaced by O2. Characterizations show that ozonation process generates a different intermediate of tetragonal ß-HMnO2, which would favor the quick transformation into the final product δ-MnO2, as compared with the relatively more thermodynamically stable monoclinic γ-HMnO2 in the O2 process. Finally, HCHO is found to be decomposed into CO2 via formate, dioxymethylene and carbonate species as identified by room temperature in-situ diffuse reflectance infrared fourier transform spectroscopy. All these results show great potency of this facile ozonation routine for the highly active δ-MnO2 synthesis in order to remove the HCHO contamination.


Subject(s)
Formaldehyde , Manganese Compounds , Oxides , Ozone , Ozone/chemistry , Manganese Compounds/chemistry , Formaldehyde/chemistry , Oxides/chemistry , Air Pollutants/chemistry , Oxidation-Reduction , Temperature , Air Pollution, Indoor/prevention & control , Catalysis
11.
Sci Rep ; 14(1): 19363, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169039

ABSTRACT

Air pollution stands as an environmental risk to child mental health, with proven relationships hitherto observed only in urban areas. Understanding the impact of pollution in rural settings is equally crucial. The novelty of this article lies in the study of the relationship between air pollution and behavioural and developmental disorders, attention deficit hyperactivity disorder (ADHD), anxiety, and eating disorders in children below 15 living in a rural area. The methodology combines spatio-temporal models, Bayesian inference and Compositional Data (CoDa), that make it possible to study areas with few pollution monitoring stations. Exposure to nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2) is related to behavioural and development disorders, anxiety is related to particulate matter (PM10), O3 and SO2, and overall pollution is associated to ADHD and eating disorders. To sum up, like their urban counterparts, rural children are also subject to mental health risks related to air pollution, and the combination of spatio-temporal models, Bayesian inference and CoDa make it possible to relate mental health problems to pollutant concentrations in rural settings with few monitoring stations. Certain limitations persist related to misclassification of exposure to air pollutants and to the covariables available in the data sources used.


Subject(s)
Air Pollutants , Air Pollution , Bayes Theorem , Mental Health , Rural Population , Humans , Child , Air Pollution/adverse effects , Air Pollution/analysis , Female , Male , Air Pollutants/analysis , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Spatio-Temporal Analysis , Particulate Matter/analysis , Particulate Matter/adverse effects , Adolescent , Child, Preschool , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/chemically induced , Attention Deficit Disorder with Hyperactivity/etiology , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Ozone/analysis , Ozone/adverse effects , Sulfur Dioxide/analysis , Sulfur Dioxide/adverse effects , Anxiety/epidemiology , Anxiety/etiology
12.
Water Res ; 263: 122148, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39098154

ABSTRACT

Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min-1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.


Subject(s)
Ozone , Salinity , Water Pollutants, Chemical , Ozone/chemistry , Water Pollutants, Chemical/chemistry , Water Purification , Oxidation-Reduction , Reactive Oxygen Species/chemistry
13.
Sci Rep ; 14(1): 19182, 2024 08 19.
Article in English | MEDLINE | ID: mdl-39160160

ABSTRACT

Culex pipiens (Diptera: Culicidae) is a vector of many serious human diseases, and its control by the heavy use of chemical insecticides has led to the evolution of insecticide resistance and high environmental risks. Many safe alternatives, such as ozone gas (O3) and silica nanoparticles (silica NPs) can reduce these risks. Therefore, O3 and silica NPs were applied to 3rd larval instars of Cx. pipiens at different concentrations (100, 200, and 400 ppm) for different exposure times (1, 2, 3, and 5 min for O3 and 24, 48, and 72 h for silica NPs). The activity of some vital antioxidant enzymes as well as scanning electron microscopy of the body surface were also investigated. A positive correlation was observed between larval mortality % and the tested concentrations of O3 and silica NPs. O3 was more effective than silica NPs, it resulted in 92% mortality at 400 ppm for a short exposure time (5 min). O3-exposed larvae exhibited a significant increase in glutathione peroxidase, glutathione S-transferase, and catalase activities as well as the total antioxidant capacity. Scanning electron microscopy showing disruptive effects on the body surface morphology of ozone and silica NPs treated larvae. These results provide evidence that O3 and silica NPs have the potential for use as alternative vector control tools against Cx. pipiens.


Subject(s)
Culex , Larva , Nanoparticles , Ozone , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Culex/drug effects , Ozone/pharmacology , Nanoparticles/chemistry , Larva/drug effects , Glutathione Transferase/metabolism , Antioxidants/pharmacology , Insecticides/pharmacology , Glutathione Peroxidase/metabolism , Catalase/metabolism
14.
An Acad Bras Cienc ; 96(suppl 1): e20230856, 2024.
Article in English | MEDLINE | ID: mdl-39166547

ABSTRACT

As it flows through the city of São Paulo, the Tietê River receives heavy discharges of industrial effluents and domestic sewage, resulting from the city's continuous urban expansion and the inadequacy of its sanitary sewage system. This study focused on an analysis of the efficiency of PGα21Ca and quaternary ammonium tannate, water purification products, based on coagulation-flocculation and sedimentation tests, followed by treatment with a hydrodynamic cavitation reactor associated with ozonation in the treatment of Tietê River water. The removal of turbidity, apparent color, and chemical oxygen demand (COD) were evaluated. Jar testing assays were conducted, and the best turbidity removal rates were obtained with a concentration of 300 mg L-1 for PGα21Ca and 150 mg L-1 for quaternary ammonium tannate. The coagulation-flocculation treatment removed approximately 93% of turbidity for both coagulants. After combining coagulation-flocculation with hydrodynamic cavitation with ozonation, the final COD removal rate applying PGα21Ca was 47.63% in 1 hour of reaction, while that of quaternary ammonium tannate was 40.13% in 2 hours of reaction. Although the results appear to indicate the superior performance of PGα21Ca, it should be noted that the treatment with quaternary ammonium tannate also provided good results in reducing turbidity, COD, and apparent color, using a smaller dose of this coagulant and that its use may be more advantageous from an environmental point of view, due to its natural composition.


Subject(s)
Flocculation , Ozone , Rivers , Water Purification , Ozone/chemistry , Rivers/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Hydrodynamics , Biological Oxygen Demand Analysis , Brazil
15.
Water Environ Res ; 96(8): e11099, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39155047

ABSTRACT

In this study, we employed the response surface method (RSM) and the long short-term memory (LSTM) model to optimize operational parameters and predict chemical oxygen demand (COD) removal in the electrocoagulation-catalytic ozonation process (ECOP) for pharmaceutical wastewater treatment. Through RSM simulation, we quantified the effects of reaction time, ozone dose, current density, and catalyst packed rate on COD removal. Then, the optimal conditions for achieving a COD removal efficiency exceeding 50% were identified. After evaluating ECOP performance under optimized conditions, LSTM predicted COD removal (56.4%), close to real results (54.6%) with a 0.2% error. LSTM outperformed RSM in predictive capacity for COD removal. In response to the initial COD concentration and effluent discharge standards, intelligent adjustment of operating parameters becomes feasible, facilitating precise control of the ECOP performance based on this LSTM model. This intelligent control strategy holds promise for enhancing the efficiency of ECOP in real pharmaceutical wastewater treatment scenarios. PRACTITIONER POINTS: This study utilized the response surface method (RSM) and the long short-term memory (LSTM) model for pharmaceutical wastewater treatment optimization. LSTM predicted COD removal (56.4%) closely matched experimental results (54.6%), with a minimal error of 0.2%. LSTM demonstrated superior predictive capacity, enabling intelligent parameter adjustments for enhanced process control. Intelligent control strategy based on LSTM holds promise for improving electrocoagulation-catalytic ozonation process efficiency in pharmaceutical wastewater treatment.


Subject(s)
Biological Oxygen Demand Analysis , Ozone , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Ozone/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Catalysis , Water Purification/methods , Electrocoagulation/methods , Pharmaceutical Preparations/chemistry
16.
Sci Adv ; 10(33): eado0112, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39151000

ABSTRACT

Although reactive nitrogen (Nr) emissions from food and energy production contribute to multi-dimensional environmental damages, integrated management of Nr is still lacking owing to unclear future mitigation potentials and benefits. Here, we find that by 2050, high-ambition compared to low-ambition N interventions reduce global ammonia and nitrogen oxide emissions by 21 and 22 TgN/a, respectively, equivalent to 40 and 52% of their 2015 levels. This would mitigate population-weighted PM2.5 by 6 g/m3 and avoid premature deaths by 817 k (16%), mitigate ozone by 4 ppbv, avoid premature deaths by 252k (34%) and crop yield losses by 122 million tons (4.3%), and decrease terrestrial ecosystem areas exceeding critical load by 420 Mha (69%). Without nitrogen interventions, most environmental damages examined will deteriorate between 2015 and 2050; Africa and Asia are the most vulnerable but also benefit the most from interventions. Nitrogen interventions support sustainable development goals related to air, health, and ecosystems.


Subject(s)
Air Pollution , Ecosystem , Nitrogen , Air Pollution/prevention & control , Air Pollutants/analysis , Ammonia , Ozone
17.
Clin Oral Investig ; 28(9): 490, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153027

ABSTRACT

OBJECTIVES: To conduct a systematic review and meta-analysis to assess the effectiveness of ozone therapy in oral ulcers healing when compared to placebo or active treatments. MATERIALS AND METHODS: The search was carried out using PubMed, EMBASE, Scopus, and Lilacs databases. Clinical trials involving human participants were included. The Risk Ratio (RR) and the standardized mean difference (SMD) with 95%CI (confidence interval) were calculated. The ROBINS-I (risk of bias in non-randomized studies of interventions) and RoB2 (risk of bias tool for randomized trials) assessment tool was used to detect bias. RESULTS: After the selection process, 12 studies were included. The meta-analysis showed that ozone therapy helps to reduce the size of the traumatic and autoimmune ulcers (RR=-0.44; 95% CI -0.71,-0.17; I2=0%) in comparison to placebo. Regarding pain reduction, ozone was superior to placebo (RR = 1.29, 95% CI -1.6 to -0.95); I2=0%), and equivalent to topical corticosteroid and laser photobiomodulation (RR = 0.26, 95% CI -0.27,0.78, p = 0.34). CONCLUSION: Ozone therapy is an alternative for accelerating healing and reducing pain for both traumatic and autoimmune ulcers. However, the quality of evidence is limited. CLINICAL RELEVANCE: Oral ulcerations are usually painful and impact quality of life requiring different approaches to boost wound healing and reduce symptoms. For this purpose, ozone therapy is a promising strategy.


Subject(s)
Ozone , Wound Healing , Ozone/therapeutic use , Humans , Wound Healing/drug effects , Oral Ulcer/drug therapy , Oral Ulcer/therapy , Mouth Mucosa/drug effects
18.
Food Res Int ; 192: 114759, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147534

ABSTRACT

To investigate the quality of different ozone-oxidized surimi gels and their in vitro digestion and absorption characteristics, surimi rinsed with different concentrations of ozonated water (0, 8, 26 mg/L) were prepared. Then, the degree of oxidation and gel structure of surimi were determined, the in vitro digestion and absorption of the gels were simulated, and the digestion and absorption products were analyzed by LC-MS/MS. The results showed that the quality of surimi gels was improved after proper ozone oxidation. After ozone water rinsing, the dry matter digestibility, peptide, and amino acid content increased, and the changes of all three were in line with the Logistic kinetic model (R2 = 0.95-0.99). Caco-2 cell absorption experiments showed that the absorption rate of peptides and amino acids decreased after ozone water rinsing. In summary, ozone oxidation can promote the digestion of surimi gels, but it also reduces the absorption of peptides and amino acids by Caco-2 cells. This study provides a reference for the application of ozone in the food field.


Subject(s)
Carps , Digestion , Fish Products , Oxidation-Reduction , Ozone , Ozone/chemistry , Caco-2 Cells , Animals , Humans , Fish Products/analysis , Carps/metabolism , Gels/chemistry , Amino Acids/metabolism , Amino Acids/analysis , Tandem Mass Spectrometry , Intestinal Absorption , Peptides
19.
Sci Rep ; 14(1): 17776, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090167

ABSTRACT

Although previous studies have suggested that meteorological factors and air pollutants can cause dry eye disease (DED), few clinical cohort studies have determined the individual and combined effects of these factors on DED. We investigated the effects of meteorological factors (humidity and temperature) and air pollutants [particles with a diameter ≤ 2.5 µ m (PM2.5), ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO)] on DED. A retrospective cohort study was conducted on 53 DED patients. DED was evaluated by Symptom Assessment in Dry Eye (SANDE), tear secretion, tear film break-up time (TBUT), ocular staining score (OSS), and tear osmolarity. To explore the individual, non-linear, and joint associations between meteorological factors, air pollutants, and DED parameters, we used generalized linear mixed model (GLMM) and Bayesian kernel machine regression (BKMR). After adjusting for all covariates, lower relative humidity or temperature was associated with a higher SANDE (p < 0.05). Higher PM2.5, O3, and NO2 levels were associated with higher SANDE and tear osmolarity (p < 0.05). Higher O3 levels were associated with lower tear secretion and TBUT, whereas higher NO2 levels were associated with higher OSS (p < 0.05). BKMR analyses indicated that a mixture of meteorological factors and air pollutants was significantly associated with increased SANDE, OSS, tear osmolarity, and decreased tear secretion.


Subject(s)
Air Pollutants , Dry Eye Syndromes , Humans , Retrospective Studies , Male , Female , Dry Eye Syndromes/etiology , Dry Eye Syndromes/epidemiology , Middle Aged , Air Pollutants/adverse effects , Air Pollutants/analysis , Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Adult , Tears/metabolism , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Humidity/adverse effects , Meteorological Concepts , Ozone/adverse effects , Ozone/analysis , Temperature
20.
Int J Public Health ; 69: 1606062, 2024.
Article in English | MEDLINE | ID: mdl-39108356

ABSTRACT

Objectives: To identify the long-term spatiotemporal trend of ozone-related chronic obstructive pulmonary disease (COPD) burden by sex and country and to explore potential drivers. Methods: We retrieved data of ozone-related COPD death and disability adjusted life year (DALY) from the Global Burden of Disease 2019. We used a linear regression of natural logarithms of age-standardized rates (ASRs) with calendar year to examine the trends in ASRs and a panel regression to identify country-level factors associated with the trends. Results: Global ozone-attributable COPD deaths increased from 117,114 to 208,342 among men and from 90,265 to 156,880 among women between 1990 and 2019. Although ASRs of ozone-related COPD death and DALY declined globally, they increased in low and low-middle Socio-demographic Index (SDI) regions, with faster rise in women. Elevated average maximum temperature was associated with higher ozone-attributable COPD burden, while more green space was associated with lower burden. Conclusion: More efforts are needed in low and low-middle SDI regions, particularly for women, to diminish inter-country inequality in ozone-attributable COPD. Global warming may exacerbate the burden. Expanding green space may mitigate the burden.


Subject(s)
Global Burden of Disease , Global Health , Ozone , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Ozone/adverse effects , Female , Male , Spatio-Temporal Analysis , Middle Aged , Aged , Disability-Adjusted Life Years , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Sex Factors , Air Pollution/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL