Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.195
Filter
1.
Environ Monit Assess ; 196(8): 698, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963549

ABSTRACT

Air pollution is affected by the atmospheric dynamics. This study aims to determine that air pollution concentration values in Istanbul increased significantly and reached peak values due to atmospheric blocking between the 30th of December 2022 and the 5th of January 2023. In this study, hourly pollutant data was obtained from 16 air quality monitoring stations (AQMS), the exact reanalysis data was extracted from ERA5 database, and inversion levels and meteorological and synoptic analyses were used to determine the effects of atmospheric blocking on air pollution. Also, cloud base heights and vertical visibility measurements were taken with a ceilometer. Statistical calculations and data visualizations were performed using the R and Grads program. Omega-type blocking, which started in Istanbul on December 30, 2022, had a significant impact on the 1st and 2nd of January 2023, and PM10 and PM2.5 concentration values reached their peak values at 572.8 and 254.20 µg/m3, respectively. In addition, it was found that the average concentration values in the examined period in almost all stations were higher than the averages for January and February. As a result, air quality in Istanbul was determined as "poor" between these calendar dates. It was found that the blocking did not affect the ozone (µg/m3) concentration. It was also found that the concentrations of particulate matter (PM) 10 µm or less in diameter (PM10) and PM 2.5 µm or less in diameter (PM2.5) were increased by the blocking effect in the Istanbul area. Finally, according to the data obtained using the ceilometer, cloud base heights decreased to 30 m and vertical visibility to 10 m.


Subject(s)
Air Pollutants , Air Pollution , Atmosphere , Environmental Monitoring , Ozone , Particulate Matter , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Ozone/analysis , Atmosphere/chemistry , Turkey , Seasons
3.
Lancet Planet Health ; 8(7): e452-e462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969473

ABSTRACT

BACKGROUND: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. METHODS: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25°â€ˆ× 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. FINDINGS: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 µg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 µg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. INTERPRETATION: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Ozone , Respiratory Tract Diseases , Wildfires , Ozone/adverse effects , Ozone/analysis , Humans , Cardiovascular Diseases/mortality , Air Pollutants/adverse effects , Air Pollutants/analysis , Respiratory Tract Diseases/mortality , Environmental Exposure/adverse effects , Global Health , Air Pollution/adverse effects , Air Pollution/analysis
4.
JAMA Netw Open ; 7(6): e2418460, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38941096

ABSTRACT

Importance: Air pollution is a recognized risk factor associated with chronic diseases, including respiratory and cardiovascular conditions, which can lead to physical and cognitive impairments in later life. Although these losses of function, individually or in combination, reduce individuals' likelihood of living independently, little is known about the association of air pollution with this critical outcome. Objective: To investigate associations between air pollution and loss of independence in later life. Design, Setting, and Participants: This cohort study was conducted as part of the Environmental Predictors Of Cognitive Health and Aging study and used 1998 to 2016 data from the Health and Retirement Study. Participants included respondents from this nationally representative, population-based cohort who were older than 50 years and had not previously reported a loss of independence. Analyses were performed from August 31 to October 15, 2023. Exposures: Mean 10-year pollutant concentrations (particulate matter less than 2.5 µm in diameter [PM2.5] or ranging from 2.5 µm to 10 µm in diameter [PM10-2.5], nitrogen dioxide [NO2], and ozone [O3]) were estimated at respondent addresses using spatiotemporal models along with PM2.5 levels from 9 emission sources. Main Outcomes and Measures: Loss of independence was defined as newly receiving care for at least 1 activity of daily living or instrumental activity of daily living due to health and memory problems or moving to a nursing home. Associations were estimated with generalized estimating equation regression adjusting for potential confounders. Results: Among 25 314 respondents older than 50 years (mean [SD] baseline age, 61.1 [9.4] years; 11 208 male [44.3%]), 9985 individuals (39.4%) experienced lost independence during a mean (SD) follow-up of 10.2 (5.5) years. Higher exposure levels of mean concentration were associated with increased risks of lost independence for total PM2.5 levels (risk ratio [RR] per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.10), PM2.5 levels from road traffic (RR per 1-IQR of 10-year mean, 1.09; 95% CI, 1.03-1.16) and nonroad traffic (RR per 1-IQR of 10-year mean, 1.13; 95% CI, 1.03-1.24), and NO2 levels (RR per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.08). Compared with other sources, traffic-generated pollutants were most consistently and robustly associated with loss of independence; only road traffic-related PM2.5 levels remained associated with increased risk after adjustment for PM2.5 from other sources (RR per 1-IQR increase in 10-year mean concentration, 1.10; 95% CI, 1.00-1.21). Other pollutant-outcome associations were null, except for O3 levels, which were associated with lower risks of lost independence (RR per 1-IQR increase in 10-year mean concentration, 0.94; 95% CI, 0.92-0.97). Conclusions and Relevance: This study found that long-term exposure to air pollution was associated with the need for help for lost independence in later life, with especially large and consistent increases in risk for pollution generated by traffic-related sources. These findings suggest that controlling air pollution could be associated with diversion or delay of the need for care and prolonged ability to live independently.


Subject(s)
Air Pollution , Environmental Exposure , Particulate Matter , Humans , Male , Aged , Female , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , Middle Aged , United States/epidemiology , Particulate Matter/analysis , Particulate Matter/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/adverse effects , Cohort Studies , Ozone/analysis , Ozone/adverse effects , Independent Living/statistics & numerical data , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Aged, 80 and over , Risk Factors
5.
Sci Rep ; 14(1): 14751, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926518

ABSTRACT

Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Particulate Matter , China/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Air Pollutants/analysis , Air Pollutants/adverse effects , Particulate Matter/analysis , Particulate Matter/adverse effects , SARS-CoV-2/isolation & purification , Environmental Monitoring/methods , Environmental Exposure/adverse effects , Public Health , Sulfur Dioxide/analysis , Sulfur Dioxide/adverse effects , Risk Assessment , Ozone/analysis
6.
Environ Monit Assess ; 196(7): 658, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916763

ABSTRACT

Based on ozone (O3) monitoring data for Xiangtan and meteorological observation data for 2020-2022, we examined ozone pollution characteristics and the effects of meteorological factors on daily maximum 8-h average ozone (O3-8h) concentrations in Xiangtan. Thus, we observed significant increases as well as notable seasonal variations in O3-8h concentrations in Xiangtan during the period considered. The ozone and temperature change response slope (KO3-T) indicated that local emissions had no significant effect on O3-8h generation. Further, average O3-8h concentration and maximum temperature (Tmax) values showed a polynomial distribution. Specifically, at Tmax < 27 °C, it increased almost linearly with increasing temperature, and at Tmax between 27 and 37 °C, it showed an upward curvilinear trend as temperature increased, but at a much lower rate. Then, at Tmax > 37 °C, it decreased with increasing temperature. With respect to relative humidity (RH), the average O3-8h concentration primarily exceeded the standard value when RH varied in the range of 45-65%, which is the key humidity range for O3 pollution, and the inflection point for the correlation curve between O3-8h concentration and RH appeared at ~55%. Furthermore, at wind speeds (WSs) below 1.5 m∙s-1, O3-8h concentration increased rapidly, and at WSs in the 1.5-2 m∙s-1 range, it increased at a much faster rate. However, at WSs > 2 m∙s-1, it decreased slowly with increasing WS. O3-8h concentration also showed the tendency to exceed the standard value when the dominant wind directions in Xiangtan were easterly or southeasterly.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Meteorological Concepts , Ozone , Ozone/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Seasons , China , Temperature , Wind
7.
Environ Health Perspect ; 132(6): 67010, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922331

ABSTRACT

BACKGROUND: Evidence linking gaseous air pollution to late-life brain health is mixed. OBJECTIVE: We explored associations between exposure to gaseous pollutants and brain magnetic resonance imaging (MRI) markers among Atherosclerosis Risk in Communities (ARIC) Study participants, with attention to the influence of exposure estimation method and confounding by site. METHODS: We considered data from 1,665 eligible ARIC participants recruited from four US sites in the period 1987-1989 with valid brain MRI data from Visit 5 (2011-2013). We estimated 10-y (2001-2010) mean carbon monoxide (CO), nitrogen dioxide (NO2), nitrogen oxides (NOx), and 8- and 24-h ozone (O3) concentrations at participant addresses, using multiple exposure estimation methods. We estimated site-specific associations between pollutant exposures and brain MRI outcomes (total and regional volumes; presence of microhemorrhages, infarcts, lacunes, and severe white matter hyperintensities), using adjusted linear and logistic regression models. We compared meta-analytically combined site-specific associations to analyses that did not account for site. RESULTS: Within-site exposure distributions varied across exposure estimation methods. Meta-analytic associations were generally not statistically significant regardless of exposure, outcome, or exposure estimation method; point estimates often suggested associations between higher NO2 and NOx and smaller temporal lobe, deep gray, hippocampal, frontal lobe, and Alzheimer disease signature region of interest volumes and between higher CO and smaller temporal and frontal lobe volumes. Analyses that did not account for study site more often yielded significant associations and sometimes different direction of associations. DISCUSSION: Patterns of local variation in estimated air pollution concentrations differ by estimation method. Although we did not find strong evidence supporting impact of gaseous pollutants on brain changes detectable by MRI, point estimates suggested associations between higher exposure to CO, NOx, and NO2 and smaller regional brain volumes. Analyses of air pollution and dementia-related outcomes that do not adjust for location likely underestimate uncertainty and may be susceptible to confounding bias. https://doi.org/10.1289/EHP13906.


Subject(s)
Air Pollutants , Air Pollution , Dementia , Environmental Exposure , Magnetic Resonance Imaging , Neuroimaging , Humans , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Male , Female , Environmental Exposure/statistics & numerical data , Dementia/epidemiology , Aged , Middle Aged , Nitrogen Oxides/analysis , Cohort Studies , Brain/diagnostic imaging , Nitrogen Dioxide/analysis , Ozone/analysis , United States/epidemiology
8.
Sci Total Environ ; 945: 173820, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38866147

ABSTRACT

Ozone pollution is a growing problem in many developing countries posing challenges not only to air quality but also affecting agricultural productivity and human well-being. This is the first study in the Indo-Gangetic Plain exploring how the spatial variation and severity of tropospheric ozone affect both wheat yield and all-cause mortality. We estimated that ozone-related cumulative crop production loss for wheat in selected districts of IGP was 3.4 million tonnes during the study period (2019-2021), which amounted to 923 million USD. The production-weighted Relative Yield Loss (RYL) for wheat in the IGP was 9.3 % in 2019, 12.8 % in 2020, and 11.3 % in 2021. The losses incurred in 2021 could contribute to fulfilling the wheat requirements of 11.4 million people. We also assess the health and economic gains resulting from the attainment of the World Health Organization Air Quality Guidelines (WHO AQG) for ozone concentrations. It is estimated that interventions that achieve AQG would have averted 11,407 premature deaths in 2021 translating into an impressively large health and economic gain. The annual benefits in 2021 totaled to 34 billion USD. We observe that Uttar Pradesh experienced the highest losses, both in terms of crop damage and premature deaths. Our study observes that implementing policies to prepone the planting of wheat enhances food security by mitigating yield losses. Mitigating the health impact of ambient ozone necessitates a reduction in anthropogenic emissions and to attain this objective, we propose adopting an exposure-integrated source reduction approach.


Subject(s)
Air Pollution , Ozone , Ozone/analysis , Humans , Air Pollutants/analysis , India , Crops, Agricultural , Triticum/growth & development
9.
J Environ Manage ; 363: 121294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880600

ABSTRACT

The substantial threat of concurrent air pollutants to public health is increasingly severe under climate change. To identify the common drivers and extent of spatiotemporal similarity of PM2.5 and ozone (O3), this paper proposed a log Gaussian-Gumbel Bayesian hierarchical model allowing for sharing a stochastic partial differential equation and autoregressive model of order one (SPDE-AR(1)) spatiotemporal interaction structure. The proposed model, implemented by the approach of integrated nested Laplace approximation (INLA), outperforms in terms of estimation accuracy and prediction capacity for its increased parsimony and reduced uncertainty, especially for the shared O3 sub-model. Besides the consistently significant influence of temperature (positive), extreme drought (positive), fire burnt area (positive), gross domestic product (GDP) per capita (positive), and wind speed (negative) on both PM2.5 and O3, surface pressure and precipitation demonstrate positive associations with PM2.5 and O3, respectively. While population density relates to neither. In addition, our results demonstrate similar spatiotemporal interactions between PM2.5 and O3, indicating that the spatial and temporal variations of these pollutants show relatively considerable consistency in California. Finally, with the aid of the excursion function, we see that the areas around the intersection of San Luis Obispo and Santa Barbara counties are likely to exceed the unhealthy O3 level for USG simultaneously with other areas throughout the year. Our findings provide new insights for regional and seasonal strategies in the co-control of PM2.5 and O3. Our methodology is expected to be utilized when interest lies in multiple interrelated processes in the fields of environment and epidemiology.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Particulate Matter , Ozone/analysis , California , Particulate Matter/analysis , Air Pollutants/analysis , Bayes Theorem , Spatio-Temporal Analysis , Climate Change , Air Pollution
10.
Environ Int ; 189: 108810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875815

ABSTRACT

Previous studies of air pollution and respiratory disease often relied on aggregated or lagged acute respiratory disease outcome measures, such as emergency department (ED) visits or hospitalizations, which may lack temporal and spatial resolution. This study investigated the association between daily air pollution exposure and respiratory symptoms among participants with asthma and chronic obstructive pulmonary disease (COPD), using a unique dataset passively collected by digital sensors monitoring inhaled medication use. The aggregated dataset comprised 456,779 short-acting beta-agonist (SABA) puffs across 3,386 people with asthma or COPD, between 2012 and 2019, across the state of California. Each rescue use was assigned space-time air pollution values of nitrogen dioxide (NO2), fine particulate matter with diameter ≤ 2.5 µm (PM2.5) and ozone (O3), derived from highly spatially resolved air pollution surfaces generated for the state of California. Statistical analyses were conducted using linear mixed models and random forest machine learning. Results indicate that daily air pollution exposure is positively associated with an increase in daily SABA use, for individual pollutants and simultaneous exposure to multiple pollutants. The advanced linear mixed model found that a 10-ppb increase in NO2, a 10 µg m-3 increase in PM2.5, and a 30-ppb increase in O3 were respectively associated with incidence rate ratios of SABA use of 1.025 (95 % CI: 1.013-1.038), 1.054 (95 % CI: 1.041-1.068), and 1.161 (95 % CI: 1.127-1.233), equivalent to a respective 2.5 %, 5.4 % and 16 % increase in SABA puffs over the mean. The random forest machine learning approach showed similar results. This study highlights the potential of digital health sensors to provide valuable insights into the daily health impacts of environmental exposures, offering a novel approach to epidemiological research that goes beyond residential address. Further investigation is warranted to explore potential causal relationships and to inform public health strategies for respiratory disease management.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Particulate Matter , Humans , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , California/epidemiology , Particulate Matter/analysis , Particulate Matter/adverse effects , Air Pollutants/analysis , Air Pollutants/adverse effects , Longitudinal Studies , Ozone/analysis , Ozone/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Asthma/epidemiology , Asthma/chemically induced , Male , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Pulmonary Disease, Chronic Obstructive/epidemiology , Female , Middle Aged , Environmental Monitoring/methods , Aged , Adult , Digital Health
11.
J Obstet Gynaecol ; 44(1): 2362962, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38853776

ABSTRACT

BACKGROUND: Gestational diabetes mellitus (GDM) can have negative effects on both the pregnancy and perinatal outcomes, as well as the long-term health of the mother and the child. It has been suggested that exposure to air pollution may increase the risk of developing GDM. This study investigated the relationship between exposure to air pollutants with gestational diabetes. METHODS: The present study is a retrospective cohort study. We used data from a randomised community trial conducted between September 2016 and January 2019 in Iran. During this period, data on air pollutant levels of five cities investigated in the original study, including 6090 pregnant women, were available. Concentrations of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO), particulate matter < 2.5 (PM2.5) or <10 µm (PM10) were obtained from air pollution monitoring stations. Exposure to air pollutants during the three months preceding pregnancy and the first, second and third trimesters of pregnancy for each participant was estimated. The odds ratio was calculated based on logistic regression in three adjusted models considering different confounders. Only results that had a p < .05 were considered statistically significant. RESULTS: None of the logistic regression models showed any statistically significant relationship between the exposure to any of the pollutants and GDM at different time points (before pregnancy, in the first, second and third trimesters of pregnancy and 12 months in total) (p > .05). Also, none of the adjusted logistic regression models showed any significant association between PM10 exposure and GDM risk at all different time points after adjusting for various confounders (p > .05). CONCLUSIONS: This study found no association between GDM risk and exposure to various air pollutants before and during the different trimesters of pregnancy. This result should be interpreted cautiously due to the lack of considering all of the potential confounders.


The health of pregnant women and their children can be impacted by gestational diabetes mellitus (GDM), one of the prevalent pregnancy complications. Some of studies showed that the incidence of gestational diabetes can be influenced by genetic or environmental factors. Air pollution is an environmental stimulus that may predispose pregnant women to GDM. This research explored whether air pollution could increase the risk of developing gestational diabetes. Over 6000 pregnant women in five cities of Iran participated in the study and were screened for gestational diabetes. Their exposure to the various air pollutants during the three months preceding pregnancy and total pregnancy period was measured. In this study, we found no clear association between air pollution and gestational diabetes. However, this finding needs to be interpreted cautiously since all the influential factors were not assessed.


Subject(s)
Air Pollutants , Air Pollution , Diabetes, Gestational , Particulate Matter , Humans , Female , Pregnancy , Diabetes, Gestational/epidemiology , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Air Pollution/analysis , Retrospective Studies , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Iran/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Logistic Models , Ozone/analysis , Ozone/adverse effects , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Risk Factors
12.
Environ Monit Assess ; 196(7): 603, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850374

ABSTRACT

Ground-level ozone (O3) pollution has emerged as a significant concern impacting air quality in urban agglomerations, primarily driven by meteorological conditions and social-economic factors. However, previous studies have neglected to comprehensively reveal the spatial distribution and driving mechanism of O3 pollution. Based on the O3 monitoring data of 41 cities in the Yangtze River Delta (YRD) from 2014 to 2021, a comprehensive analysis framework of spatial analysis-spatial econometric regression was constructed to reveal the driving mechanism of O3 pollution. The results revealed the following: (1) O3 concentrations in the YRD exhibited a general increasing and then decreasing trend, indicating an improvement in pollution levels. The areas with higher O3 concentration are mainly the cities concentrated in central and southern Jiangsu, Shanghai, and northern Zhejiang. (2) The change of O3 concentration and distribution is the result of various factors. The effect of urbanization on O3 concentrations followed an inverted U-shaped curve, which implies that achieving higher quality urbanization is essential for effectively controlling urban O3 pollution. Traffic conditions and energy consumption have significant direct positive influences on O3 concentrations and spatial spillover effects. The indirect pollution contribution, considering economic weight, accounted for about 35%. Thus, addressing overall regional energy consumption and implementing traffic source regulations are crucial paths for O3 pollution control in the YRD. (3) Meteorological conditions play a certain role in regulating the O3 concentration. Higher wind speed will promote the diffusion of O3 and increase the O3 concentration in the surrounding city. These findings provide valuable insights for designing effective policies to improve air quality and mitigate ozone pollution in urban agglomeration area.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Ozone , Ozone/analysis , China , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Rivers/chemistry , Urbanization , Spatial Analysis
13.
Sci Rep ; 14(1): 14186, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902344

ABSTRACT

Morbidity and mortality from several diseases are increased on days of higher ambient air pollution. We carried out a daily time-series analysis with distributive lags to study the influence of short-term air pollution exposure on COVID-19 related hospitalization in Santiago, Chile between March 16 and August 31, 2020. Analyses were adjusted for temporal trends, ambient temperature, and relative humidity, and stratified by age and sex. 26,579 COVID-19 hospitalizations were recorded of which 24,501 were laboratory confirmed. The cumulative percent change in hospitalizations (95% confidence intervals) for an interquartile range increase in air pollutants were: 1.1 (0.2, 2.0) for carbon monoxide (CO), 0.30 (0.0, 0.50) for nitrogen dioxide (NO2), and 2.7 (1.9, 3.0) for particulate matter of diameter ≤ 2.5 microns (PM2.5). Associations with ozone (O3), particulate matter of diameter ≤ 10 microns (PM10) and sulfur dioxide (SO2) were not significant. The observed effect of PM2.5 was significantly greater for females and for those individuals ≥ 65 years old. This study provides evidence that daily increases in air pollution, especially PM2.5, result in a higher observed risk of hospitalization from COVID-19. Females and the elderly may be disproportionately affected.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Hospitalization , Particulate Matter , Humans , COVID-19/epidemiology , Chile/epidemiology , Hospitalization/statistics & numerical data , Female , Male , Air Pollution/adverse effects , Air Pollution/analysis , Aged , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Adult , Carbon Monoxide/analysis , SARS-CoV-2/isolation & purification , Nitrogen Dioxide/analysis , Ozone/analysis , Sulfur Dioxide/analysis , Young Adult
14.
Nat Med ; 30(6): 1732-1738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38830993

ABSTRACT

Ground-level ozone (O3) is a harmful air pollutant formed in the atmosphere by the interaction between sunlight and precursor gases. Exposure to current O3 levels in Europe is a major source of premature mortality from air pollution. However, mitigation actions have been mainly designed and implemented at the national and regional scales, lacking a comprehensive assessment of the geographic sources of O3 pollution and its associated health impacts. Here we quantify both national and imported contributions to O3 and their related mortality burden across 813 contiguous regions in 35 European countries, representing about 530 million people. Imported O3 contributed to 88.3% of all O3-attributable deaths (intercountry range 83-100%). The greatest share of imported O3 had its origins outside the study domain (that is, hemispheric sources), which was responsible for 56.7% of total O3-attributable mortality (range 42.5-87.2%). It was concluded that achieving the air-quality guidelines set out by the World Health Organization and avoiding the health impacts of O3 require not only the implementation of national or coordinated pan-European actions but also global strategies.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Ozone/adverse effects , Ozone/analysis , Europe/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects , Mortality, Premature/trends , Mortality/trends
15.
Wiad Lek ; 77(4): 703-709, 2024.
Article in English | MEDLINE | ID: mdl-38865626

ABSTRACT

OBJECTIVE: Aim: To analyze the dynamics of ambient air pollution by surface O3 (in pre-war and wartime periods) and assess its impact on public health in order to provide proposals aimed at developing preventive programs. PATIENTS AND METHODS: Materials and Methods: Physical and chemical methods of analysis (О3 - gas analyzers APDA-370 HORIBA, meteorological sensor WS-600); health risk assessment (AirQ+); statistical data processing methods (StatSoft STATISTICA 10.0 portable, MicrosoftR Excel). RESULTS: Results: Air quality monitoring in peak season 2021 and 2022 detected exceedances of the daily maximum 8-hour ozone (O3) concentration. This resulted in a health risk for the exposed population during 70 % (174 days) and 84 % (181 days) of observations, respectively. The maximum exceedance levels were 1.7 and 2.1 times higher than the recommended limit. Estimated number of excess cases of natural and respiratory mortality in the population over 30 years due to long-term O3 exposure: 227 (95 % CI: 0; 450) and 22 (95 % CI: 0; 54), respectively. Predictive assessments of ozone (O3) air pollution's impact during wartime activities suggest an average increase of 40 % in additional deaths from non-communicable diseases. CONCLUSION: Conclusions: Obtained results can serve as a basis for development of medical and environmental measures aimed at implementing adaptation proposals for public health in conditions of global climate change and wartime.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Public Health , Ozone/analysis , Ozone/adverse effects , Ukraine/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Environmental Monitoring/methods , Seasons , Environmental Exposure/adverse effects , Environmental Exposure/analysis
16.
Huan Jing Ke Xue ; 45(6): 3746-3755, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897794

ABSTRACT

Xi'an is the political, economic, and cultural center of northwest China with a developed industry. Air pollution incidents have brought great challenges to the high-quality development of the social economy. It is vital to study air pollution characteristics and clarify their impact on human health. In this study, we first analyzed the spatiotemporal variations in air pollutants in the study region from 2015 to 2021. Then, the air quality index (AQI), aggregate air quality index (AAQI), and health risk-based air quality index (HAQI) were used to assess health risks. Based on these, the AirQ2.2.3 model was used to quantify health effects. The results showed that the major pollutants were PM10, PM2.5, and O3. The main pollution characteristics of the study area were terrain characteristics and the mixed pollution of anthropogenic emissions. Compared to that of AQI, AAQI and HAQI showed better classification performance for pollution levels. HAQI revealed that approximately 80 % of the population was exposed to unhealthy air throughout the year in the study region. People were most exposed to unhealthy air in winter, followed by autumn and spring, and the least in summer. The AirQ2.2.3 model quantified the total mortality proportions attributable to PM2.5, PM10, SO2, CO, NO2, and O3, which were 0.99 %, 2.04 %, 0.41 %, 1.72 %, 8.76 %, and 3.67 %, respectively. The attributable proportion of mortality of the respiratory system and cardiovascular diseases was consistent with the change rule of total mortality.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Particulate Matter , Spatio-Temporal Analysis , China , Air Pollutants/analysis , Humans , Air Pollution/analysis , Particulate Matter/analysis , Environmental Exposure , Cities , Ozone/analysis , Seasons , Risk Assessment
17.
Front Public Health ; 12: 1353384, 2024.
Article in English | MEDLINE | ID: mdl-38939565

ABSTRACT

Background: Ozone pollution is associated with cardiovascular disease mortality, and there is a high correlation between different pollutants. This study aimed to assess the association between ozone and cardiovascular disease deaths and the resulting disease burden in Nanjing, China. Methods: A total of 151,609 deaths from cardiovascular disease were included in Nanjing, China from 2013 to 2021. Daily data on meteorological and air pollution were collected to apply a generalized additional model with multiple pollutants to perform exposure-response analyses, stratification analysis, and evaluation of excess deaths using various standards. Results: In the multi-pollutant model, an increase of 10 µg/m3 in O3 was significantly associated with a 0.81% (95%CI: 0.49, 1.12%) increase in cardiovascular disease deaths in lag05. The correlation weakened in both the single-pollutant model and two-pollutant models, but remained more pronounced in females, the older group, and during warm seasons. From 2013 to 2021, the number of excess deaths attributed to ozone exposure in cardiovascular disease continued to rise with an increase in ozone concentration in Nanjing. If the ozone concentration were to be reduced to the WHO standard and the minimum level, the number of deaths would decrease by 1,736 and 10,882, respectively. Conclusion: The risk of death and excess deaths from cardiovascular disease due to ozone exposure increases with higher ozone concentration. Reducing ozone concentration to meet WHO standards or lower can provide greater cardiovascular disease health benefits.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Environmental Exposure , Ozone , Ozone/analysis , Ozone/toxicity , Ozone/adverse effects , Humans , Cardiovascular Diseases/mortality , China/epidemiology , Female , Male , Air Pollutants/analysis , Environmental Exposure/adverse effects , Air Pollution/adverse effects , Middle Aged , Aged , Seasons , Adult , Rivers
18.
Environ Sci Technol ; 58(26): 11568-11577, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889013

ABSTRACT

Dinitrogen pentoxide (N2O5) plays an essential role in tropospheric chemistry, serving as a nocturnal reservoir of reactive nitrogen and significantly promoting nitrate formations. However, identifying key environmental drivers of N2O5 formation remains challenging using traditional statistical methods, impeding effective emission control measures to mitigate NOx-induced air pollution. Here, we adopted machine learning assisted by steady-state analysis to elucidate the driving factors of N2O5 before and during the 2022 Winter Olympics (WO) in Beijing. Higher N2O5 concentrations were observed during the WO period compared to the Pre-Winter-Olympics (Pre-WO) period. The machine learning model accurately reproduced ambient N2O5 concentrations and showed that ozone (O3), nitrogen dioxide (NO2), and relative humidity (RH) were the most important driving factors of N2O5. Compared to the Pre-WO period, the variation in trace gases (i.e., NO2 and O3) along with the reduced N2O5 uptake coefficient was the main reason for higher N2O5 levels during the WO period. By predicting N2O5 under various control scenarios of NOx and calculating the nitrate formation potential from N2O5 uptake, we found that the progressive reduction of nitrogen oxides initially increases the nitrate formation potential before further decreasing it. The threshold of NOx was approximately 13 ppbv, below which NOx reduction effectively reduced the level of night-time nitrate formations. These results demonstrate the capacity of machine learning to provide insights into understanding atmospheric nitrogen chemistry and highlight the necessity of more stringent emission control of NOx to mitigate haze pollution.


Subject(s)
Air Pollutants , Atmosphere , Machine Learning , Air Pollutants/analysis , Atmosphere/chemistry , Nitrogen Oxides/analysis , Air Pollution , Ozone/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis
19.
Photochem Photobiol Sci ; 23(7): 1279-1294, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762827

ABSTRACT

This study evaluated the health-related weighted ultraviolet radiation (UVR) due to the total ozone content (TOC) and the aerosol optical depth (AOD) changes. Clear-sky Ultraviolet Index (UVI), daily doses, and exposure times for erythema induction (Dery and Tery) and vitamin D synthesis (DvitD and TvitD) were computed by a radiative transfer estimator. TOC and AOD data were provided by six Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6). For projections, we consider four Shared Socioeconomic Pathways scenarios-SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)-and two time-slices (near: 2041-2060 and far future: 2081-2100). UVR projections showed pronounced changes for the summer hemispheres in the far future. TOC increases in mid- and high latitudes of the Southern Hemisphere caused decreases in UVR at the summer solstice. However, projections did not indicate sun-safe exposure conditions in South America, Australia, and Southern Africa. On the contrary, exposure around solar noon from 10 to 20 min will still be sufficient to induce erythema in skin type III individuals throughout this century. In southern Argentina and Chile, the UVR insufficiency for vitamin D synthesis at solar noon in skin type III remains the same during this century at the winter solstice. In the Northern Hemisphere, UVI and Dery at the summer solstice should remain high (UVI ≥ 8; Dery ~ 7.0 kJ m-2) in highly populated locations. Above 45 °N, UVR levels cannot be enough to synthesize vitamin D in skin type III during the boreal winter. Our results show that climate change will affect human health through excess or lack of solar UVR availability.


Subject(s)
Aerosols , Ozone , Ultraviolet Rays , Aerosols/chemistry , Ozone/chemistry , Ozone/analysis , Humans , South America
20.
Sci Total Environ ; 938: 173580, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38810762

ABSTRACT

BACKGROUND: As the leading cause of blindness, age-related macular degeneration (AMD) performs an adverse impact on human health and disability. AMD have been reported to be associated with environmental factors; however, the association between ultraviolet (UV) radiation, warm-season ambient ozone pollution, and incident AMD remains unclear. METHODS: In this study, 19,707 participants without AMD at baseline were included from a nationwide longitudinal cohort in China. UV radiation and warm-season ozone exposure were evaluated through satellite-based models. Incident AMD was diagnosed via ophthalmological fundus images. Cox proportional hazard regression models were employed to explore the association of UV radiation and warm-season ozone with incident AMD, and the hazard ratios (HRs) and 95 % confidence intervals (CIs) were reported. RESULTS: During 312,935 person-month of follow-up, 3774 participants developed to AMD. High exposure to both UV radiation and warm-season ozone was associated with increasing risk of incident AMD, with HRs and 95 % CIs of 1.32 (1.23, 1.41) and 1.20 (1.11, 1.29) in two-exposure models, respectively. Moreover, negative interaction between UV radiation and warm-season ozone was identified, and it was found that exposure to high UV radiation and low ozone presented the highest hazard for AMD. Subgroup analyses showed that the UV-AMD association was stronger in southern China, while the ozone-AMD association was greater in northern China and rural areas. CONCLUSION: Our study provides the first epidemiological evidence that both UV radiation and warm-season ozone would elevate the risk of incident AMD, and the hazard of higher UV radiation may be attenuated by exposure to ozone. Strategies for decreasing AMD burden should jointly consider environmental exposures and geographic locations.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Macular Degeneration , Ozone , Ultraviolet Rays , Ozone/analysis , Humans , China/epidemiology , Macular Degeneration/epidemiology , Macular Degeneration/etiology , Air Pollution/statistics & numerical data , Male , Female , Environmental Exposure/statistics & numerical data , Aged , Middle Aged , Cohort Studies , Seasons , Incidence
SELECTION OF CITATIONS
SEARCH DETAIL
...