Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.833
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1401120, 2024.
Article in English | MEDLINE | ID: mdl-39040675

ABSTRACT

Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.


Subject(s)
Adipogenesis , Obesity , PPAR alpha , PPAR gamma , Humans , PPAR alpha/metabolism , PPAR alpha/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Adipogenesis/drug effects , Obesity/metabolism , Obesity/chemically induced , Transcriptional Activation/drug effects
2.
Mol Biol Rep ; 51(1): 785, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951450

ABSTRACT

BACKGROUND: Kaempferia parviflora Wall. ex. Baker (KP) has been reported to exhibit anti-obesity effects. However, the detailed mechanism of the anti-obesity effect of KP extract (KPE) is yet to be clarified. Here, we investigated the effect of KPE and its component polymethoxyflavones (PMFs) on the adipogenic differentiation of human mesenchymal stem cells (MSCs). METHODS AND RESULTS: KPE and PMFs fraction (2.5 µg/mL) significantly inhibited lipid and triacylglyceride accumulation in MSCs; lipid accumulation in MSCs was suppressed during the early stages of differentiation (days 0-3) but not during the mid (days 3-7) or late (days 7-14) stages. Treatment with KPE and PMFs fractions significantly suppressed peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), and various adipogenic metabolic factors. Treatment with KPE and PMFs fraction induced the activation of AMP-activated protein kinase (AMPK) signaling, and pretreatment with an AMPK signaling inhibitor significantly attenuated KPE- and PMFs fraction-induced suppression of lipid formation. CONCLUSIONS: Our findings demonstrate that KPE and PMFs fraction inhibit lipid formation by inhibiting the differentiation of undifferentiated MSCs into adipocyte lineages via AMPK signaling, and this may be the mechanism underlying the anti-obesity effects of KPE and PMFs. Our study lays the foundation for the elucidation of the anti-obesity mechanism of KPE and PMFs.


Subject(s)
AMP-Activated Protein Kinases , Adipogenesis , Cell Differentiation , Flavones , Mesenchymal Stem Cells , Plant Extracts , Signal Transduction , Zingiberaceae , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Adipogenesis/drug effects , Plant Extracts/pharmacology , Zingiberaceae/chemistry , AMP-Activated Protein Kinases/metabolism , Flavones/pharmacology , Cell Differentiation/drug effects , Signal Transduction/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cells, Cultured
3.
Hereditas ; 161(1): 21, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978149

ABSTRACT

PURPOSE: This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS: The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS: AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION: AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , PPAR gamma , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Humans , Animals , Cell Line, Tumor , Mice , Gene Knockdown Techniques , Mice, Nude , Signal Transduction
4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062809

ABSTRACT

The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17ß-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1ß. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Estradiol , Phycobiliproteins , Rosiglitazone , Animals , Mice , Estradiol/pharmacology , Rosiglitazone/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/cytology , Cell Differentiation/drug effects , Adipogenesis/drug effects , Adipogenesis/genetics , Phycobiliproteins/pharmacology , Phycobiliproteins/metabolism , Phycobiliproteins/genetics , Gene Expression Regulation/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Cell Proliferation/drug effects , Inflammation/metabolism , Inflammation/genetics , Spirulina
5.
J Dermatolog Treat ; 35(1): 2381763, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39034037

ABSTRACT

BACKGROUND: Psoriasis is a common autoimmune disease in clinical practice, and previous observational studies have suggested that PPARG agonists such as Pioglitazone may be potential therapeutic agents. However, due to interference from various confounding factors, different observational studies have not reached a unified conclusion. We aim to evaluate the potential use of PPARG agonists for treating psoriasis from a new perspective through drug-targeted Mendelian randomization (MR) analysis. MATERIALS AND METHODS: This study includes data on 8,876 individuals for acute myocardial infarction from GWAS, and LDL cholesterol data from 343,621 Europeans. FinnGen contributed psoriasis vulgaris data for 403,972 individuals. The DrugBank10 databases function to identify genes encoding protein products targeted by active constituents of lipid-modifying targets. A two-sample MR analysis and summary-data-based MR (SMR) analysis estimated the associations between expressions of drug target genes and symptoms of psoriasis vulgaris. A multivariable MR study was further conducted to examine if the observed association was direct association. RESULTS: SMR analysis revealed that enhanced PPARG gene expression in the blood (equivalent to a one standard deviation increase) was a protective factor for psoriasis vulgaris (beta = -0.2017, se = 0.0723, p = 0.0053). Besides, there exists an MR association between LDL mediated by PPARG and psoriasis vulgaris outcomes (beta = -3.9169, se = 0.5676, p = 5.17E-12). These results indicate that PPARG is a therapeutic target for psoriasis, suggesting that psoriasis may be a potential indication for PPARG agonists. CONCLUSION: This study confirms that therapeutic activation of PPARG helps suppress the development of psoriasis. Psoriasis may be a new indication for PPARG agonists, such as Pioglitazone. In the future, new anti-psoriatic drugs could be developed targeting PPARG.


Subject(s)
Mendelian Randomization Analysis , PPAR gamma , Psoriasis , Humans , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/pathology , PPAR gamma/genetics , PPAR gamma/agonists , Genome-Wide Association Study , Cholesterol, LDL/blood , Pioglitazone/pharmacology , Polymorphism, Single Nucleotide
6.
Front Endocrinol (Lausanne) ; 15: 1395750, 2024.
Article in English | MEDLINE | ID: mdl-38859907

ABSTRACT

Background: The beneficial effect of thermogenic adipocytes in maintaining body weight and protecting against metabolic disorders has raised interest in understanding the regulatory mechanisms defining white and beige adipocyte identity. Although alternative splicing has been shown to propagate adipose browning signals in mice, this has yet to be thoroughly investigated in human adipocytes. Methods: We performed parallel white and beige adipogenic differentiation using primary adipose stem cells from 6 unrelated healthy subjects and assessed differential gene and isoform expression in mature adipocytes by RNA sequencing. Results: We find 777 exon junctions with robust differential usage between white and beige adipocytes in all 6 subjects, mapping to 562 genes. Importantly, only 10% of these differentially spliced genes are also differentially expressed, indicating that alternative splicing constitutes an additional layer of gene expression regulation during beige adipocyte differentiation. Functional classification of alternative isoforms points to a gain of function for key thermogenic transcription factors such as PPARG and CITED1, and enzymes such as PEMT, or LPIN1. We find that a large majority of the splice variants arise from differential TSS usage, with beige-specific TSSs being enriched for PPARγ and MED1 binding compared to white-specific TSSs. Finally, we validate beige specific isoform expression at the protein level for two thermogenic regulators, PPARγ and PEMT. Discussion: These results suggest that differential isoform expression through alternative TSS usage is an important regulatory mechanism for human adipocyte thermogenic specification.


Subject(s)
Adipocytes, Beige , Alternative Splicing , Protein Isoforms , Thermogenesis , Humans , Adipocytes, Beige/metabolism , Thermogenesis/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cell Differentiation , Adipogenesis/genetics , Male , Female , Adult , Cells, Cultured , Gene Expression Regulation , PPAR gamma/genetics , PPAR gamma/metabolism
7.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920636

ABSTRACT

Cancer is one of the most important problems of modern societies. Recently, studies have reported the anticancer properties of rosiglitazone related to its ability to bind peroxisome proliferator receptor γ (PPARγ), which has various effects on cancer and can inhibit cell proliferation. In this study, we investigated the effect of new 4-thiazolidinone (4-TZD) hybrids Les-4369 and Les-3467 and their effect on reactive oxygen species (ROS) production, metabolic activity, lactate dehydrogenase (LDH) release, caspase-3 activity, and gene and protein expression in human foreskin fibroblast (BJ) cells and lung adenocarcinoma (A549) cells. The ROS production and caspase-3 activity were mainly increased in the micromolar concentrations of the studied compounds in both cell lines. Les-3467 and Les-4369 increased the mRNA expression of PPARG, P53 (tumor protein P53), and ATM (ATM serine/threonine kinase) in the BJ cells, while the mRNA expression of these genes (except PPARG) was mainly decreased in the A549 cells treated with both of the tested compounds. Our results indicate a decrease in the protein expression of AhR, PPARγ, and PARP-1 in the BJ cells exposed to 1 µM Les-3467 and Les-4369. In the A549 cells, the protein expression of AhR, PPARγ, and PARP-1 increased in the treatment with 1 µM Les-3467 and Les-4369. We have also shown the PPARγ modulatory properties of Les-3467 and Les-4369. However, both compounds prove weak anticancer properties evidenced by their action at high concentrations and non-selective effects against BJ and A549 cells.


Subject(s)
PPAR gamma , Pyrazoles , Reactive Oxygen Species , Humans , A549 Cells , PPAR gamma/metabolism , PPAR gamma/genetics , Reactive Oxygen Species/metabolism , Pyrazoles/pharmacology , Thiazolidines/pharmacology , Indoles/pharmacology , Caspase 3/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Apoptosis/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism
8.
Genes (Basel) ; 15(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927715

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARG) has various splicing variants and plays essential roles in the regulation of adipocyte differentiation and lipogenesis. However, little is known about the expression pattern and effect of the PPARG on milk fat synthesis in the buffalo mammary gland. In this study, we found that only PPARG-X17 and PPARG-X21 of the splicing variant were expressed in the buffalo mammary gland. Amino acid sequence characterization showed that the proteins encoded by PPARG-X17 and PPARG-X21 are endonuclear non-secreted hydrophilic proteins. Protein domain prediction found that only the PPARG-X21-encoded protein had PPAR ligand-binding domains (NR_LBD_PPAR), which may lead to functional differences between the two splices. RNA interference (RNAi) and the overexpression of PPARG-X17 and PPARG-X21 in buffalo mammary epithelial cells (BMECs) were performed. Results showed that the expression of fatty acid synthesis-related genes (ACACA, CD36, ACSL1, GPAT, AGPAT6, DGAT1) was significantly modified (p < 0.05) by the RNAi and overexpression of PPARG-X17 and PPARG-X21. All kinds of FAs detected in this study were significantly decreased (p < 0.05) after RNAi of PPARG-X17 or PPARG-X21. Overexpression of PPARG-X17 or PPARG-X21 significantly decreased (p < 0.05) the SFA content, while significantly increased (p < 0.05) the UFA, especially the MUFA in the BMECs. In conclusion, there are two PPARG splicing variants expressed in the BMECs that can regulate FA synthesis by altering the expression of diverse fatty acid synthesis-related genes. This study revealed the expression characteristics and functions of the PPARG gene in buffalo mammary glands and provided a reference for further understanding of fat synthesis in buffalo milk.


Subject(s)
Buffaloes , Mammary Glands, Animal , PPAR gamma , Animals , Buffaloes/genetics , Buffaloes/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Mammary Glands, Animal/metabolism , Female , Epithelial Cells/metabolism , Alternative Splicing , Fatty Acids/metabolism , Fatty Acids/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Milk/metabolism
9.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928163

ABSTRACT

Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRß (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRß mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status.


Subject(s)
ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 1 , Adipose Tissue , Cholesterol , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Liver X Receptors , Macrophages , Obesity , PPAR gamma , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Obesity/metabolism , Obesity/genetics , Liver X Receptors/metabolism , Liver X Receptors/genetics , Macrophages/metabolism , Cholesterol/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adipose Tissue/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Female , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Male , Middle Aged , Biological Transport , Gene Expression Regulation , Adult , RNA, Messenger/metabolism , RNA, Messenger/genetics
10.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822367

ABSTRACT

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Subject(s)
Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Male , Mice , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Neuroinflammatory Diseases/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects
11.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
12.
Physiol Rep ; 12(12): e16117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898524

ABSTRACT

This study aimed to investigate how intermittent hyperoxic exposure (three cycles of 21% O2 [10 min] and 30% O2 [15 min]) affects exercise performance in mice. Three hours after the acute exposure, there was an observed increase in mRNA levels of phosphofructokinase (Bayes factor [BF] ≥ 10), mitochondrial transcription factor-A (BF ≥10), PPAR-α (BF ≥3), and PPAR-γ (BF ≥3) in the red gastrocnemius muscle (Gr). Four weeks of exercise training under intermittent (INT), but not continuous (HYP), hyperoxia significantly (BF ≥30) increased maximal exercise capacity compared to normoxic exercise-trained (ET) group. INT group exhibited significantly higher activity levels of 3-hydroxyacyl-CoA-dehydrogenase (HAD) in Gr (BF = 7.9) compared to ET group. Pyruvate dehydrogenase complex activity levels were significantly higher in INT group compared to ET group in white gastrocnemius, diaphragm, and left ventricle (BF ≥3). NT-PGC1α protein levels in Gr (BF = 7.7) and HAD activity levels in Gr (BF = 6.9) and soleus muscles (BF = 3.3) showed a significant positive correlation with maximal work values. These findings suggest that exercise training under intermittent hyperoxia is a beneficial strategy for enhancing endurance performance by improving fatty acid and pyruvic acid utilization.


Subject(s)
Muscle, Skeletal , Physical Conditioning, Animal , Physical Endurance , Animals , Male , Muscle, Skeletal/metabolism , Mice , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Physical Endurance/physiology , Mice, Inbred C57BL , Hyperoxia/metabolism , Hyperoxia/physiopathology , PPAR alpha/metabolism , PPAR alpha/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphofructokinases/metabolism , Phosphofructokinases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins , Mitochondrial Proteins
13.
J Agric Food Chem ; 72(26): 14620-14629, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885170

ABSTRACT

Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Milk , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Milk/chemistry , Milk/metabolism , Mice , Cattle , Female , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fats/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Fatty Acids/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Triglycerides/metabolism
14.
PLoS One ; 19(6): e0306039, 2024.
Article in English | MEDLINE | ID: mdl-38924022

ABSTRACT

BACKGROUND: Spilanthes filicaulis (Schumach. & Thonn.) C. D Adam is a shrubby plant of the Asteraceae family that has medicinal benefits for the pharmaceutical and cosmetic industries. PURPOSE: The purpose of this study was to assess the effectiveness of Spilanthes filicaulis leaf extract in a streptozotocin (STZ)-induced rat model and the associated signaling pathways. METHODS: A sample of 25 male Wistar rats was randomly assigned to groups I, II, III, IV, and V. Each group included five animals, i.e., control rats, diabetic control rats, diabetic rats treated with metformin, and diabetic rats treated with 150 mg/kg/bw and 300 mg/kg/bw of the methanolic extract of S. filicaulis leaves (MESFL). Treatment was administered for 15 successive days via oral gavage. After 15 days, the rats were evaluated for fasting blood glucose (FBG), glycated hemoglobin (HbA1c), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (MDA), hexokinase, and glucose-6-phosphatase activities. Gene expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor gamma (PPAR-γ), kelch-like ECH-associated protein 1 (Keap1), protein tyrosine phosphatase 1B (PTP1B) and the antiapoptotic protein caspase-3 were examined. RESULTS: MESFL was administered to diabetic rats, and changes in body weight, fasting blood glucose (FBG) and HbA1c were restored. Furthermore, in diabetic rats, S. filicaulis significantly reduced the levels of triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) and significantly increased HDL. S. filicaulis improved ALT, AST, and ALP enzyme activity in diabetic rats. MDA levels decreased considerably with increasing activity of antioxidant enzymes, such as GST, SOD, CAT and GSH, in diabetic liver rats treated with S. filicaulis. Diabetic rats treated with MESFL and metformin exhibited upregulated mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Kelch-like ECH-associated protein 1 (Keap1) and protein tyrosine phosphatase 1B (PTP1B) mRNA expression in the liver was downregulated in diabetic rats treated with MESFL and metformin. In addition, MESFL downregulated the mRNA expression of caspase-3 in diabetic rats. CONCLUSION: It can be concluded from the data presented in this study that MESFL exerts a protective effect on diabetic rats due to its antidiabetic, antioxidant, antihyperlipidemic and antiapoptotic effects and may be considered a treatment for T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Kelch-Like ECH-Associated Protein 1 , Liver , NF-E2-Related Factor 2 , Oxidative Stress , PPAR gamma , Plant Extracts , Plant Leaves , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Rats, Wistar , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Male , Plant Extracts/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Oxidative Stress/drug effects , Plant Leaves/chemistry , Signal Transduction/drug effects , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Liver/drug effects , Liver/metabolism , Liver/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Asteraceae/chemistry , Streptozocin , Hypoglycemic Agents/pharmacology
15.
Cell Biochem Funct ; 42(5): e4069, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38940455

ABSTRACT

Stem cells demonstrate differentiation and regulatory functions. In this discussion, we will explore the impacts of cell culture density on stem cell proliferation, adipogenesis, and regulatory abilities. This study aimed to investigate the impact of the initial culture density of human periodontal ligament stem cells (hPDLSCs) on the adipogenic differentiation of autologous cells. Our findings indicate that the proliferation rate of hPDLSCs increased with increasing initial cell density (0.5-8 × 104 cells/cm2). After adipogenic differentiation induced by different initial cell densities of hPDLSC, we found that the mean adipose concentration and the expression levels of lipoprotein lipase (LPL), CCAAT/enhancer binding protein α (CEBPα), and peroxisome proliferator-activated receptor γ (PPAR-γ) genes all increased with increasing cell density. To investigate the regulatory role of hPDLSCs in the adipogenic differentiation of other cells, we used secreted exocrine vesicles derived from hPDLSCs cultivated at different initial cell densities of 50 µg/mL to induce the adipogenic differentiation of human bone marrow stromal cells. We also found that the mean adipose concentration and expression of LPL, CEBPα, and PPARγ genes increased with increasing cell density, with an optimal culture density of 8 × 104 cells/cm2. This study provides a foundation for the application of adipogenic differentiation in stem cells.


Subject(s)
Adipogenesis , Cell Differentiation , Periodontal Ligament , Stem Cells , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Stem Cells/cytology , Stem Cells/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cells, Cultured , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Cell Proliferation , Cell Count , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics
16.
Gene ; 927: 148704, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38885821

ABSTRACT

The current study sought to investigate the associations of common genetic risk variants with gestational diabetes mellitus (GDM) risk in the north Indian population and to evaluate their utility in identifying GDM cases. A case-control study, including 300 pregnant women, was included, and clinical and pathological information was collected. The amplification-refractory mutation system (ARMS) was used for genotyping four single nucleotide polymorphisms (SNPs), namely FTO (rs9939609), PPARG2 (rs1801282), SLC30A8 (rs13266634), and TCF7L2 (rs12255372). The odds ratio and confidence interval were determined for each SNP in different genetic models. Further, attributable risk, population penetrance, and relative risk were also calculated. The risk allele A of FTO (rs9939609) poses a two times higher risk of GDM (p = 0.02, OR = 2.5). The CG and GG genotypes of PPARG2 (rs1801282) have half a lower risk of GDM. In SLC30A8 (rs13266634), the recessive model analysis showed a two times higher risk of having GDM, while the recessive model (TT vs. GG + GT) analysis in TCF7L2 (rs12255372) indicates a lower risk of GDM. Finally, the relative risk, population penetrance, and attributable risk for risk allele in all four variants was higher in GDM mothers. All four polymorphisms were found to be significantly associated with BMI, HbA1c, and insulin. Our study first time confirmed a significant association with GDM for four variants, FTO, PPARG2, SLC30A8, and TCF7L2, in the North Indian population.


Subject(s)
Diabetes, Gestational , Genetic Predisposition to Disease , Insulin , Polymorphism, Single Nucleotide , Transcription Factor 7-Like 2 Protein , Zinc Transporter 8 , Humans , Female , Diabetes, Gestational/genetics , Pregnancy , Adult , Case-Control Studies , Transcription Factor 7-Like 2 Protein/genetics , Insulin/metabolism , Zinc Transporter 8/genetics , Zinc Transporter 8/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , PPAR gamma/genetics , India
17.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791384

ABSTRACT

The PAX8/PPARγ rearrangement, producing the PAX8-PPARγ fusion protein (PPFP), is thought to play an essential role in the oncogenesis of thyroid follicular tumors. To identify PPFP-targeted drug candidates and establish an early standard of care for thyroid tumors, we performed ensemble-docking-based compound screening. Specifically, we investigated the pocket structure that should be adopted to search for a promising ligand compound for the PPFP; the position of the ligand-binding pocket on the PPARγ side of the PPFP is similar to that of PPARγ; however, the shape is slightly different between them due to environmental factors. We developed a method for selecting a PPFP structure with a relevant pocket and high prediction accuracy for ligand binding. This method was validated using PPARγ, whose structure and activity values are known for many compounds. Then, we performed docking calculations to the PPFP for 97 drug or drug-like compounds registered in the DrugBank database with a thiazolidine backbone, which is one of the characteristics of ligands that bind well to PPARγ. Furthermore, the binding affinities of promising ligand candidates were estimated more reliably using the molecular mechanics Poisson-Boltzmann surface area method. Thus, we propose promising drug candidates for the PPFP with a thiazolidine backbone.


Subject(s)
Molecular Docking Simulation , Oncogene Proteins, Fusion , PPAR gamma , Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , PPAR gamma/metabolism , PPAR gamma/chemistry , PPAR gamma/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/chemistry , Ligands , PAX8 Transcription Factor/metabolism , PAX8 Transcription Factor/genetics , Protein Binding , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Binding Sites , Computer Simulation
18.
Cancer Lett ; 593: 216928, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714290

ABSTRACT

High-grade serous carcinoma (HGSC) is characterized by early abdominal metastasis, leading to a dismal prognosis. In this study, we conducted single-cell RNA sequencing on 109,573 cells from 34 tumor samples of 18 HGSC patients, including both primary tumors and their metastatic sites. Our analysis revealed a distinct S100A9+ tumor cell subtype present in both primary and metastatic sites, strongly associated with poor overall survival. This subtype exhibited high expression of S100A8, S100A9, ADGRF1, CEACAM6, CST6, NDRG2, MUC4, PI3, SDC1, and C15orf48. Individual knockdown of these ten marker genes, validated through in vitro and in vivo models, significantly inhibited ovarian cancer growth and invasion. Around S100A9+ tumor cells, a population of HK2+_CAF was identified, characterized by activated glycolysis metabolism, correlating with shorter overall survival in patients. Notably, similar to CAFs, immunosuppressive tumor-associated macrophage (TAM) subtypes underwent glycolipid metabolism reprogramming via PPARgamma regulation, promoting tumor metastasis. These findings shed light on the mechanisms driving the aggressiveness of HGSC, offering crucial insights for the development of novel therapeutic targets against this formidable cancer.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Female , Tumor Microenvironment/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/metabolism , Transcriptome , Animals , Gene Expression Regulation, Neoplastic , Mice , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Calgranulin B/genetics , Calgranulin B/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Glycolysis/genetics , Neoplasm Grading
19.
J Microbiol Biotechnol ; 34(5): 1073-1081, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38719777

ABSTRACT

Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Cell Differentiation , Lactobacillus acidophilus , Obesity , PPAR gamma , Signal Transduction , p38 Mitogen-Activated Protein Kinases , PPAR gamma/metabolism , PPAR gamma/genetics , Animals , Mice , p38 Mitogen-Activated Protein Kinases/metabolism , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects , Obesity/metabolism , Anti-Obesity Agents/pharmacology , Probiotics/pharmacology , Triglycerides/metabolism
20.
Food Funct ; 15(12): 6424-6437, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38771619

ABSTRACT

Obesity requires treatment to mitigate the potential development of further metabolic disorders, including diabetes, hyperlipidemia, tumor growth, and non-alcoholic fatty liver disease. We investigated the anti-obesity effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) on 3T3-L1 preadipocytes and high-fat diet (HFD)-induced obese C57BL/6 mice. Adipogenesis transcription factors including peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein-alpha (C/EBPα), and sterol regulatory element-binding protein-1 (SREBP-1) were ameliorated through the AMP-activated protein kinase (AMPK) pathway by EEB treatment in differentiated 3T3-L1 cells. EEB attenuated mitotic clonal expansion by upregulating cyclin-dependent kinase inhibitors (CDKIs) while downregulating cyclins and CDKs. In HFD-fed mice, EEB significantly decreased the total body weight, fat tissue weight, and fat in the tissue. The protein expression of PPARγ, C/EBPα, and SREBP-1 was increased in the subcutaneous fat and liver tissues, while EEB decreased the expression levels of these transcription factors. EEB also inhibited lipogenesis by downregulating acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression in the subcutaneous fat and liver tissues. Moreover, the phosphorylation of AMPK and ACC was downregulated in the HFD-induced mouse group, whereas the administration of EEB improved AMPK and ACC phosphorylation; thus, EEB treatment may be related to the AMPK pathway. Histological analysis showed that EEB reduced the adipocyte size and fat accumulation in subcutaneous fat and liver tissues, respectively. EEB promotes thermogenesis in brown adipose tissue and improves insulin and leptin levels and blood lipid profiles. Our results suggest that EEB could be used as a potential agent to prevent obesity.


Subject(s)
3T3-L1 Cells , AMP-Activated Protein Kinases , Anti-Obesity Agents , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Plant Extracts , Signal Transduction , Animals , Mice , Diet, High-Fat/adverse effects , Plant Extracts/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Male , Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Obesity/metabolism , Signal Transduction/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Adipogenesis/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Adipocytes/drug effects , Adipocytes/metabolism , Edible Seaweeds , Kelp
SELECTION OF CITATIONS
SEARCH DETAIL