Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.260
Filter
1.
Virol J ; 21(1): 172, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095779

ABSTRACT

Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Oncogene Proteins, Viral , Humans , Cytokines/metabolism , Cytokines/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/immunology , Keratinocytes/virology , Keratinocytes/immunology , Keratinocytes/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Gene Expression Profiling , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/immunology , Coculture Techniques , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics
2.
Front Immunol ; 15: 1405318, 2024.
Article in English | MEDLINE | ID: mdl-39055715

ABSTRACT

Human papilloma virus (HPV) is an etiological factor of head and neck squamous cell carcinoma (HNSCC). To investigate the role of HPV antigen in anti-tumor immunity, we established mouse models by expressing HPV16 E6 and E7 in a SCC tumor cell line. We obtained two HPV antigen-expressing clones (C-225 and C-100) transplantable into C57BL/6 recipients. We found that C-225 elicited complete eradication in C57BL/6 mice (eradicated), whereas C-100 grew progressively (growing). We examined immune tumor microenvironment (TME) using flow cytometry and found that eradicated or growing tumors exhibited differential immune profiles that may influence the outcome of anti-tumor immunity. Surprisingly, the percentage of CD8 and CD4 tumor-infiltrating lymphocytes (TILs) was much higher in growing (C-100) than eradicated (C-225) tumor. However, the TILs upregulated PD-1 and LAG-3 more potently and exhibited impaired effector functions in growing tumor compared to their counterparts in eradicated tumor. C-225 TME is highly enriched with myeloid cells, especially polymorphonuclear (PMN) myeloid-derived suppressor cells (MDSC), whereas the percentage of M-MDSC and tumor-associated macrophages (TAMs) was much higher in C-100 TME, especially M2-TAMs (CD206+). The complete eradication of C-225 depended on CD8 T cells and elicited anti-tumor memory responses upon secondary tumor challenge. We employed DNA sequencing to identify differences in the T cell receptor of peripheral blood lymphocytes pre- and post-secondary tumor challenge. Lastly, C-225 and C-100 tumor lines harbored different somatic mutations. Overall, we uncovered differential immune TME that may underlie the divergent outcomes of anti-tumor immunity by establishing two SCC tumor lines, both of which express HPV16 E6 and E7 antigens. Our experimental models may provide a platform for pinpointing tumor-intrinsic versus host-intrinsic differences in orchestrating an immunosuppressive TME in HNSCCs and for identifying new targets that render tumor cells vulnerable to immune attack.


Subject(s)
Disease Models, Animal , Lymphocytes, Tumor-Infiltrating , Mice, Inbred C57BL , Oncogene Proteins, Viral , Papillomavirus E7 Proteins , Papillomavirus Infections , Tumor Microenvironment , Animals , Tumor Microenvironment/immunology , Mice , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Repressor Proteins/genetics , Lymphocyte Activation Gene 3 Protein , Humans , Disease Progression , CD8-Positive T-Lymphocytes/immunology , Programmed Cell Death 1 Receptor , Female , Human papillomavirus 16/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology
3.
Front Immunol ; 15: 1416204, 2024.
Article in English | MEDLINE | ID: mdl-39007140

ABSTRACT

Background: Women living with HIV/AIDS (WLHA) have an increased prevalence of high-risk HPV infection (HR-HPV) and cervical intraepithelial neoplasia (CIN) and a greater risk of cervical cancer despite access to a new generation of antiretroviral therapy. The aim of this study is to evaluate the concentrations of different cytokines involved in the local immune response in WLHA, which is fundamental for understanding the pathogenesis of HPV-related cancer in this population. Methods: IL-1ß, IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α, IP-10, GM-CSF, and MIP-1α were investigated in the cervicovaginal lavage (CVL) of 106 WLHA attending at Hospital Universitario Professor Edgard Santos in Salvador, Bahia, Brazil, during the period December 2019 to April 2023 by Luminex®. All participants were also tested for Chlamydia trachomatis and Neisseria gonorrhoeae and underwent colposcopy, Pap smear, and Nugent score. HIV plasma viral load (VL) and CD4 cell count were performed for all WLHA. Results: In this study, 22.6% (24/106) of WLHA were infected with HR-HPV. A higher proportion of patients with HR-HPV (66.7%) had detectable levels of IL-10 than those negative ones (40.2%, p = 0.02). More premenopausal women had either IL-6 (51.4%) or IP-10 (58.3%) than those in menopausal status (26.5% for IL-6 and 32.4% for IP-10, p = 0.013 and p = 0.011, respectively). Vaginosis was negatively associated with detection of IP-10 (24.2% vs. 61.4%, p < 0.001) and INF-γ (39.4% vs. 68.6%, p = 0.005). A positive association was detected for IL-1ß (66.7 vs. 37.1%, p = 0.005) and IL-10 (63.6% vs. 37.1%, p = 0.01). VL and CD4 were not associated with the studied cytokines. Conclusion: We demonstrated a positive association between IL-10 and HPV infection in CVL, suggesting the predominance of the Th2 response in HIV/HPV co-infected patients. However, further studies with longer follow-up will be needed to evaluate the association of IL-10 with HPV infection, CIN, and cervical cancer in WLHA.


Subject(s)
Cytokines , HIV Infections , Papillomavirus Infections , Humans , Female , HIV Infections/immunology , HIV Infections/complications , Cytokines/metabolism , Papillomavirus Infections/immunology , Adult , Middle Aged , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/virology , Papillomaviridae/immunology , Cervix Uteri/immunology , Cervix Uteri/virology , Cervix Uteri/metabolism , Brazil/epidemiology , Viral Load , Vagina/immunology , Vagina/virology , Uterine Cervical Dysplasia/immunology , Uterine Cervical Dysplasia/diagnosis , Uterine Cervical Dysplasia/virology , Human Papillomavirus Viruses
4.
Int J Mol Sci ; 25(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062960

ABSTRACT

Human papillomavirus (HPV) infection poses a significant health challenge, particularly in low- and middle-income countries (LMIC), where limited healthcare access and awareness hinder vaccine accessibility. To identify alternative HPV targeting interventions, we previously reported on surfactant protein A (SP-A) as a novel molecule capable of recognising HPV16 pseudovirions (HPV16-PsVs) and reducing infection in a murine cervicovaginal HPV challenge model. Building on these findings, our current study aimed to assess SP-A's suitability as a broad-spectrum HPV-targeting molecule and its impact on innate immune responses. We demonstrate SP-A's ability to agglutinate and opsonise multiple oncogenic HPV-PsVs types, enhancing their uptake and clearance by RAW264.7 murine macrophages and THP-1 human-derived immune cells. The SP-A opsonisation of HPV not only led to increased lysosomal accumulation in macrophages and HaCaT keratinocytes but also resulted in a decreased infection of HaCaT cells, which was further decreased when co-cultured with innate immune cells. An analysis of human innate immune cell cytokine profiles revealed a significant inflammatory response upon SP-A exposure, potentially contributing to the overall inhibition of HPV infection. These results highlight the multi-layered impact of SP-A on HPV, innate immune cells and keratinocytes and lay the basis for the development of alternative prophylactic interventions against diverse HPV types.


Subject(s)
Macrophages , Papillomavirus Infections , Pulmonary Surfactant-Associated Protein A , Humans , Animals , Mice , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Pulmonary Surfactant-Associated Protein A/metabolism , Pulmonary Surfactant-Associated Protein A/immunology , RAW 264.7 Cells , Macrophages/immunology , Macrophages/metabolism , Immunity, Innate , Keratinocytes/metabolism , Keratinocytes/virology , Keratinocytes/immunology , Cytokines/metabolism , HaCaT Cells , THP-1 Cells , Female
5.
Front Immunol ; 15: 1362770, 2024.
Article in English | MEDLINE | ID: mdl-38983849

ABSTRACT

The development of human papillomavirus (HPV) vaccines has made substantive progress, as represented by the approval of five prophylactic vaccines since 2006. Generally, the deployment of prophylactic HPV vaccines is effective in preventing newly acquired infections and incidences of HPV-related malignancies. However, there is still a long way to go regarding the prevention of all HPV infections and the eradication of established HPV infections, as well as the subsequent progression to cancer. Optimizing prophylactic HPV vaccines by incorporating L1 proteins from more HPV subtypes, exploring adjuvants that reinforce cellular immune responses to eradicate HPV-infected cells, and developing therapeutic HPV vaccines used either alone or in combination with other cancer therapeutic modalities might bring about a new era getting closer to the vision to get rid of HPV infection and related diseases. Herein, we summarize strategies for the development of HPV vaccines, both prophylactic and therapeutic, with an emphasis on the selection of antigens and adjuvants, as well as implications for vaccine efficacy based on preclinical studies and clinical trials. Additionally, we outline current cutting-edge insights on formulation strategies, dosing schedules, and age expansion among HPV vaccine recipients, which might play important roles in addressing barriers to vaccine uptake, such as vaccine hesitancy and vaccine availability.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Humans , Papillomavirus Vaccines/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Female , Vaccine Development , Adjuvants, Immunologic , Animals , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Papillomaviridae/immunology , Vaccine Efficacy
6.
Sci Rep ; 14(1): 15875, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38982088

ABSTRACT

Human papillomavirus (HPV) is the cause of almost all cases of cervical cancer, a disease that kills some 340,000 women per year. The timeline from initial infection with HPV to the onset of invasive cervical cancer spans decades, and observational studies of this process are limited to settings in which treatment of precancerous lesions was withheld or inadequate. Such studies have been critical for understanding the natural history of HPV. Modeling can shed additional insight on the natural history of HPV, especially across geographical settings with varying prevalence of factors known to affect the host-side immune response to HPV, such as HIV and tobacco use. In this study, we create models for the 30 most populous countries in Sub-Saharan Africa, each with country-specific demographic, and behavioral inputs. We found that it was not possible to fit the data if we assumed that the natural history parameters were exactly identical for all countries, even after accounting for demographic and behavioral differences, but that we could achieve a good fit with the addition of a single immunocompetence parameter for each country. Our results indicate that variation in host immune responses may play a role in explaining the differences in the burden of cervical cancer between countries, which in turn implies a greater need for more geographically diverse data collection to understand the natural history of HPV.


Subject(s)
Papillomavirus Infections , Registries , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/epidemiology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Africa South of the Sahara/epidemiology , Adult , Papillomaviridae , Global Health , Prevalence , Middle Aged , Calibration
7.
PeerJ ; 12: e17415, 2024.
Article in English | MEDLINE | ID: mdl-38881859

ABSTRACT

Background: Cancer has surpassed infectious diseases and heart ailments, taking the top spot in the disease hierarchy. Cervical cancer is a significant concern for women due to high incidence and mortality rates, linked to the human papillomavirus (HPV). HPV infection leads to precancerous lesions progressing to cervical cancer. The cervix's external os, near the vagina, hosts various microorganisms. Evidence points to the link between vaginal microbiota and HPV-induced cervical cancer. Cervical cancer onset aligns with an imbalanced Th1/Th2 immune response, but the role of vaginal microbiota in modulating this imbalance is unclear. Methods: In this study, we collected vaginal samples from 99 HPV-infected patients across varying degrees of lesions, alongside control groups. These samples underwent bacterial DNA sequencing. Additionally, we employed Elisa kits to quantify the protein expression levels of Th1/Th2 cytokines IL2, IL12, IL5, IL13, and TNFa within the centrifuged supernatant of vaginal-cervical secretions from diverse research subjects. Subsequently, correlation analyses were conducted between inflammatory factors and vaginal microbiota. Results: Our findings highlighted a correlation between decreased Lactobacillus and increased Gardenerella presence with HPV-induced cervical cancer. Functionally, our predictive analysis revealed the predominant enrichment of the ABC transporter within the vaginal microbiota of cervical cancer patients. Notably, these microbiota alterations exhibited correlations with the production of Th1/Th2 cytokines, which are intimately tied to tumor immunity. Conclusions: This study suggests the potential involvement of vaginal microbiota in the progression of HPV-induced cervical cancer through Th1/Th2 cytokine regulation. This novel insight offers a fresh perspective for early cervical cancer diagnosis and future prevention strategies.


Subject(s)
Microbiota , Papillomavirus Infections , Uterine Cervical Neoplasms , Vagina , Humans , Female , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/microbiology , Uterine Cervical Neoplasms/pathology , Vagina/microbiology , Vagina/immunology , Vagina/virology , Microbiota/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Adult , Inflammation/immunology , Inflammation/microbiology , Middle Aged , Cytokines/metabolism , Cervix Uteri/microbiology , Cervix Uteri/immunology , Cervix Uteri/virology
8.
J Med Virol ; 96(6): e29732, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38874202

ABSTRACT

Neutralizing antibodies (NAbs) are considered the primary mechanism of vaccine-mediated protection against human papillomaviruses (HPV), the causative agent of cervical cancer. However, the minimum level of NAb needed for protection is currently unknown. The HPV pseudovirion-based neutralization assay (PBNA) is the gold standard method for assessing HPV antibody responses but is time-consuming and labor-intensive. With the development of higher valency HPV vaccines, alternative serological assays with the capacity for multiplexing would improve efficiency and output. Here we describe a multiplex bead-based immunoassay to characterize the antibody responses to the seven oncogenic HPV types (HPV16/18/31/33/45/52/58) contained in the current licensed nonavalent HPV vaccine. This assay can measure antibody isotypes and subclasses (total IgG, IgM, IgA1-2, IgG1-4), and can be adapted to measure other antibody features (e.g., Fc receptors) that contribute to vaccine immunity. When tested with serum samples from unvaccinated and vaccinated individuals, we found high concordance between HPV-specific IgG using this multiplex assay and NAbs measured with PBNA. Overall, this assay is high-throughput, sample-sparing, and time-saving, providing an alternative to existing assays for the measurement and characterization of HPV antibody responses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Immunoglobulin G , Papillomavirus Infections , Papillomavirus Vaccines , Humans , Antibodies, Viral/blood , Immunoassay/methods , Female , Papillomavirus Infections/diagnosis , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunoglobulin G/blood , Papillomaviridae/immunology , Human Papillomavirus Viruses
9.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892393

ABSTRACT

This study aims to refine our understanding of the inherent heterogeneity in cervical cancer by exploring differential gene expression profiles, immune cell infiltration dynamics, and implicated signaling pathways in the two predominant histological types of cervix carcinoma, Squamous Cell Carcinoma (SCC) and Adenocarcinoma (ADC). Targeted gene expression data that were previously generated from samples of primary cervical cancer were re-analyzed. The samples were grouped based on their histopathology, comparing SCC to ADC. Each tumor in the study was confirmed to be high risk human papilloma virus (hrHPV) positive. A total of 21 cervical cancer samples were included, with 11 cases of SCC and 10 of ADC. Data analysis revealed a total of 26 differentially expressed genes, with 19 genes being overexpressed in SCC compared to ADC (Benjamini-Hochberg (BH)-adjusted p-value < 0.05). Importantly, the immune checkpoint markers CD274 and CTLA4 demonstrated significantly higher expression in SCC compared to ADC. In addition, SCC showed a higher infiltration of immune cells, including B and T cells, and cytotoxic cells. Higher activation of a variety of pathways was found in SCC samples including cytotoxicity, interferon signaling, metabolic stress, lymphoid compartment, hypoxia, PI3k-AKT, hedgehog signaling and Notch signaling pathways. Our findings show distinctive gene expression patterns, signaling pathway activations, and trends in immune cell infiltration between SCC and ADC in cervical cancer. This study underscores the heterogeneity within primary cervical cancer, emphasizing the potential benefits of subdividing these tumours based on histological and molecular differences.


Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma/genetics , Signal Transduction , Biomarkers, Tumor/genetics , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Gene Expression Profiling , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Middle Aged , Transcriptome , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Infections/pathology , Papillomavirus Infections/complications
10.
HLA ; 103(6): e15509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837741

ABSTRACT

Loss of heterozygosity (LOH) has been reported to occur in HLA regions in cervical intraepithelial neoplasia (CIN) and cervical cancer. However, the details of how this is related to the progression of CIN have been unclear. In this study, we examined the human papillomavirus (HPV) antigen-presenting capacity of people with CIN and the significance of LOH of HLA class I in the progression of CIN. It was shown that differences in antigen-presenting capacity among each case depended on HLA types, not HPV genotypes. Focusing on the HLA type, there was a positive correlation between antigen-presenting capacity against HPV and the frequency of allelic loss. Furthermore, the lost HLA-B alleles had a higher HPV antigen-presenting capacity than intact alleles. In addition, frequency of LOH of HLA class I was significantly higher in advanced CIN (CIN2-3) than in cervicitis or early-stage CIN (CIN1): around half of CIN2-3 had LOH of any HLA class I. Moreover, the antigen-presenting capacity against E5, which is the HPV proteins that facilitate viral escape from this immune surveillance by suppressing HLA class I expression, had the most significant impact on the LOH in HLA-B. This study suggests that HPV evades immune surveillance mechanisms when host cells lose the capacity for antigen presentation by HLA class I molecules, resulting in long-term infection and progression to advanced lesions.


Subject(s)
Histocompatibility Antigens Class I , Loss of Heterozygosity , Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Humans , Uterine Cervical Dysplasia/immunology , Uterine Cervical Dysplasia/genetics , Uterine Cervical Dysplasia/virology , Uterine Cervical Dysplasia/pathology , Female , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Papillomavirus Infections/immunology , Papillomavirus Infections/genetics , Antigen Presentation/immunology , Adult , Alleles , Papillomaviridae/immunology , Immunologic Surveillance , Middle Aged , Genotype
11.
Nano Lett ; 24(25): 7629-7636, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874796

ABSTRACT

Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.


Subject(s)
Cancer Vaccines , Papillomavirus E7 Proteins , Animals , Cancer Vaccines/immunology , Cancer Vaccines/chemistry , Cancer Vaccines/administration & dosage , Mice , Papillomavirus E7 Proteins/immunology , Papillomavirus E7 Proteins/chemistry , Humans , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Nucleic Acids/chemistry , Nucleic Acids/immunology , DNA/chemistry , DNA/immunology
12.
Viral Immunol ; 37(5): 221-239, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841885

ABSTRACT

Human papillomavirus (HPV) is a circular, double-stranded DNA virus and recognized as the most prevalent sexually transmitted infectious agent worldwide. The HPV life cycle encompasses three primary stages. First, the virus infiltrates the basal cells of the stratified epidermis. Second, there is a low-level expression of viral genes and preservation of the viral genome in the basal layer. Lastly, productive replication of HPV occurs in differentiated cells. An effective immune response, involving various immune cells, including innate immunity, keratinocytes, dendritic cells, and natural killer T cells, is instrumental in clearing HPV infection and thwarting the development of HPV-associated tumors. Vaccines have demonstrated their efficacy in preventing genital warts, high-grade precancerous lesions, and cancers in females. In males, the vaccines can also aid in preventing genital warts, anal precancerous lesions, and cancer. This comprehensive review aims to provide a thorough and detailed exploration of HPV infections, delving into its genetic characteristics, life cycle, pathogenesis, and the role of high-risk and low-risk HPV strains. In addition, this review seeks to elucidate the intricate immune interactions that govern HPV infections, spanning from innate immunity to adaptive immune responses, as well as examining the evasion mechanisms used by the virus. Furthermore, the article discusses the current landscape of HPV vaccines and common treatments, contributing to a holistic understanding of HPV and its associated diseases.


Subject(s)
Papillomaviridae , Papillomavirus Infections , Papillomavirus Vaccines , Humans , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/administration & dosage , Female , Papillomaviridae/immunology , Papillomaviridae/genetics , Vaccination Coverage , Neoplasms/immunology , Neoplasms/therapy , Male , Immunity, Innate , Adaptive Immunity
13.
J Immunother Cancer ; 12(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857913

ABSTRACT

BACKGROUND: Oropharyngeal squamous cell carcinoma (OPSCC) induced by human papillomavirus (HPV-positive) is associated with better clinical outcomes than HPV-negative OPSCC. However, the clinical benefits of immunotherapy in patients with HPV-positive OPSCC remain unclear. METHODS: To identify the cellular and molecular factors that limited the benefits associated with HPV in OPSCC immunotherapy, we performed single-cell RNA (n=20) and T-cell receptor sequencing (n=10) analyses of tonsil or base of tongue tumor biopsies prior to immunotherapy. Primary findings from our single-cell analysis were confirmed through immunofluorescence experiments, and secondary validation analysis were performed via publicly available transcriptomics data sets. RESULTS: We found significantly higher transcriptional diversity of malignant cells among non-responders to immunotherapy, regardless of HPV infection status. We also observed a significantly larger proportion of CD4+ follicular helper T cells (Tfh) in HPV-positive tumors, potentially due to enhanced Tfh differentiation. Most importantly, CD8+ resident memory T cells (Trm) with elevated KLRB1 (encoding CD161) expression showed an association with dampened antitumor activity in patients with HPV-positive OPSCC, which may explain their heterogeneous clinical outcomes. Notably, all HPV-positive patients, whose Trm presented elevated KLRB1 levels, showed low expression of CLEC2D (encoding the CD161 ligand) in B cells, which may reduce tertiary lymphoid structure activity. Immunofluorescence of HPV-positive tumors treated with immune checkpoint blockade showed an inverse correlation between the density of CD161+ Trm and changes in tumor size. CONCLUSIONS: We found that CD161+ Trm counteracts clinical benefits associated with HPV in OPSCC immunotherapy. This suggests that targeted inhibition of CD161 in Trm could enhance the efficacy of immunotherapy in HPV-positive oropharyngeal cancers. TRIAL REGISTRATION NUMBER: NCT03737968.


Subject(s)
Immunotherapy , Oropharyngeal Neoplasms , Papillomavirus Infections , Single-Cell Analysis , Humans , Oropharyngeal Neoplasms/immunology , Oropharyngeal Neoplasms/virology , Oropharyngeal Neoplasms/therapy , Immunotherapy/methods , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Male , Female , Middle Aged , Aged , NK Cell Lectin-Like Receptor Subfamily B
14.
Sci Rep ; 14(1): 14441, 2024 06 23.
Article in English | MEDLINE | ID: mdl-38910149

ABSTRACT

First-void urine (FVU) samples, containing human papillomavirus (HPV)-specific IgG from female genital tract secretions, provide a non-invasive option for disease monitoring and vaccine impact assessment. This study explores the utility of FVU for IgG quantification, exploring stability and compatibility with DNA preservation methods, alongside various IgG enrichment methods. Healthy female volunteers provided FVU and serum samples. FVU was collected with or without urine conservation medium (UCM) and stored under different conditions before freezing at -80 °C. Four IgG enrichment methods were tested on FVU samples. All samples were analyzed using three total human IgG quantification assays and an in-house HPV16-specific IgG assay. Samples stored with UCM buffer had higher total and HPV16-specific IgG concentrations (p ≤ 0.01) and IgG remained stable for at least 14 days at room temperature. Among IgG enrichment methods, Amicon filtration (AM) and AM combined with Melon Gel purification (AM-MG) provided similar HPV16-IgG concentrations, correlating strongly with serum levels. Protein G magnetic beads methods were incompatible with time-resolved fluorescence-based assays. This study highlights FVU as a reliable and convenient sample for IgG quantification, demonstrating stability for at least 14 days at room temperature and compatibility with UCM DNA preservation. It emphasizes the need to select appropriate IgG enrichment methods and confirms the suitability of both AM and AM-MG methods, with a slightly better performance for AM-MG.


Subject(s)
Human papillomavirus 16 , Immunoglobulin G , Humans , Female , Human papillomavirus 16/immunology , Immunoglobulin G/blood , Immunoglobulin G/urine , Adult , Antibodies, Viral/blood , Antibodies, Viral/urine , Antibodies, Viral/immunology , Papillomavirus Infections/urine , Papillomavirus Infections/virology , Papillomavirus Infections/diagnosis , Papillomavirus Infections/immunology , Young Adult
15.
Anticancer Res ; 44(7): 2921-2931, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925841

ABSTRACT

BACKGROUND/AIM: Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) is clinically and immunologically distinct from HPV-negative HNSCC. Herein, we investigated the presence of tumor antigens HPV E6/E7 and wild-type p53-specific T-cell responses, and the impact of immune checkpoint blockade in patients with HPV-positive HNSCC. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) from patients with HPV-positive HNSCC were stimulated with HPV E6/E7 or wild-type p53-derived peptide mixture and evaluated using the interferon-γ enzyme-linked immunosorbent spot assay. Flow cytometry was performed to analyze the proportion of T-cell subsets and T cells expressing immune checkpoint molecules. RESULTS: HPV E6/E7-specific T cells were detected in 22 (95.7%) of 23 patients, whereas wild-type p53-specific T cells were detected in 3 (15.0%) of 20 patients. Seven (43.8%) of 16 patients exhibited wild-type p53-specific T-cell responses, as determined using whole proteins instead of peptides. Immune checkpoint blockade enhanced wild-type p53-specific T-cell responses in 9 (45.0%) of 20 patients. Flow cytometric analysis of PBMCs revealed that responders exhibiting enhanced wild-type p53-specific T-cell responses following immune checkpoint blockade had a significantly higher proportion of Ki-67+CD4+ T cells, Ki-67+CD8+ T cells, regulatory T cells, PD-1+CD4+ T cells, and TIM-3+CD4+ T cells than non-responders. CONCLUSION: Our findings indicate that tumor antigen-specific T cells are present in the peripheral blood of patients with HPV-positive HNSCC. Blockade of checkpoint pathways can enhance T-cell responses in certain patients, probably via activated T cells, Tregs, and/or exhausted CD4+ T cells.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/drug therapy , Male , Female , Middle Aged , Aged , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Antigens, Neoplasm/immunology , Oncogene Proteins, Viral/immunology , Tumor Suppressor Protein p53/immunology , Adult , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Papillomaviridae/immunology , T-Lymphocytes/immunology , Human Papillomavirus Viruses
16.
Front Immunol ; 15: 1414298, 2024.
Article in English | MEDLINE | ID: mdl-38938577

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is one of the most common tumor entities worldwide, with human papillomavirus (HPV) infection contributing to cancer development. Conventional therapies achieve only limited efficiency, especially in recurrent or metastatic HNSCC. As the immune landscape decisively impacts the survival of patients and treatment efficacy, this study comprehensively investigated the immunological tumor microenvironment (TME) and its association with patient outcome, with special focus on several dendritic cell (DC) and T lymphocyte subpopulations. Therefore, formalin-fixed paraffin-embedded tumor samples of 56 HNSCC patients, who have undergone resection and adjuvant radiotherapy, were analyzed by multiplex immunohistochemistry focusing on the detailed phenotypic characterization and spatial distribution of DCs, CD8+ T cells, and T-helper cell subsets in different tumor compartments. Immune cell densities and proportions were correlated with clinical characteristics of the whole HNSCC cohort and different HPV- or hypoxia-associated subcohorts. Tumor stroma was highly infiltrated by plasmacytoid DCs and T lymphocytes. Among the T-helper cells and CD8+ T cells, stromal regulatory T cells and intraepithelial exhausted CD8+ T cells expressing programmed cell death protein-1 (PD-1+) and/or lymphocyte-activation gene-3 (LAG-3+) were the predominant phenotypes, indicating an immunosuppressive TME. HPV-associated tumors showed significantly higher infiltration of type I and type II conventional DCs (cDC1, cDC2) as well as several CD8+ T cell phenotypes including exhausted, activated, and proliferating T cells. On the contrary, tumors with hypoxia-associated gene signatures exhibited reduced infiltration for these immune cells. By multivariate Cox regression, immune-related prognostic factors were identified. Patient clusters defined by high infiltration of DCs and T lymphocytes combined with HPV positivity or low hypoxia showed significantly prolonged survival. Thereby, cDC1 and CD8+ T cells emerged as independent prognostic factors for local and distant recurrence. These results might contribute to the implementation of an immune cell infiltration score predicting HNSCC patients' survival and such patient stratification might improve the design of future individualized radiochemo-(immuno)therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Dendritic Cells , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Dendritic Cells/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/mortality , Male , Female , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Tumor Microenvironment/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/mortality , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Adult , Papillomavirus Infections/immunology , Papillomavirus Infections/complications , Papillomavirus Infections/virology
17.
Mol Immunol ; 171: 56-65, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795685

ABSTRACT

The oncogenic protein E7 of the Human Papillomavirus (HPV) is constitutionally expressed in HPV-associated tumors and has the potential to be targeted in T cell receptor (TCR)-based immunotherapy. Adoptive transfer of TCR-engineered T (TCR-T) cells has shown promise as a therapeutic approach for HPV-induced tumors. This study aimed to identify HPV-E7 specific TCRs from HLA-A11:01 transgenic mice through single-cell sorting and sequencing facilitated by E789-97/HLA-A11:01 tetramer. Two dominant TCRs were identified, which exhibited specific binding to E789-97 presented in the context of HLA-A*11:01. TCR-T cells were prepared by infecting primary T cells with lentiviruses containing the TCR genes, and the two TCRs demonstrated substantial responsiveness and showed CD8+ dependent cytokine secretion characteristics. Further analyses of the cytokine profiles revealed that the two TCRs were capable of exerting polyfunctional responses upon specific stimulation. These findings suggest that the two TCRs represent promising candidates for the development of future therapeutic drugs targeting HPV-E7 in the context of HLA-A*11:01 for tumor immunotherapy.


Subject(s)
Mice, Transgenic , Papillomavirus E7 Proteins , Receptors, Antigen, T-Cell , Animals , Mice , Papillomavirus E7 Proteins/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Immunotherapy/methods , CD8-Positive T-Lymphocytes/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/therapy , Mice, Inbred C57BL , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Neoplasms/immunology , Female
18.
Hum Vaccin Immunother ; 20(1): 2352908, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38780076

ABSTRACT

Cervical cancer, among the deadliest cancers affecting women globally, primarily arises from persistent infection with high-risk human papillomavirus (HPV). To effectively combat persistent infection and prevent the progression of precancerous lesions into malignancy, a therapeutic HPV vaccine is under development. This study utilized an immunoinformatics approach to predict epitopes of cytotoxic T lymphocytes (CTLs) and helper T lymphocytes (HTLs) using the E6 and E7 oncoproteins of the HPV16 strain as target antigens. Subsequently, through meticulous selection of T-cell epitopes and other necessary elements, a multi-epitope vaccine was constructed, exhibiting good immunogenic, physicochemical, and structural characteristics. Furthermore, in silico simulations showed that the vaccine not only interacted well with toll-like receptors (TLR2/TLR3/TLR4), but also induced a strong innate and adaptive immune response characterized by elevated Th1-type cytokines, such as interferon-gamma (IFN-γ) and interleukin-2 (IL2). Additionally, our study investigated the effects of different immunization intervals on immune responses, aiming to optimize a time-efficient immunization program. In animal model experiments, the vaccine exhibited robust immunogenic, therapeutic, and prophylactic effects. Administered thrice, it consistently induced the expansion of specific CD4 and CD8 T cells, resulting in substantial cytokines release and increased proliferation of memory T cell subsets in splenic cells. Overall, our findings support the potential of this multi-epitope vaccine in combating HPV16 infection and signify its candidacy for future HPV vaccine development.


Through the stringent selection of T-cell epitopes and other necessary elements, a novel multi-epitope vaccine targeting HPV 16 E6 and E7 oncoproteins was constructed using an immunoinformatics approach.The vaccine designed can induce both cellular and humoral immune responses, encompassing all the required immunogenic, physicochemical, and structural characteristics for an ideal vaccine design. Moreover, it offers decent worldwide coverage.In animal studies, the vaccine demonstrated strong immune responses, including expansion of CD4 and CD8 T cells, cytokine release, and enhanced memory T cell proliferation, resulting in long-term anti-tumor effects, inhibition of tumor growth, and prolonged survival in tumor-bearing mice.The immunological evaluation of the designed vaccine suggests its potential as a novel vaccine candidate against HPV 16.


Subject(s)
Epitopes, T-Lymphocyte , Human papillomavirus 16 , Oncogene Proteins, Viral , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Vaccines, DNA , Female , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/administration & dosage , Human papillomavirus 16/immunology , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Papillomavirus Infections/prevention & control , Papillomavirus Infections/immunology , Epitopes, T-Lymphocyte/immunology , Animals , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/genetics , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/virology , Papillomavirus E7 Proteins/immunology , Mice , Humans , T-Lymphocytes, Cytotoxic/immunology , Repressor Proteins/immunology , T-Lymphocytes, Helper-Inducer/immunology , Mice, Inbred C57BL , Interferon-gamma/metabolism , Interferon-gamma/immunology
19.
Viruses ; 16(5)2024 04 30.
Article in English | MEDLINE | ID: mdl-38793599

ABSTRACT

Breast cancer is the most common neoplasm worldwide. Viral infections are involved with carcinogenesis, especially those caused by oncogenic Human Papillomavirus (HPV) genotypes. Despite the detection of HPV in breast carcinomas, the virus's activity against this type of cancer remains controversial. HPV infection promotes remodeling of the host's immune response, resulting in an immunosuppressive profile. This study assessed the individual role of HPV oncogenes in the cell line MDA-MB-231 transfected with the E5, E6, and E7 oncogenes and co-cultured with peripheral blood mononuclear cells. Immunophenotyping was conducted to evaluate immune system modulation. There was an increase in CD4+ T cell numbers when compared with non-transfected and transfected MDA-MB-231, especially in the Treg profile. Pro-inflammatory intracellular cytokines, such as IFN-γ, TNF-α, and IL-17, were impaired by transfected cells, and a decrease in the cytolytic activity of the CD8+ and CD56+ lymphocytes was observed in the presence of HPV oncogenes, mainly with E6 and E7. The E6 and E7 oncogenes decrease monocyte expression, activating the expected M1 profile. In the monocytes found, a pro-inflammatory role was observed according to the cytokines released in the supernatant. In conclusion, the MDA-MB-231 cell lineage transfected with HPV oncogenes can downregulate the number and function of lymphocytes and monocytes.


Subject(s)
Breast Neoplasms , Cytokines , Humans , Female , Cytokines/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/virology , Breast Neoplasms/genetics , Cell Line, Tumor , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Transfection , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Oncogene Proteins, Viral/metabolism , Papillomaviridae/genetics , Papillomaviridae/immunology , Human Papillomavirus Viruses
20.
Front Immunol ; 15: 1407649, 2024.
Article in English | MEDLINE | ID: mdl-38812510

ABSTRACT

Infection with human papillomavirus (HPV) typically leads to cervical cancer, skin related cancers and many other tumors. HPV is mainly responsible for evading immune tumor monitoring in HPV related cancers. Toll like receptors (TLRs) are particular pattern recognition molecules. When the body is facing immune danger, it can lead to innate and direct adaptive immunity. TLR plays an important role in initiating antiviral immune responses. HPV can affect the expression level of TLR and interfere with TLR related signaling pathways, resulting in sustained viral infection and even carcinogenesis. This paper introduces the HPV virus and HPV related cancers. We discussed the present comprehension of TLR, its expression and signaling, as well as its role in HPV infection. We also provided a detailed introduction to immunotherapy methods for HPV related diseases based on TLR agonists. This will provide insights into methods that support the therapeutic method of HPV related conditions with TLR agonists.


Subject(s)
Papillomaviridae , Papillomavirus Infections , Toll-Like Receptors , Humans , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Toll-Like Receptors/immunology , Papillomavirus Infections/immunology , Papillomavirus Infections/therapy , Papillomavirus Infections/virology , Papillomaviridae/physiology , Papillomaviridae/immunology , Signal Transduction , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Female , Uterine Cervical Neoplasms/virology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/immunology , Host-Pathogen Interactions/immunology
SELECTION OF CITATIONS
SEARCH DETAIL