Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.535
Filter
1.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(6): 830-838, 2024 Jun 06.
Article in Chinese | MEDLINE | ID: mdl-38955730

ABSTRACT

To evaluate the modification of allergic dermatitis on the association between PM exposure and allergic rhinitis in preschool children. This cross-sectional study was based on a questionnaire conducted between June 2019 and June 2020 to caregivers of children aged 3 to 6 years in the kindergartens of 7 Chinese cities to collect information on allergic rhinitis and allergic dermatitis. A mature machine learning-based space-time extremely randomized trees model was applied to estimate early-life, prenatal, and first-year exposure of PM1, PM2.5 and PM10 at 1 km×1 km resolution. A combination of multilevel logistic regression and restricted cubic spline functions was used to quantitatively assess whether allergic dermatitis modifies the associations between size-specific PM exposure and the risk of childhood allergic rhinitis. The results showed that out of 28 408 children, 14 803 (52.1%) were boys and 13 605 (47.9%) were girls; the age of children ranged from 3.1 to 6.8 years, with a mean age of (4.9±0.9) years, of which 3 586 (12.6%) were diagnosed with allergic rhinitis. Among all children, 17 832 (62.8%) were breastfed for more than 6 months and 769 (2.7%) had parental history of atopy. A total of 21 548 children (75.9%) had a mother with an educational level of university or above and 7 338 (29.6%) had passive household cigarette smoke exposure. The adjusted ORs for childhood allergic rhinitis among the children with allergic dermatitis as per interquartile range (IQR) increase in early-life PM1(9.8 µg/m3), PM2.5 (14.9 µg/m3) and PM10 (37.7 µg/m3) were significantly higher than the corresponding ORs among the children without allergic dermatitis [OR: 1.45, 95%CI (1.26, 1.66) vs. 1.33, 95%CI (1.20, 1.47), for PM1; OR: 1.38, 95%CI (1.23, 1.56) vs. 1.32, 95%CI (1.21, 1.45), for PM2.5; OR: 1.56, 95%CI (1.31, 1.86) vs. 1.46, 95%CI (1.28, 1.67), for PM10]. The interactions between allergic dermatitis and size-specific PM exposure on childhood allergic rhinitis were statistically significant (Z value=19.4, all P for interaction<0.001). The similar patterns were observed for both prenatal and first-year size-specific PM exposure and the results of the dose-response relationship were consistent with those of the logistic regression. In conclusion, allergic dermatitis, as an important part of the allergic disease progression, may modify the association between ambient PM exposure and the risk of childhood allergic rhinitis. Children with allergic dermatitis should pay more attention to minimize outdoor air pollutants exposure to prevent the further progression of allergic diseases.


Subject(s)
Dermatitis, Atopic , Environmental Exposure , Particulate Matter , Rhinitis, Allergic , Humans , Child, Preschool , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/etiology , Female , Cross-Sectional Studies , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/etiology , China/epidemiology , Male , Environmental Exposure/adverse effects , Child , Air Pollutants , Particle Size , Air Pollution/adverse effects , Risk Factors , Logistic Models
3.
Environ Geochem Health ; 46(8): 284, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963443

ABSTRACT

Air pollutants and temperature are significant threats to public health, and the complex linkages between the environmental factors and their interactions harm respiratory diseases. This study is aimed to analyze the impact of air pollutants and meteorological factors on respiratory diseases and their synergistic effects in Dingxi, a city in northwestern China, from 2018 to 2020 using a generalized additive model (GAM). Relative risk (RR) was employed to quantitatively evaluate the temperature modification on the short-term effects of PM2.5 and O3 and the synergistic effects of air pollutants (PM2.5 and O3) and meteorological elements (temperature and relative humidity) on respiratory diseases. The results indicated that the RRs per inter-quatile range (IQR) rise in PM2.5 and O3 concentrations were (1.066, 95% CI: 1.009-1.127, lag2) and (1.037, 95% CI: 0.975-1.102, lag4) for respiratory diseases, respectively. Temperature stratification suggests that the influence of PM2.5 on respiratory diseases was significantly enhanced at low and moderate temperatures, and the risk of respiratory diseases caused by O3 was significantly increased at high temperatures. The synergy analysis demonstrated significant a synergistic effect of PM2.5 with low temperature and high relative humidity and an antagonistic effect of high relative humidity and O3 on respiratory diseases. The findings would provide a scientific basis for the impact of pollutants on respiratory diseases in Northwest China.


Subject(s)
Air Pollutants , Humidity , Ozone , Particulate Matter , Temperature , China/epidemiology , Humans , Respiratory Tract Diseases/epidemiology , Cities
4.
Environ Monit Assess ; 196(8): 693, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963455

ABSTRACT

Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Particulate Matter , India , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Seasons , Spatio-Temporal Analysis , Vehicle Emissions/analysis
5.
Environ Monit Assess ; 196(8): 698, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963549

ABSTRACT

Air pollution is affected by the atmospheric dynamics. This study aims to determine that air pollution concentration values in Istanbul increased significantly and reached peak values due to atmospheric blocking between the 30th of December 2022 and the 5th of January 2023. In this study, hourly pollutant data was obtained from 16 air quality monitoring stations (AQMS), the exact reanalysis data was extracted from ERA5 database, and inversion levels and meteorological and synoptic analyses were used to determine the effects of atmospheric blocking on air pollution. Also, cloud base heights and vertical visibility measurements were taken with a ceilometer. Statistical calculations and data visualizations were performed using the R and Grads program. Omega-type blocking, which started in Istanbul on December 30, 2022, had a significant impact on the 1st and 2nd of January 2023, and PM10 and PM2.5 concentration values reached their peak values at 572.8 and 254.20 µg/m3, respectively. In addition, it was found that the average concentration values in the examined period in almost all stations were higher than the averages for January and February. As a result, air quality in Istanbul was determined as "poor" between these calendar dates. It was found that the blocking did not affect the ozone (µg/m3) concentration. It was also found that the concentrations of particulate matter (PM) 10 µm or less in diameter (PM10) and PM 2.5 µm or less in diameter (PM2.5) were increased by the blocking effect in the Istanbul area. Finally, according to the data obtained using the ceilometer, cloud base heights decreased to 30 m and vertical visibility to 10 m.


Subject(s)
Air Pollutants , Air Pollution , Atmosphere , Environmental Monitoring , Ozone , Particulate Matter , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Ozone/analysis , Atmosphere/chemistry , Turkey , Seasons
6.
Int J Epidemiol ; 53(4)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38961644

ABSTRACT

BACKGROUND: Numerous studies have linked fine particulate matter (PM2.5) to increased cardiovascular mortality. Less is known how the PM2.5-cardiovascular mortality association varies by use of cardiovascular medications. This study sought to quantify effect modification by statin use status on the associations between long-term exposure to PM2.5 and mortality from any cardiovascular cause, coronary heart disease (CHD), and stroke. METHODS: In this nested case-control study, we followed 1.2 million community-dwelling adults aged ≥66 years who lived in Ontario, Canada from 2000 through 2018. Cases were patients who died from the three causes. Each case was individually matched to up to 30 randomly selected controls using incidence density sampling. Conditional logistic regression models were used to estimate odds ratios (ORs) for the associations between PM2.5 and mortality. We evaluated the presence of effect modification considering both multiplicative (ratio of ORs) and additive scales (the relative excess risk due to interaction, RERI). RESULTS: Exposure to PM2.5 increased the risks for cardiovascular, CHD, and stroke mortality. For all three causes of death, compared with statin users, stronger PM2.5-mortality associations were observed among non-users [e.g. for cardiovascular mortality corresponding to each interquartile range increase in PM2.5, OR = 1.042 (95% CI, 1.032-1.053) vs OR = 1.009 (95% CI, 0.996-1.022) in users, ratio of ORs = 1.033 (95% CI, 1.019-1.047), RERI = 0.039 (95% CI, 0.025-0.050)]. Among users, partially adherent users exhibited a higher risk of PM2.5-associated mortality than fully adherent users. CONCLUSIONS: The associations of chronic exposure to PM2.5 with cardiovascular and CHD mortality were stronger among statin non-users compared to users.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Particulate Matter , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Male , Aged , Female , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Case-Control Studies , Ontario/epidemiology , Cardiovascular Diseases/mortality , Aged, 80 and over , Coronary Disease/mortality , Coronary Disease/epidemiology , Stroke/mortality , Stroke/epidemiology , Environmental Exposure/adverse effects , Logistic Models , Risk Factors , Independent Living , Odds Ratio
7.
Lancet Planet Health ; 8(7): e476-e488, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969475

ABSTRACT

BACKGROUND: Climate actions targeting combustion sources can generate large ancillary health benefits via associated air-quality improvements. Therefore, understanding the health costs associated with ambient fine particulate matter (PM2·5) from combustion sources can guide policy design for both air pollution and climate mitigation efforts. METHODS: In this modelling study, we estimated the health costs attributable to ambient PM2·5 from six major combustion sources across 204 countries using updated concentration-response models and an age-adjusted valuation method. We defined major combustion sources as the sum of total coal, liquid fuel and natural gas, solid biofuel, agricultural waste burning, other fires, and 50% of the anthropogenic fugitive, combustion, and industrial dust source. FINDINGS: Global long-term exposure to ambient PM2·5 from combustion sources imposed US$1·1 (95% uncertainty interval 0·8-1·5) trillion in health costs in 2019, accounting for 56% of the total health costs from all PM2·5 sources. Comparing source contributions to PM2·5 concentrations and health costs, we observed a higher share of health costs from combustion sources compared to their contribution to population-weighted PM2·5 concentration across 134 countries, accounting for more than 87% of the global population. This disparity was primarily attributed to the non-linear relationship between PM2·5 concentration and its associated health costs. Globally, phasing out fossil fuels can generate 23% higher relative health benefits compared to their share of PM2·5 reductions. Specifically, the share of health costs for total coal was 36% higher than the source's contributions to corresponding PM2·5 concentrations and the share of health costs for liquid fuel and natural gas was 12% higher. Other than fossil fuels, South Asia was expected to show 16% greater relative health benefits than the percentage reduction in PM2·5 from the abatement of solid biofuel emissions. INTERPRETATION: In most countries, targeting combustion sources might offer greater health benefits than non-combustion sources. This finding provides additional rationale for climate actions aimed at phasing out combustion sources, especially those related to fossil fuels and solid biofuel. Mitigation efforts designed according to source-specific health costs can more effectively avoid health costs than strategies that depend solely on the source contributions to overall PM2·5 concentration. FUNDING: The Health Effects Institute, the National Natural Science Foundation of China, and NASA.


Subject(s)
Air Pollutants , Air Pollution , Global Health , Particulate Matter , Particulate Matter/analysis , Air Pollution/economics , Air Pollution/prevention & control , Humans , Air Pollutants/analysis , Models, Theoretical , Environmental Exposure/prevention & control , Coal/economics
8.
Lancet Planet Health ; 8(7): e433-e440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38969471

ABSTRACT

BACKGROUND: The evidence for acute effects of air pollution on mortality in India is scarce, despite the extreme concentrations of air pollution observed. This is the first multi-city study in India that examines the association between short-term exposure to PM2·5 and daily mortality using causal methods that highlight the importance of locally generated air pollution. METHODS: We applied a time-series analysis to ten cities in India between 2008 and 2019. We assessed city-wide daily PM2·5 concentrations using a novel hybrid nationwide spatiotemporal model and estimated city-specific effects of PM2·5 using a generalised additive Poisson regression model. City-specific results were then meta-analysed. We applied an instrumental variable causal approach (including planetary boundary layer height, wind speed, and atmospheric pressure) to evaluate the causal effect of locally generated air pollution on mortality. We obtained an integrated exposure-response curve through a multivariate meta-regression of the city-specific exposure-response curve and calculated the fraction of deaths attributable to air pollution concentrations exceeding the current WHO 24 h ambient PM2·5 guideline of 15 µg/m3. To explore the shape of the exposure-response curve at lower exposures, we further limited the analyses to days with concentrations lower than the current Indian standard (60 µg/m3). FINDINGS: We observed that a 10 µg/m3 increase in 2-day moving average of PM2·5 was associated with 1·4% (95% CI 0·7-2·2) higher daily mortality. In our causal instrumental variable analyses representing the effect of locally generated air pollution, we observed a stronger association with daily mortality (3·6% [2·1-5·0]) than our overall estimate. Our integrated exposure-response curve suggested steeper slopes at lower levels of exposure and an attenuation of the slope at high exposure levels. We observed two times higher risk of death per 10 µg/m3 increase when restricting our analyses to observations below the Indian air quality standard (2·7% [1·7-3·6]). Using the integrated exposure-response curve, we observed that 7·2% (4·2%-10·1%) of all daily deaths were attributed to PM2·5 concentrations higher than the WHO guidelines. INTERPRETATION: Short-term PM2·5 exposure was associated with a high risk of death in India, even at concentrations well below the current Indian PM2·5 standard. These associations were stronger for locally generated air pollutants quantified through causal modelling methods than conventional time-series analysis, further supporting a plausible causal link. FUNDING: Swedish Research Council for Sustainable Development.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Exposure , Mortality , Particulate Matter , India/epidemiology , Air Pollution/adverse effects , Air Pollution/analysis , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Exposure/adverse effects , Models, Theoretical
9.
Front Public Health ; 12: 1326659, 2024.
Article in English | MEDLINE | ID: mdl-38962775

ABSTRACT

Introduction: Vehicle emissions have become an important source of urban air pollution, and the assessment of air pollution emission characteristics and health effects caused by specific pollution sources can provide scientific basis for air quality management. Methods: In this paper, vehicle PM2.5 pollution in typical urban agglomerations of China (the Beijing-Tianjin-Hebei urban agglomeration (BTHUA), the triangle of the Central China urban agglomeration (TCCUA) and the Chengdu-Chongqing urban agglomeration (CCUA)) were used as research samples to evaluate the emission characteristics, health effects and economic losses of vehicle PM2.5 pollution based on the emission inventory, air quality model and exposure-response function from 2010 to 2020. Results: The results indicated that PM2.5 emissions from vehicles in the three urban agglomerations during 2010-2020 first showed an upward yearly trend and then showed a slow decrease in recent years. Heavy-duty trucks and buses are the main contribution vehicles of PM2.5, and the contribution rates of light-duty vehicles to PM2.5 is increasing year by year. The contribution rate of PM2.5 in Beijing decreased significantly. In addition to capital cities and municipalities directly under the central Government, the emission of pollutants in other cities cannot be ignored. The evaluation results of the impact of PM2.5 pollution from vehicles on population health show that: the number of each health endpoint caused by PM2.5 pollution from vehicles in the BTHUA and CCUA showed an overall upward trend, while the TCCUA showed a downward trend in recent years. Among them, PM2.5 pollution from vehicles in the three major urban agglomerations cause about 78,200 (95% CI: 20,500-138,800) premature deaths, 122,800 (95% CI: 25,600-220,500) inpatients, and 628,400 (95% CI: 307,400-930,400) outpatients and 1,332,400 (95% CI: 482,700-2,075,600) illness in 2020. The total health economic losses caused by PM2.5 pollution from vehicles in the three major urban agglomerations in 2010, 2015 and 2020 were 68.25 billion yuan (95% CI: 21.65-109.16), 206.33 billion yuan (95% CI: 66.20-326.20) and 300.73 billion yuan (95% CI: 96.79-473.16), accounting for 0.67% (95% CI: 0.21-1.07%), 1.19% (95% CI: 0.38%-1.88%) and 1.21% (95% CI: 0.39%-1.90%) of the total GDP of these cities. Discussion: Due to the differences in vehicle population, PM2.5 concentration, population number and economic value of health terminal units, there are differences in health effects and economic losses among different cities in different regions. Among them, the problems of health risks and economic losses were relatively prominent in Beijing, Chengdu, Chongqing, Tianjin and Wuhan.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter , Vehicle Emissions , Particulate Matter/analysis , Humans , China , Vehicle Emissions/analysis , Air Pollutants/analysis , Air Pollutants/adverse effects , Air Pollution/analysis , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Cities , Environmental Monitoring
10.
BMJ Open ; 14(7): e082475, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960456

ABSTRACT

OBJECTIVES: To investigate the associations of traffic-related air pollution exposures in early pregnancy with birth outcomes and infant neurocognitive development. DESIGN: Cohort study. SETTING: Eligible women attended six visits in the maternity clinics of two centres, the First Affiliated Hospital of Chongqing Medical University and Chongqing Health Centre for Women and Children. PARTICIPANTS: Women who were between 20 and 40 years of age and were at 11-14 weeks gestation with a singleton pregnancy were eligible for participation. Women were excluded if they had a history of premature delivery before 32 weeks of gestation, maternal milk allergy or aversion or severe lactose intolerance. 1273 pregnant women enrolled in 2015-2016 and 1174 live births were included in this analysis. EXPOSURES: Air pollution concentrations at their home addresses, including particulate matter with diameter ≤2.5 µm (PM2.5) and nitrogen dioxide (NO2), during pre-conception and each trimester period were estimated using land-use regression models. OUTCOME MEASURES: Birth outcomes (ie, birth weight, birth length, preterm birth, low birth weight, large for gestational age and small for gestational age (SGA) status) and neurodevelopment outcomes measured by the Chinese version of Bayley Scales of Infant Development. RESULTS: An association between SGA and per-IQR increases in NO2 was found in the first trimester (OR: 1.57, 95% CI: 1.06 to 2.32) and during the whole pregnancy (OR: 1.33, 99% CI: 1.01 to 1.75). Both PM2.5 and NO2 exposure in the 90 days prior to conception were associated with lower Psychomotor Development Index scores (ß: -6.15, 95% CI: -8.84 to -3.46; ß: -2.83, 95% CI: -4.27 to -1.39, respectively). Increased NO2 exposure was associated with an increased risk of psychomotor development delay during different trimesters of pregnancy. CONCLUSIONS: Increased exposures to NO2 during pregnancy were associated with increased risks of SGA and psychomotor development delay, while increased exposures to both PM2.5 and NO2 pre-conception were associated with adverse psychomotor development outcomes at 12 months of age. TRIAL REGISTRATION NUMBER: ChiCTR-IOR-16007700.


Subject(s)
Air Pollution , Child Development , Maternal Exposure , Particulate Matter , Humans , Female , Pregnancy , China/epidemiology , Adult , Infant, Newborn , Prospective Studies , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Child Development/drug effects , Maternal Exposure/adverse effects , Pregnancy Outcome/epidemiology , Young Adult , Nitrogen Dioxide/adverse effects , Nitrogen Dioxide/analysis , Infant , Birth Weight , Air Pollutants/adverse effects , Air Pollutants/analysis , Prenatal Exposure Delayed Effects , Premature Birth/epidemiology , Male
11.
Sci Rep ; 14(1): 15521, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969679

ABSTRACT

The aim of this study was to investigate the relationship between source-specific ambient particulate air pollution concentrations and the incidence of dementia. The study encompassed 70,057 participants from the Västerbotten intervention program cohort in Northern Sweden with a median age of 40 years at baseline. High-resolution dispersion models were employed to estimate source-specific particulate matter (PM) concentrations, such as PM10 and PM2.5 from traffic, exhaust, and biomass (mainly wood) burning, at the residential addresses of each participant. Cox regression models, adjusted for potential confounding factors, were used for the assessment. Over 884,847 person-years of follow-up, 409 incident dementia cases, identified through national registers, were observed. The study population's average exposure to annual mean total PM10 and PM2.5 lag 1-5 years was 9.50 µg/m3 and 5.61 µg/m3, respectively. Increased risks were identified for PM10-Traffic (35% [95% CI 0-82%]) and PM2.5-Exhaust (33% [95% CI - 2 to 79%]) in the second exposure tertile for lag 1-5 years, although no such risks were observed in the third tertile. Interestingly, a negative association was observed between PM2.5-Wood burning and the risk of dementia. In summary, this register-based study did not conclusively establish a strong association between air pollution exposure and the incidence of dementia. While some evidence indicated elevated risks for PM10-Traffic and PM2.5-Exhaust, and conversely, a negative association for PM2.5-Wood burning, no clear exposure-response relationships were evident.


Subject(s)
Air Pollution , Dementia , Environmental Exposure , Particulate Matter , Humans , Sweden/epidemiology , Dementia/epidemiology , Dementia/etiology , Male , Female , Particulate Matter/analysis , Particulate Matter/adverse effects , Incidence , Air Pollution/adverse effects , Air Pollution/analysis , Middle Aged , Adult , Environmental Exposure/adverse effects , Cohort Studies , Aged , Air Pollutants/analysis , Air Pollutants/adverse effects
12.
Skin Res Technol ; 30(7): e13669, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965805

ABSTRACT

BACKGROUND: To date, studies examining the effect of air pollution on skin characteristics have relied on regional pollution estimates obtained from fixed monitoring sites. Hence, there remains a need to characterize the impact of air pollution in vivo in real-time conditions. We conducted an initial investigation under real-life conditions, with the purpose of characterizing the in vivo impact of various pollutants on the facial skin condition of women living in Paris over a 6-month period. MATERIALS AND METHODS: A smartphone application linked to the Breezometer platform was used to collect participants' individual exposures to pollutants through the recovery of global positioning system (GPS) data over a 6-month period. Daily exposure to fine particulate matter (PM 2.5 µm and PM 10 µm), pollen, and air quality was measured. Facial skin color, roughness, pore, hydration, elasticity, and wrinkle measurements were taken at the end of the 6-month period. Participants' cumulated pollutant exposure over 6 months was calculated. Data were stratified into two groups (lower vs. higher pollutant exposure) for each pollutant. RESULTS: 156 women (20-60 years-old) were recruited, with 124 women completing the study. Higher PM 2.5 µm exposure was associated with altered skin color and increased roughness under the eye. Higher PM 10 µm exposure with increased wrinkles and roughness under the eye, increased pore appearance, and decreased skin hydration. Exposure to poorer air quality was linked with increased forehead wrinkles and decreased skin elasticity, while higher pollen exposure increased skin roughness and crow's feet. CONCLUSION: This study suggests a potential correlation between air pollution and facial skin in real-life conditions. Prolonged exposure to PM, gases, and pollen may be linked to clinical signs of skin ageing. This study highlights the importance of longer monitoring over time in real conditions to characterize the effect of pollution on the skin.


Subject(s)
Air Pollution , Environmental Exposure , Face , Particulate Matter , Skin Aging , Adult , Female , Humans , Middle Aged , Young Adult , Air Pollution/adverse effects , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Geographic Information Systems , Paris , Particulate Matter/adverse effects , Pollen , Skin/drug effects , Skin Aging/drug effects , Smartphone , White People
13.
Environ Geochem Health ; 46(8): 293, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976058

ABSTRACT

Although previous research has reached agreement on the significant impact of particulate matter (PM2.5) on respiratory infectious diseases, PM2.5 acts as an aggregation of miscellaneous pollutants and the individual effect of each component has not been examined. Here, we investigate the effects of PM2.5 components, including black carbon (BC), organic carbon (OC), sulfate ion (SO4), dust, and sea salt (SS), on the morbidity and mortality of the recent respiratory disease, i.e. COVID-19. The daily data of 236 countries and provinces/states (e.g., in the United States and China) worldwide during 2020-2022 are utilized. To derive the pollutant-specific causal effects, optimal instrumental variables for each pollutant are selected from a large set of atmospheric variables. We find that one µg/m3 increase in OC increases the number of cases and death by about 3% to 6% from the mean worldwide during a lag of one day up to three days. Our findings remain consistent and robust when we change control variables such as the flight index and weather proxies, and also when applying a sine transformation to the positivity and death rate. When analyzing health effects among different areas, we find stronger impact in China, for its higher local OC concentration, as opposed to the impact in the United States. Health benefits from PM2.5 pollution reduction are comparatively high for developed regions, yet decreases in cases and deaths number are rather overt in less developing regions. Our research provides inspiration and reference for dealing with other respiratory diseases in the post-pandemic era.


Subject(s)
Air Pollutants , COVID-19 , Particulate Matter , Humans , COVID-19/epidemiology , Air Pollutants/analysis , SARS-CoV-2 , China/epidemiology , Global Health
14.
Environ Geochem Health ; 46(8): 264, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951364

ABSTRACT

Over the past two decades the Global South is witnessing unprecedented economic transformation and Asian Cities in particular have a remarkable upsurge. Coimbatore, an industrial city in Southern India with an estimated population of 2 million (in 2022) is witnessing a rapid transition in terms of infrastructure development. In this context, the present study attempts to assess the particulate matter (PM10 and PM2.5) emissions at road network construction sites and the heavy metal fractionation in the road dust/sediment samples with a core focus to quantify the bioavailable fraction of metals (Fe, Cu, Cr, Cd, Pb and Ni) and its source apportionment in the road side dust/sediment samples. About 60 composite road dust/sediment samples were collected for heavy metal fractionation analysis in the six arterial roads that undergo core developments like construction of road over bridges, additional road incorporation and street expansions. PM monitoring revealed that 24 h average PM2.5 (47 µg/m3) and PM10 (69 µg/m3) concentrations at many construction sites exceeded 24 h average recommended by WHO guidelines [PM2.5 (15 µg/m3) and PM10 (45 µg/m3), respectively]. The bioavailable fractions of Fe, Cu, Cr and Cd are notably higher in the roadside sediment samples at road construction sites. Health Risk assessment, such as carcinogenic risks (Children-4.41 × 10-2, Adult-3.598 × 10-6) and non-carcinogenic risks, inferred substantial risks at high intensity construction sites with statistical analyses, including PCA and cluster analysis, indicating considerable anthropogenic influences in the heavy metal fractions.


Subject(s)
Dust , Metals, Heavy , Particulate Matter , Metals, Heavy/analysis , India , Dust/analysis , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Risk Assessment , Environmental Monitoring/methods , Cities , Child , Environmental Exposure , Geologic Sediments/chemistry
15.
Front Public Health ; 12: 1366838, 2024.
Article in English | MEDLINE | ID: mdl-38947357

ABSTRACT

Background: In recent years, the prevalence of obesity has continued to increase as a global health concern. Numerous epidemiological studies have confirmed the long-term effects of exposure to ambient air pollutant particulate matter 2.5 (PM2.5) on obesity, but their relationship remains ambiguous. Methods: Utilizing large-scale publicly available genome-wide association studies (GWAS), we conducted univariate and multivariate Mendelian randomization (MR) analyses to assess the causal effect of PM2.5 exposure on obesity and its related indicators. The primary outcome given for both univariate MR (UVMR) and multivariate MR (MVMR) is the estimation utilizing the inverse variance weighted (IVW) method. The weighted median, MR-Egger, and maximum likelihood techniques were employed for UVMR, while the MVMR-Lasso method was applied for MVMR in the supplementary analyses. In addition, we conducted a series of thorough sensitivity studies to determine the accuracy of our MR findings. Results: The UVMR analysis demonstrated a significant association between PM2.5 exposure and an increased risk of obesity, as indicated by the IVW model (odds ratio [OR]: 6.427; 95% confidence interval [CI]: 1.881-21.968; P FDR = 0.005). Additionally, PM2.5 concentrations were positively associated with fat distribution metrics, including visceral adipose tissue (VAT) (OR: 1.861; 95% CI: 1.244-2.776; P FDR = 0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092-5.855; PFDR =1.28E-05), and abdominal subcutaneous adipose tissue (ASAT) volume (OR: 1.773; 95% CI: 1.106-2.841; P FDR = 0.019). Furthermore, PM2.5 exposure correlated positively with markers of glucose and lipid metabolism, specifically triglycerides (TG) (OR: 19.959; 95% CI: 1.269-3.022; P FDR = 0.004) and glycated hemoglobin (HbA1c) (OR: 2.462; 95% CI: 1.34-4.649; P FDR = 0.007). Finally, a significant negative association was observed between PM2.5 concentrations and levels of the novel obesity-related biomarker fibroblast growth factor 21 (FGF-21) (OR: 0.148; 95% CI: 0.025-0.89; P FDR = 0.037). After adjusting for confounding factors, including external smoke exposure, physical activity, educational attainment (EA), participation in sports clubs or gym leisure activities, and Townsend deprivation index at recruitment (TDI), the MVMR analysis revealed that PM2.5 levels maintained significant associations with pancreatic fat, HbA1c, and FGF-21. Conclusion: Our MR study demonstrates conclusively that higher PM2.5 concentrations are associated with an increased risk of obesity-related indicators such as pancreatic fat content, HbA1c, and FGF-21. The potential mechanisms require additional investigation.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Obesity , Particulate Matter , White People , Humans , Obesity/genetics , White People/genetics , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Air Pollution/adverse effects
16.
Int J Public Health ; 69: 1606956, 2024.
Article in English | MEDLINE | ID: mdl-38948086

ABSTRACT

Objectives: We evaluated the long-term effects of air pollution controls on health and health inequity among Chinese >45 years of age. Methods: Data were derived from the China Health Aging and Retirement Longitudinal Survey and the China National Environmental Monitoring Centre. Decreases in PM2.5 and PM10 were scaled to measure air quality controls. We used a quasi-experimental design to estimate the impact of air quality controls on self-reported health and health inequity. Health disparities were estimated using the concentration index and the horizontal index. Results: Air pollution controls significantly improved self-reported health by 20% (OR 1.20, 95% CI, 1.02-1.42). The poorest group had a 40% (OR 1.41, 95% CI, 0.96-2.08) higher probability of having excellent self-reported health after air pollution controls. A pro-rich health inequity was observed, and the horizontal index decreased after air pollution controls. Conclusion: Air pollution controls have a long-term positive effect on health and health equity. The poorest population are the main beneficiaries of air pollution controls, which suggests policymakers should make efforts to reduce health inequity in air pollution controls.


Subject(s)
Air Pollution , Health Status Disparities , Humans , China , Male , Female , Middle Aged , Aged , Longitudinal Studies , Particulate Matter/analysis , Socioeconomic Factors , Environmental Exposure , East Asian People
17.
Int J Health Geogr ; 23(1): 17, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970075

ABSTRACT

The link between exposure to air pollution and adverse effects on human health is well documented. Yet, in a European context, research on the spatial distribution of air pollution and the characteristics of areas is relatively scarce, and there is a need for research using different spatial scales, a wider variety of socioeconomic indicators (such as ethnicity) and new methodologies to assess these relationships. This study uses comprehensive data on a wide range of demographic and socioeconomic indicators, matched to data on PM2.5 concentrations for small areas in Ireland, to assess the relationship between social vulnerability and PM2.5 air pollution. Examining a wide range of socioeconomic indicators revealed some differentials in PM2.5 concentration levels by measure and by rural and urban classification. However, statistical modelling using concentration curves and concentration indices did not present substantial evidence of inequalities in PM2.5 concentrations across small areas. In common with other western European countries, an overall decline in the levels of PM2.5 between 2011 and 2016 was observed in Ireland, though the data indicates that almost all small areas in Ireland were found to have exceeded the World Health Organization (WHO)'s PM2.5 annual guideline (of 5 µg/m3), calling for greater policy efforts to reduce air pollution in Ireland. The recent Clean Air Strategy contains a commitment to achieve the WHO guideline limits for PM2.5 by 2040, with interim targets at various points over the next two decades. Achieving these targets will require policy measures to decarbonise home heating, promote active travel and the transition to electric vehicles, and further regulations on burning fossil fuels and enforcing environmental regulations more tightly. From a research and information-gathering perspective, installing more monitoring stations at key points could improve the quality and spatial dimension of the data collected and facilitate the assessment of the implementation of the measures in the Clean Air Strategy.


Subject(s)
Air Pollution , Environmental Exposure , Particulate Matter , Socioeconomic Factors , Ireland/epidemiology , Particulate Matter/analysis , Particulate Matter/adverse effects , Humans , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Air Pollutants/analysis , Air Pollutants/adverse effects , Environmental Monitoring/methods
18.
CNS Neurosci Ther ; 30(7): e14812, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970158

ABSTRACT

OBJECTIVE: Air pollutants have been reported to have a potential relationship with amyotrophic lateral sclerosis (ALS). The causality and underlying mechanism remained unknown despite several existing observational studies. We aimed to investigate the potential causality between air pollutants (PM2.5, NOX, and NO2) and the risk of ALS and elucidate the underlying mechanisms associated with this relationship. METHODS: The data utilized in our study were obtained from publicly available genome-wide association study data sets, in which single nucleotide polymorphisms (SNPs) were employed as the instrumental variantswith three principles. Two-sample Mendelian randomization and transcriptome-wide association (TWAS) analyses were conducted to evaluate the effects of air pollutants on ALS and identify genes associated with both pollutants and ALS, followed by regulatory network prediction. RESULTS: We observed that exposure to a high level of PM2.5 (OR: 2.40 [95% CI: 1.26-4.57], p = 7.46E-3) and NOx (OR: 2.35 [95% CI: 1.32-4.17], p = 3.65E-3) genetically increased the incidence of ALS in MR analysis, while the effects of NO2 showed a similar trend but without sufficient significance. In the TWAS analysis, TMEM175 and USP35 turned out to be the genes shared between PM2.5 and ALS in the same direction. CONCLUSION: Higher exposure to PM2.5 and NOX might causally increase the risk of ALS. Avoiding exposure to air pollutants and air cleaning might be necessary for ALS prevention.


Subject(s)
Air Pollutants , Amyotrophic Lateral Sclerosis , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/epidemiology , Humans , Polymorphism, Single Nucleotide/genetics , Air Pollutants/adverse effects , Air Pollutants/toxicity , Genetic Predisposition to Disease/genetics , Particulate Matter/adverse effects
19.
JAMA Netw Open ; 7(6): e2418460, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38941096

ABSTRACT

Importance: Air pollution is a recognized risk factor associated with chronic diseases, including respiratory and cardiovascular conditions, which can lead to physical and cognitive impairments in later life. Although these losses of function, individually or in combination, reduce individuals' likelihood of living independently, little is known about the association of air pollution with this critical outcome. Objective: To investigate associations between air pollution and loss of independence in later life. Design, Setting, and Participants: This cohort study was conducted as part of the Environmental Predictors Of Cognitive Health and Aging study and used 1998 to 2016 data from the Health and Retirement Study. Participants included respondents from this nationally representative, population-based cohort who were older than 50 years and had not previously reported a loss of independence. Analyses were performed from August 31 to October 15, 2023. Exposures: Mean 10-year pollutant concentrations (particulate matter less than 2.5 µm in diameter [PM2.5] or ranging from 2.5 µm to 10 µm in diameter [PM10-2.5], nitrogen dioxide [NO2], and ozone [O3]) were estimated at respondent addresses using spatiotemporal models along with PM2.5 levels from 9 emission sources. Main Outcomes and Measures: Loss of independence was defined as newly receiving care for at least 1 activity of daily living or instrumental activity of daily living due to health and memory problems or moving to a nursing home. Associations were estimated with generalized estimating equation regression adjusting for potential confounders. Results: Among 25 314 respondents older than 50 years (mean [SD] baseline age, 61.1 [9.4] years; 11 208 male [44.3%]), 9985 individuals (39.4%) experienced lost independence during a mean (SD) follow-up of 10.2 (5.5) years. Higher exposure levels of mean concentration were associated with increased risks of lost independence for total PM2.5 levels (risk ratio [RR] per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.10), PM2.5 levels from road traffic (RR per 1-IQR of 10-year mean, 1.09; 95% CI, 1.03-1.16) and nonroad traffic (RR per 1-IQR of 10-year mean, 1.13; 95% CI, 1.03-1.24), and NO2 levels (RR per 1-IQR of 10-year mean, 1.05; 95% CI, 1.01-1.08). Compared with other sources, traffic-generated pollutants were most consistently and robustly associated with loss of independence; only road traffic-related PM2.5 levels remained associated with increased risk after adjustment for PM2.5 from other sources (RR per 1-IQR increase in 10-year mean concentration, 1.10; 95% CI, 1.00-1.21). Other pollutant-outcome associations were null, except for O3 levels, which were associated with lower risks of lost independence (RR per 1-IQR increase in 10-year mean concentration, 0.94; 95% CI, 0.92-0.97). Conclusions and Relevance: This study found that long-term exposure to air pollution was associated with the need for help for lost independence in later life, with especially large and consistent increases in risk for pollution generated by traffic-related sources. These findings suggest that controlling air pollution could be associated with diversion or delay of the need for care and prolonged ability to live independently.


Subject(s)
Air Pollution , Environmental Exposure , Particulate Matter , Humans , Male , Aged , Female , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , Middle Aged , United States/epidemiology , Particulate Matter/analysis , Particulate Matter/adverse effects , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/adverse effects , Cohort Studies , Ozone/analysis , Ozone/adverse effects , Independent Living/statistics & numerical data , Nitrogen Dioxide/analysis , Nitrogen Dioxide/adverse effects , Aged, 80 and over , Risk Factors
20.
Sci Rep ; 14(1): 14751, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926518

ABSTRACT

Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Particulate Matter , China/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/epidemiology , Air Pollutants/analysis , Air Pollutants/adverse effects , Particulate Matter/analysis , Particulate Matter/adverse effects , SARS-CoV-2/isolation & purification , Environmental Monitoring/methods , Environmental Exposure/adverse effects , Public Health , Sulfur Dioxide/analysis , Sulfur Dioxide/adverse effects , Risk Assessment , Ozone/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...