Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.480
1.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727159

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/adverse effects , Particle Size , Lung/drug effects , Lung/pathology , Lung/metabolism
2.
Sci Rep ; 14(1): 10503, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714844

Diesel exhaust particles (DEPs) are very small (typically < 0.2 µm) fragments that have become major air pollutants. DEPs are comprised of a carbonaceous core surrounded by organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs. Inhaled DEPs reach the deepest sites in the respiratory system where they could induce respiratory/cardiovascular dysfunction. Additionally, a previous study has revealed that a portion of inhaled DEPs often activate immune cells and subsequently induce somatic inflammation. Moreover, DEPs are known to localize in lymph nodes. Therefore, in this study we explored the effect of DEPs on the lymphatic endothelial cells (LECs) that are a constituent of the walls of lymph nodes. DEP exposure induced cell death in a reactive oxygen species (ROS)-dependent manner. Following exposure to DEPs, next-generation sequence (NGS) analysis identified an upregulation of the integrated stress response (ISR) pathway and cell death cascades. Both the soluble and insoluble components of DEPs generated intracellular ROS. Three-dimensional Raman imaging revealed that DEPs are taken up by LECs, which suggests internalized DEP cores produce ROS, as well as soluble DEP components. However, significant cell death pathways such as apoptosis, necroptosis, ferroptosis, pyroptosis, and parthanatos seem unlikely to be involved in DEP-induced cell death in LECs. This study clarifies how DEPs invading the body might affect the lymphatic system through the induction of cell death in LECs.


Endothelial Cells , Reactive Oxygen Species , Vehicle Emissions , Vehicle Emissions/toxicity , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Humans , Particulate Matter/toxicity , Apoptosis/drug effects , Air Pollutants/toxicity , Cell Death/drug effects
3.
Part Fibre Toxicol ; 21(1): 25, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760786

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Air Pollution, Indoor , Cell Survival , Particulate Matter , Humans , Air Pollution, Indoor/adverse effects , Particulate Matter/toxicity , Cell Survival/drug effects , A549 Cells , Cytokines/metabolism , THP-1 Cells , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Inflammation/chemically induced , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology
4.
Pharmacol Res Perspect ; 12(3): e1201, 2024 Jun.
Article En | MEDLINE | ID: mdl-38775298

The toxicity of inhaled particulate air pollution perseveres even at lower concentrations than those of the existing air quality limit. Therefore, the identification of safe and effective measures against pollutant particles-induced vascular toxicity is warranted. Carnosol is a bioactive phenolic diterpene found in rosemary herb, with anti-inflammatory and antioxidant actions. However, its possible protective effect on the thrombotic and vascular injury induced by diesel exhaust particles (DEP) has not been studied before. We assessed here the potential alleviating effect of carnosol (20 mg/kg) administered intraperitoneally 1 h before intratracheal (i.t.) instillation of DEP (20 µg/mouse). Twenty-four hours after the administration of DEP, various parameters were assessed. Carnosol administration prevented the increase in the plasma concentrations of C-reactive protein, fibrinogen, and tissue factor induced by DEP exposure. Carnosol inhibited DEP-induced prothrombotic effects in pial microvessels in vivo and platelet aggregation in vitro. The shortening of activated partial thromboplastin time and prothrombin time induced by DEP was abated by carnosol administration. Carnosol inhibited the increase in pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α) and adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and P-selectin) in aortic tissue. Moreover, it averted the effects of DEP-induced increase of thiobarbituric acid reactive substances, depletion of antioxidants and DNA damage in the aortic tissue. Likewise, carnosol prevented the decrease in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) caused by DEP. We conclude that carnosol alleviates DEP-induced thrombogenicity and vascular inflammation, oxidative damage, and DNA injury through Nrf2 and HO-1 activation.


Abietanes , Thrombosis , Vehicle Emissions , Animals , Abietanes/pharmacology , Mice , Male , Vehicle Emissions/toxicity , Thrombosis/prevention & control , Thrombosis/drug therapy , Thrombosis/chemically induced , Lung/drug effects , Lung/pathology , Lung/metabolism , Vascular System Injuries/drug therapy , Antioxidants/pharmacology , Particulate Matter/toxicity , Particulate Matter/adverse effects , NF-E2-Related Factor 2/metabolism , Air Pollutants/toxicity , Oxidative Stress/drug effects , Platelet Aggregation/drug effects
5.
Ecotoxicol Environ Saf ; 278: 116429, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38718731

Air pollutants deteriorate the survival environment and endanger human health around the world. A large number of studies have confirmed that air pollution jeopardizes multiple organs, such as the cardiovascular, respiratory, and central nervous systems. Skin is the largest organ and the first barrier that protects us from the outside world. Air pollutants such as particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) will affect the structure and function of the skin and bring about the development of inflammatory skin diseases (atopic dermatitis (AD), psoriasis), skin accessory diseases (acne, alopecia), auto-immune skin diseases (cutaneous lupus erythematosus(CLE) scleroderma), and even skin tumors (melanoma, basal cell carcinoma (BCC), squamous-cell carcinoma (SCC)). Oxidative stress, skin barrier damage, microbiome dysbiosis, and skin inflammation are the pathogenesis of air pollution stimulation. In this review, we summarize the current evidence on the effects of air pollution on skin diseases and possible mechanisms to provide strategies for future research.


Air Pollutants , Air Pollution , Particulate Matter , Skin Diseases , Volatile Organic Compounds , Humans , Air Pollution/adverse effects , Skin Diseases/chemically induced , Air Pollutants/toxicity , Air Pollutants/adverse effects , Particulate Matter/toxicity , Volatile Organic Compounds/toxicity , Oxidative Stress/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Skin/drug effects
6.
Ecotoxicol Environ Saf ; 278: 116454, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38749199

AIM: We reveal the mechanism of action whereby ambient PM2.5 promotes kidney injury. METHODS: Using C57BL/6 mice, the effects of PM2.5 exposure on the acute kidney injury (AKI) were investigated, including renal function changes, expression of inflammatory cytokines, histopathological changes, as well as activation of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3(NLRP3). The effects of PM2.5 on renal injury after NLRP3 inhibition were explored using NLRP3 inhibitor (MCC950) and NLRP3 knockout mice. The effects of PM2.5 on the inflammatory response of renal macrophages were investigated at the cellular level. RESULTS: PM2.5 exposure could promote kidney injury, NLRP3 activation and inflammatory response in mice. After using MCC950 and NLRP3 knockout mice, the effects of PM2.5 and the kidney injury could be inhibited. The cellular-level results also suggested that MCC950 could inhibit the effects of PM2.5. CONCLUSION: PM2.5 can promote the progression of AKI and aggravate tissue inflammation through NLRP3, which is an important environmental toxicological mechanism of PM2.5.


Acute Kidney Injury , Inflammation , Macrophages , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Particulate Matter , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Particulate Matter/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Mice , Macrophages/drug effects , Inflammation/chemically induced , Male , Sulfonamides/toxicity , Sulfonamides/pharmacology , Indenes/toxicity , Air Pollutants/toxicity , Furans/toxicity , Sulfones/toxicity
7.
Part Fibre Toxicol ; 21(1): 26, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778339

BACKGROUND: During inhalation, airborne particles such as particulate matter ≤ 2.5 µm (PM2.5), can deposit and accumulate on the alveolar epithelial tissue. In vivo studies have shown that fractions of PM2.5 can cross the alveolar epithelium to blood circulation, reaching secondary organs beyond the lungs. However, approaches to quantify the translocation of particles across the alveolar epithelium in vivo and in vitro are still not well established. In this study, methods to assess the translocation of standard diesel exhaust particles (DEPs) across permeable polyethylene terephthalate (PET) inserts at 0.4, 1, and 3 µm pore sizes were first optimized with transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-VIS), and lock-in thermography (LIT), which were then applied to study the translocation of DEPs across human alveolar epithelial type II (A549) cells. A549 cells that grew on the membrane (pore size: 3 µm) in inserts were exposed to DEPs at different concentrations from 0 to 80 µg.mL- 1 ( 0 to 44 µg.cm- 2) for 24 h. After exposure, the basal fraction was collected and then analyzed by combining qualitative (TEM) and quantitative (UV-VIS and LIT) techniques to assess the translocated fraction of the DEPs across the alveolar epithelium in vitro. RESULTS: We could detect the translocated fraction of DEPs across the PET membranes with 3 µm pore sizes and without cells by TEM analysis, and determine the percentage of translocation at approximatively 37% by UV-VIS (LOD: 1.92 µg.mL- 1) and 75% by LIT (LOD: 0.20 µg.cm- 2). In the presence of cells, the percentage of DEPs translocation across the alveolar tissue was determined around 1% at 20 and 40 µg.mL- 1 (11 and 22 µg.cm- 2), and no particles were detected at higher and lower concentrations. Interestingly, simultaneous exposure of A549 cells to DEPs and EDTA can increase the translocation of DEPs in the basal fraction. CONCLUSION: We propose a combination of analytical techniques to assess the translocation of DEPs across lung tissues. Our results reveal a low percentage of translocation of DEPs across alveolar epithelial tissue in vitro and they correspond to in vivo findings. The combination approach can be applied to any traffic-generated particles, thus enabling us to understand their involvement in public health.


Particulate Matter , Pulmonary Alveoli , Vehicle Emissions , Humans , Vehicle Emissions/toxicity , Vehicle Emissions/analysis , A549 Cells , Particulate Matter/toxicity , Particulate Matter/analysis , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Particle Size , Microscopy, Electron, Transmission , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/toxicity , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Air Pollutants/toxicity , Air Pollutants/analysis
8.
J Biochem Mol Toxicol ; 38(5): e23718, 2024 May.
Article En | MEDLINE | ID: mdl-38738849

According to the pathophysiological mechanisms linking particulate matter (PM2.5) exposure and cardiovascular diseases, PM2.5 may directly translocate into the blood stream and remote target organs and thereby induce cardiovascular effects. The toxicity of PM2.5 is known to induce oxidative stress in pulmonary tissue, but its impact on the redox state in heart (distant organ) is unknown and how it modulates the cardiac response to ischemia reperfusion (IR) remains unclear. In the present study, we evaluated the toxic effect of PM2.5 on cardiac physiology in the presence and absence of IR after introducing PM2.5 into the blood. Female Wistar rats were injected with diesel particulate matter (DPM) via i.p & i.v routes at a concentration of 10 µg/ml. The toxic impact of PM2.5 not only adversely affects the cardiac ultra-structure (leading to nuclear infiltration, edema, irregularities in heart muscle and nuclear infiltration), but also altered the cellular redox balance, elevated inflammation and promoted the upregulation of proapoptotic mediator genes at the basal level of myocardium. The results showed alterations in cardiac ultrastructure, elevated oxidative stress and significant redox imbalance, increased inflammation and proapoptotic mediators at the basal level of myocardium. Moreover, the cardioprotective pro survival signaling axis was declined along with an increased NF-kB activation at the basal level. IR inflicted further injury with deterioration of cardiac hemodynamic indices (Heart rate [HR], Left ventricular developed pressure [LVDP], Left ventricular end-diastolic pressure [LVEDP] and rate pressure product [RPP]) along with prominent inactivation of signaling pathways. Furthermore, the levels of GSH/GSSG, NADH/NAD, NADPH/NADP were significantly low along with increased lipid peroxidation in mitochondria of PM2.5 treated IR rat hearts. This observation was supported by downregulation of glutaredoxin and peroxiredoxin genes in the myocardium. Similarly the presence of oxidative stress inducing metals was found at a higher concentration in cardiac mitochondria. Thus, the toxic impact of PM2.5 in heart augment the IR associated pathological changes by altering the physiological response, initiating cellular metabolic alterations in mitochondria and modifying the signaling molecules.


NF-kappa B , Oxidation-Reduction , Particulate Matter , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Wistar , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Particulate Matter/toxicity , Rats , Female , Oxidation-Reduction/drug effects , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , NF-kappa B/metabolism , TOR Serine-Threonine Kinases/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Oxidative Stress/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects
9.
Sci Total Environ ; 931: 172993, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38719056

Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.


Air Pollutants , Inflammation , Particulate Matter , Particulate Matter/toxicity , Humans , Inflammation/chemically induced , Air Pollutants/toxicity , Male , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Beijing , Female , Aged , Cytokines/blood , Cytokines/metabolism , Arachidonic Acid/metabolism , Ceramides , Middle Aged , Lipids/blood
10.
Int J Mol Sci ; 25(10)2024 May 14.
Article En | MEDLINE | ID: mdl-38791399

Oxylipins, the metabolites of polyunsaturated fatty acids, are vital in regulating cell proliferation and inflammation. Among these oxylipins, specialized pro-resolving mediators notably contribute to inflammation resolution. Previously, we showed that the specialized pro-resolving mediators isomer 11,17dihydroxy docosapentaenoic acid (11,17diHDoPE) can be synthesized in bacterial cells and exhibits anti-inflammatory effects in mammalian cells. This study investigates the in vivo impact of 11,17diHDoPE in mice exposed to particulate matter 10 (PM10). Our results indicate that 11,17diHDoPE significantly mitigates PM10-induced lung inflammation in mice, as evidenced by reduced pro-inflammatory cytokines and pulmonary inflammation-related gene expression. Metabolomic analysis reveals that 11,17diHDoPE modulates inflammation-related metabolites such as threonine, 2-keto gluconic acid, butanoic acid, and methyl oleate in lung tissues. In addition, 11,17diHDoPE upregulates the LA-derived oxylipin pathway and downregulates arachidonic acid- and docosahexaenoic acid-derived oxylipin pathways in serum. Correlation analyses between gene expression and metabolite changes suggest that 11,17diHDoPE alleviates inflammation by interfering with macrophage differentiation. These findings underscore the in vivo role of 11,17diHDoPE in reducing pulmonary inflammation, highlighting its potential as a therapeutic agent for respiratory diseases.


Anti-Inflammatory Agents , Fatty Acids, Unsaturated , Metabolome , Particulate Matter , Pneumonia , Animals , Mice , Metabolome/drug effects , Pneumonia/metabolism , Pneumonia/chemically induced , Pneumonia/drug therapy , Particulate Matter/toxicity , Anti-Inflammatory Agents/pharmacology , Fatty Acids, Unsaturated/metabolism , Male , Lung/metabolism , Lung/pathology , Lung/drug effects , Mice, Inbred C57BL , Oxylipins/metabolism , Metabolomics/methods , Cytokines/metabolism , Gene Expression Regulation/drug effects
11.
Proc Natl Acad Sci U S A ; 121(21): e2319595121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739786

As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.


Anxiety , Depression , Particulate Matter , Receptors, Dopamine D1 , Animals , Particulate Matter/toxicity , Mice , Male , Anxiety/metabolism , Depression/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Air Pollutants/toxicity , Behavior, Animal/drug effects , Molecular Docking Simulation
12.
Ecotoxicol Environ Saf ; 278: 116423, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38705039

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.


Adipose Tissue, Brown , Air Pollutants , Cellular Senescence , Mice, Inbred C57BL , Mitochondria , Particulate Matter , Animals , Particulate Matter/toxicity , Adipose Tissue, Brown/drug effects , Male , Mice , Cellular Senescence/drug effects , Air Pollutants/toxicity , Mitochondria/drug effects , Apoptosis/drug effects , Autophagy/drug effects
13.
Sci Rep ; 14(1): 11870, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789588

Fine particulate matter (PM2.5) is one of the four major causes of mortality globally. The objective of this study was to investigate the mechanism underlying liver injury following exposure to PM2.5 and the involvement of circRNA in its regulation. A PM2.5 respiratory tract exposure model was established in SPF SD male rats with a dose of 20 mg/kg, and liver tissue of rats in control group and PM2.5-exposed groups rats were detected. The results of ICP-MS showed that Mn, Cu and Ni were enriched in the liver. HE staining showed significant pathological changes in liver tissues of PM2.5-exposed group, transmission electron microscopy showed significant changes in mitochondrial structure of liver cells, and further mitochondrial function detection showed that the PM2.5 exposure resulted in an increase in cell reactive oxygen species content and a decrease in mitochondrial transmembrane potential, while the expression of SOD1 and HO-1 antioxidant oxidase genes was upregulated. Through high-throughput sequencing of circRNAs, we observed a significant down-regulation of 10 and an up-regulation of 17 circRNAs in the PM2.5-exposed groups. The functional enrichment and pathway analyses indicated that the differentially expressed circRNAs by PM2.5 exposure were primarily associated with processes related to protein ubiquitination, zinc ion binding, peroxisome function, and mitochondrial regulation. These findings suggest that the mechanism underlying liver injury induced by PM2.5-exposure may be associated with mitochondrial impairment resulting from the presence of heavy metal constituents. Therefore, this study provides a novel theoretical foundation for investigating the molecular mechanisms underlying liver injury induced by PM2.5 exposure.


Hepatocytes , Mitochondria , Particulate Matter , RNA, Circular , Rats, Sprague-Dawley , Animals , Particulate Matter/toxicity , Particulate Matter/adverse effects , Rats , Hepatocytes/metabolism , Hepatocytes/drug effects , Hepatocytes/pathology , Male , RNA, Circular/genetics , RNA, Circular/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Liver/metabolism , Liver/pathology , Liver/drug effects , Membrane Potential, Mitochondrial/drug effects , Gene Expression Regulation/drug effects , Oxidative Stress/drug effects
14.
Part Fibre Toxicol ; 21(1): 27, 2024 May 27.
Article En | MEDLINE | ID: mdl-38797836

BACKGROUND: Rural regions of the western United States have experienced a noticeable surge in both the frequency and severity of acute wildfire events, which brings significant challenges to both public safety and environmental conservation efforts, with impacts felt globally. Identifying factors contributing to immune dysfunction, including endocrinological phenotypes, is essential to understanding how hormones may influence toxicological susceptibility. METHODS: This exploratory study utilized male and female C57BL/6 mice as in vivo models to investigate distinct responses to acute woodsmoke (WS) exposure with a focus on sex-based differences. In a second set of investigations, two groups were established within the female mouse cohort. In one group, mice experienced ovariectomy (OVX) to simulate an ovarian hormone-deficient state similar to surgical menopause, while the other group received Sham surgery as controls, to investigate the mechanistic role of ovarian hormone presence in driving immune dysregulation following acute WS exposure. Each experimental cohort followed a consecutive 2-day protocol with daily 4-h exposure intervals under two conditions: control HEPA-filtered air (FA) and acute WS to simulate an acute wildfire episode. RESULTS: Metals analysis of WS particulate matter (PM) revealed significantly increased levels of 63Cu, 182W, 208Pb, and 238U, compared to filtered air (FA) controls, providing insights into the specific metal components most impacted by the changing dynamics of wildfire occurrences in the region. Male and female mice exhibited diverse patterns in lung mRNA cytokine expression following WS exposure, with males showing downregulation and females displaying upregulation, notably for IL-1ß, TNF-α, CXCL-1, CCL-5, TGF-ß, and IL-6. After acute WS exposure, there were notable differences in the responses of macrophages, neutrophils, and bronchoalveolar lavage (BAL) cytokines IL-10, IL-6, IL-1ß, and TNF-α. Significant diverse alterations were observed in BAL cytokines, specifically IL-1ß, IL-10, IL-6, and TNF-α, as well as in the populations of immune cells, such as macrophages and polymorphonuclear leukocytes, in both Sham and OVX mice, following acute WS exposure. These findings elucidated the profound influence of hormonal changes on inflammatory outcomes, delineating substantial sex-related differences in immune activation and revealing altered immune responses in OVX mice due to ovarian hormone deficiency. In addition, the flow cytometry analysis highlighted the complex interaction between OVX surgery, acute WS exposure, and their collective impact on immune cell populations within the hematopoietic bone marrow niche. CONCLUSIONS: In summary, both male and female mice, alongside females subjected to OVX and those who had sham surgery, exhibit significant variations in the expression of proinflammatory cytokines, chemokines, lung mRNA gene expression, and related functional networks linked to signaling pathways. These differences potentially act as mediators of sex-specific and hormonal influences in the systemic inflammatory response to acute WS exposure during a wildfire event. Understanding the regulatory roles of genes expressed differentially under environmental stressors holds considerable implications, aiding in identifying sex-specific therapeutic targets for addressing acute lung inflammation and injury.


Inhalation Exposure , Mice, Inbred C57BL , Animals , Female , Male , Inhalation Exposure/adverse effects , Wildfires , Particulate Matter/toxicity , Sex Factors , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/drug effects , Lung/metabolism , Smoke/adverse effects , Air Pollutants/toxicity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Ovariectomy , Mice , Ovary/immunology , Ovary/drug effects , Ovary/metabolism
15.
J Hazard Mater ; 472: 134507, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38718510

The long-term joint impacts of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on mortality are inconclusive. To bridge this research gap, we included 283,568 adults from the Taiwan MJ cohort between 2005 and 2016 and linked with the mortality data until 31 May 2019. Participants' annual average exposures to PM2.5, NO2, and O3 were estimated using satellite-based spatial-temporal models. We applied elastic net-regularised Cox models to construct a weighted environmental risk score (WERS) for the joint effects of three pollutants on non-accidental, cardiovascular, and cancer mortality and evaluated the contribution of each pollutant. The three pollutants jointly raised non-accidental mortality risk with a WERS hazard ratio (HR) of 1.186 (95% CI: 1.118-1.259) per standard deviation increase in each pollutant and weights of 72.8%, 15.2%, and 12.0% for PM2.5, NO2, and O3, respectively. The WERS increased cardiovascular death risk [HR: 1.248 (1.042-1.496)], with PM2.5 as the first contributor and O3 as the second. The WERS also elevated the cancer death risk [HR: 1.173 (1.083-1.270)], where PM2.5 played the dominant role and NO2 ranked second. Coordinated control of these three pollutants can optimise the health benefits of air quality improvements.


Air Pollutants , Cardiovascular Diseases , Environmental Exposure , Neoplasms , Nitrogen Dioxide , Ozone , Particulate Matter , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Male , Taiwan/epidemiology , Middle Aged , Female , Ozone/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Longitudinal Studies , Neoplasms/mortality , Cardiovascular Diseases/mortality , Environmental Exposure/adverse effects , Adult , Aged , Cohort Studies , Air Pollution/adverse effects , Air Pollution/analysis , Cause of Death
17.
Chem Biol Interact ; 395: 111032, 2024 May 25.
Article En | MEDLINE | ID: mdl-38705442

Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 µM PAE before exposure to 200 µg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.


Acute Lung Injury , Glucosides , Inflammasomes , Mice, Inbred C57BL , Monoterpenes , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Particulate Matter , Pyroptosis , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , Oxidative Stress/drug effects , Particulate Matter/toxicity , Glucosides/pharmacology , Glucosides/therapeutic use , Signal Transduction/drug effects , Mice , Monoterpenes/pharmacology , Inflammasomes/metabolism , Male , Humans , Cell Line
18.
J Hazard Mater ; 472: 134505, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38703689

It is critical to explore intervenable environmental factors in suicide mortality. Based on 30,688 suicide cases obtained from the Mortality Surveillance System of the Jiangsu Provincial Centre for Disease Control and Prevention, we utilized a case-crossover design, and found that the OR of suicide deaths increased by a maximum of 0.71 % (95 % CI: 0.09 %, 1.32 %), 0.68 % (95 % CI: 0.12 %, 1.25 %), 0.77 % (95 % CI: 0.19 %, 1.37 %), 2.95 % (95 % CI: 1.62 %, 4.29 %), 4.18 % (95 % CI: 1.55 %, 6.88 %), and 0.93 % (95 % CI: 0.10 %, 1.77 %), respectively, for per 10 µg/m3 increase in the particulate matter (PM) with diameters ≤ 2.5 µm (PM2.5), PM with diameters ≤ 10 µm (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and per 0.1 mg/m3 increase in carbon monoxide (CO) concentrations with the conditional logistic regression analysis. People living in county-level cities were more susceptible. Particularly, a significant positive association was found between air pollutant mixture exposure and suicide deaths (OR=1.04,95 % CI: 1.01, 1.06). The excess fraction of suicide deaths due to air pollution reached a maximum of 8.07 %. In conclusion, we found associations between individual and mixed ambient air pollutants and suicide deaths, informing the development of integrated air pollution management and targeted measures for suicide prevention and intervention. ENVIRONMENTAL IMPLICATION: As a major contributor to the global burden of disease, air pollution was confirmed by accumulating studies to have adverse impact on mental health, and potentially lead to suicide deaths. However, systematic studies on the association between air pollution and suicide mortality are lacking. We explored the associations of multiple air pollutants and pollution mixtures with suicide deaths and assessed excess suicide mortality due to air pollution, emphasizing the importance of air pollution control on suicide prevention. Our study provides evidence to support mechanistic studies on the association between air pollution and suicide, and informs comprehensive air pollution management.


Air Pollutants , Cross-Over Studies , Particulate Matter , Suicide , Humans , Suicide/statistics & numerical data , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Male , Female , Middle Aged , Adult , China/epidemiology , Ozone/toxicity , Ozone/analysis , Sulfur Dioxide/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Aged , Air Pollution/adverse effects , Air Pollution/analysis , Environmental Exposure/adverse effects , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Young Adult
19.
J Hazard Mater ; 472: 134504, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38704910

The relationship of ozone (O3), particularly the long-term exposure, with impacting metabolic homeostasis in population was understudied and under-recognised. Here, we used data from ChinaHEART, a nationwide, population-based cohort study, combined with O3 and PM2.5 concentration data with high spatiotemporal resolution, to explore the independent association of exposure to O3 with the prevalence of insulin resistance (IR). Among the 271 540 participants included, the crude prevalence of IR was 39.1%, while the age and sex standardized prevalence stood at 33.0%. Higher IR prevalence was observed with each increase of 10.0 µg/m3 in long-term O3 exposure, yielding adjusted odds ratios (OR) of 1.084 (95% CI: 1.079-1.089) in the one-pollutant model and 1.073 (95% CI: 1.067-1.079) in the two-pollutant model. Notably, a significant additive interaction between O3 and PM2.5 on the prevalence of IR was observed (P for additive interaction < 0.001). Our main findings remained consistent and robust in the sensitivity analyses. Our study suggests long-term exposure to O3 was independently and positively associated with prevalence of IR. It emphasized the benefits of policy interventions to reduce O3 and PM2.5 exposure jointly, which could ultimately alleviate the health and economic burden related to DM.


Air Pollutants , Environmental Exposure , Insulin Resistance , Ozone , Ozone/toxicity , Ozone/analysis , Humans , Male , Female , Middle Aged , Air Pollutants/toxicity , Air Pollutants/analysis , China/epidemiology , Adult , Cohort Studies , Particulate Matter/toxicity , Aged , Prevalence
20.
Ecotoxicol Environ Saf ; 277: 116386, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657455

Exposure to ambient PM2.5 is associated with neurodegenerative disorders, in which microglia activation plays a critical role. Thus far, the underlying mechanisms for PM2.5-induced microglia activation have not been well elucidated. In this study, a human microglial cell line (HMC3) was used as the in vitro model to examine the inflammatory effect (hall marker of microglia activation) of PM2.5 and regulatory pathways. The expression of inflammatory mediators including interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) as well as the brain derived neurotrophic factor (BDNF) were determined by ELISA and/or real-time PCR, respectively. Flow cytometry was used to measure the production of intracellular reactive oxygen species (ROS). Western blot was used to measure protein levels of Toll-like receptor 4 (TLR4), NF-κB inhibitor α (IκBα) and COX-2. It was shown that PM2.5 stimulation increased IL-6 and COX-2 expression but decreased BDNF expression in a dose-dependent manner. Further studies showed that PM2.5 triggered the formation of ROS and pre-treatment with the ROS scavenger acetylcysteine (NAC) significantly suppressed PM2.5-induced IL-6 and COX-2 expression. Moreover, the nuclear factor kappa B (NF-κB) inhibitor BAY11-7085 or the TLR4 neutralizing antibody markedly blocked PM2.5-induced IL-6 and COX-2 expression. However, NAC or BAY11-7085 exhibited minimal effect on PM2.5-induced BDNF down-regulation. In addition, pre-treatment with BAY11-7085 or TLR4 neutralizing antibody reduced ROS production induced by PM2.5, and NAC pre-treatment inhibited TLR4 expression and NF-κB activation induced by PM2.5. Collectively, PM2.5 treatment induced IL-6 and COX-2 but suppressed BDNF expression. PM2.5-induced IL-6 and COX-2 expression was mediated by interactive oxidative stress and TLR4/NF-κB pathway.


Brain-Derived Neurotrophic Factor , Cyclooxygenase 2 , Interleukin-6 , Microglia , NF-kappa B , Oxidative Stress , Particulate Matter , Reactive Oxygen Species , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Humans , Particulate Matter/toxicity , Oxidative Stress/drug effects , NF-kappa B/metabolism , Microglia/drug effects , Microglia/metabolism , Reactive Oxygen Species/metabolism , Interleukin-6/metabolism , Cyclooxygenase 2/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cell Line , Up-Regulation/drug effects , Signal Transduction/drug effects , Air Pollutants/toxicity
...