Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.310
Filter
1.
J Vet Sci ; 25(4): e56, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39083208

ABSTRACT

IMPORTANCE: Canine parvovirus enteritis (CPE) is a contagious viral disease of dogs caused by the canine parvovirus-2 (CPV-2) associated with high morbidity and mortality rates. CPV-2 has a high global evolutionary rate. Molecular characterization of CPV-2 and understanding its epidemiology are essential for controlling CPV-2 infections. OBJECTIVE: This study examined the risk factors and survival outcomes of dogs infected with CPV-2. Molecular characterization of CPV-2 genotypes circulating in Egypt was performed to determine the evolution of CPV-2 nationally and globally. METHODS: An age-matched case-control study was conducted on 47 control and 47 CPV-infected dogs. Conditional logistic regression analysis examined the association between the potential risk factors and CPE in dogs. Survival analysis was performed to determine the survival pattern of the infected dogs. Thirteen fecal samples from infected dogs were collected to confirm the CPV genotype by CPV-2 VP2 gene sequencing, assembly of nucleotide sequences, and phylogenic analysis. RESULTS: Unvaccinated and roamer dogs had eight and 2.3 times higher risks of CPV infection than vaccinated dogs and non-roamer dogs, respectively. The risk of death from CPE was high among dogs without routine visits to veterinary clinics and among non-roamer dogs. Molecular characterization of CPV-2 confirmed its genotype identity and relationship with the CPV-2 c and b clade types. CONCLUSIONS AND RELEVANCE: This study highlights the potential factors for CPE control, especially vaccination and preventing dogs from roaming freely outside houses. Isolated CPV genotypes are closely related to southern Asian genotypes, suggesting a substantial opportunity for global transmission.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Dogs , Parvovirus, Canine/genetics , Dog Diseases/epidemiology , Dog Diseases/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Egypt/epidemiology , Case-Control Studies , Female , Male , Phylogeny , Risk Factors , Genotype , Feces/virology
2.
Sci Rep ; 14(1): 15941, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987633

ABSTRACT

Adeno-associated viruses (AAVs) are promising gene therapy vectors, but challenges arise when treating patients with preexisting neutralizing antibodies. Worldwide seroprevalence studies provide snapshots of existing immunity in diverse populations. Owing to the uniqueness of the Basque socio-geographical landscape, we investigated the seroprevalence of eight AAV serotypes in residents of the Basque Country. We found the highest seroprevalence of AAV3, and the lowest seroprevalence of AAV9. Additionally, less than 50% of the Basque population has neutralizing antibodies against AAV4, AAV6, and AAV9. Our findings provide insight into AAV infections in the Basque region, public health, and the development of AAV-based therapeutics.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dependovirus , Humans , Dependovirus/genetics , Dependovirus/immunology , Seroepidemiologic Studies , Male , Female , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Middle Aged , Spain/epidemiology , Young Adult , Cohort Studies , Parvoviridae Infections/epidemiology , Parvoviridae Infections/immunology , Parvoviridae Infections/virology , Serogroup
3.
Zhonghua Nei Ke Za Zhi ; 63(7): 720-723, 2024 Jul 01.
Article in Chinese | MEDLINE | ID: mdl-38951100

ABSTRACT

A 19-year-old male patient with high-risk acute B-cell lymphoblastic leukemia received haploidentical stem cell transplantation. He developed anemia repeatedly and parvovirus B19 nucleic acid was positive in blood plasma. The patient was diagnosed with cold agglutinin syndrome and multiple organ dysfunction including respiratory failure and hepatitis. In the conflict between viral infection and the treatment of cold agglutinin syndrome, we provided supportive treatment, complement inhibitors to control hemolysis, and antiviral therapy. After timely glucocorticoid and immunosuppressant therapy, the patient had achieved a good response.


Subject(s)
Multiple Organ Failure , Parvovirus B19, Human , Humans , Male , Young Adult , Multiple Organ Failure/etiology , Multiple Organ Failure/virology , Parvoviridae Infections/complications , Parvoviridae Infections/diagnosis , Anemia, Hemolytic/etiology , Anemia, Hemolytic/diagnosis , Anemia, Hemolytic, Autoimmune/therapy
4.
Vet Med Sci ; 10(4): e1523, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958584

ABSTRACT

BACKGROUND: Canine parvovirus type 2 (CPV-2) is the most common enteric virus that infects canids. CPV is the causative agent of a contagious disease defined mostly by clinical gastrointestinal signs in dogs. During the late 1970s, CPV-2 emerged as a new virus capable of infecting domestic dogs and growing across the world. The VP2 gene stands out as a key determinant in the pathogenicity, antigenicity, and host interactions of CPV-2. AIMS: The molecular characterization of the VP2 gene is crucial for understanding CPV evolution and epidemiology. MATERIALS & METHODS: Genes encoding the VP2 protein were sequenced and compared to reference strains worldwide. The maximum likelihood method was used to build a phylogenetic tree using CPV VP2 gene nucleotide sequences. RESULTS: Our phylogenetic analysis of the VP2 gene revealed that five strains were very similar and clustered together, and three strains were in the 2b clade, whereas the other two were in the 2a/2b clade. DISCUSSION: This paper reports the molecular characterization of two novel CPV-2a/2b subtypes in dogs with gastrointestinal symptoms. Genetic analysis was conducted on a CPV genomic region encompassing one of the open reading frames (ORFs) encoding the structural protein VP2. Sequence analysis indicates new and unreported sequence changes, mainly affecting the VP2 gene, which includes the mutations Ser297Ala and Leu87Met. This study represents the first evidence of a new CPV-2a/2b subtype in Türkiye. Due to VP2's crucial role in encoding the capsid protein of CPV-2 and its significant involvement in the host-virus interaction, it is critical to closely monitor its evolutionary changes and be cautious while searching for novel or pre-existing subtypes. CONCLUSION: This study highlights the significance of continuous molecular research for acquiring more insights on the circulation of novel CPV mutants.


Subject(s)
Genetic Variation , Parvovirus, Canine , Parvovirus, Canine/classification , Parvovirus, Canine/genetics , Animals , Dogs , Phylogeny , Capsid Proteins/chemistry , Capsid Proteins/genetics , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Turkey , Species Specificity , Genotype
6.
Vet Ital ; 60(2)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39049752

ABSTRACT

Potential prognostic indicators have been associated with decreased survival during canine parvoviral enteritis (CPE), such as body weight, sex, and clinicopathological parameters. Few studies reported the prognostic factors for CPE in Italy; therefore, the aim of this study was to identify prognostic factors associated with the survival of dogs admitted to the Veterinary Teaching Hospital of Perugia University, naturally infected with canine parvovirus. Seventy-six medical records of dogs with a definitive diagnosis of parvoviral infection admitted from 2017 to 2021 have been reviewed and included in the study. From medical records were extracted data on signalment, history, clinical examination, hematology, serum biochemistry, treatments, progression of clinical signs during hospitalization and outcome. The data have been subjected to univariate and multivariate statistical analysis. Our results showed winter season, male sex, dog ownership, small breed, normal sensory status, normal heart rate, normal hydration status, abdominal pain, increased capillary reperfusion time, and normal white blood cell count as positive prognostic factors. The survival model confirmed that parameters such as male sex, small breed, and ownership increased the survival rate during hospitalization. Data reported in the present study are partially in agreement with previous studies and added new information on the possible prognostic factors in dogs affected by CPE in Italy.


Subject(s)
Dog Diseases , Enteritis , Hospitals, Animal , Hospitals, Teaching , Parvoviridae Infections , Italy , Retrospective Studies , Parvovirus, Canine , Enteritis/diagnosis , Enteritis/epidemiology , Enteritis/veterinary , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Prognosis , Survival Analysis , Risk Factors , Parvoviridae Infections/diagnosis , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Animals , Dogs
7.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904112

ABSTRACT

From April 2023 to May 2024, an unusual epidemic of parvovirus B19 (B19V) infections occurred in France. The number of B19V IgM-positive serologies was four times higher than in the previous epidemic in 2019. Clinical data from emergency networks corroborated this observation. Morbidity and mortality consequences were observed in children through all data sources. In adults, the increase was only observed in laboratory-confirmed data. Physicians and decisionmakers should be informed in order to better prevent, diagnose and manage at-risk patients.


Subject(s)
Disease Outbreaks , Immunoglobulin M , Parvoviridae Infections , Parvovirus B19, Human , Humans , France/epidemiology , Parvovirus B19, Human/isolation & purification , Adult , Female , Male , Child , Parvoviridae Infections/epidemiology , Parvoviridae Infections/diagnosis , Immunoglobulin M/blood , Adolescent , Child, Preschool , Middle Aged , Antibodies, Viral/blood , Erythema Infectiosum/epidemiology , Erythema Infectiosum/diagnosis , Young Adult , Infant , Aged
8.
Euro Surveill ; 29(24)2024 Jun.
Article in English | MEDLINE | ID: mdl-38873795

ABSTRACT

We report an epidemic of parvovirus B19 infections in Denmark during the first quarter of 2024, with a peak incidence 3.5 times higher than during the most recent epidemic in 2017. In total, 20.1% (130/648) of laboratory-confirmed cases were pregnant. Severe adverse outcomes were observed among 12.3% (16/130) of pregnant people and included foetal anaemia, foetal hydrops and miscarriage. Parvovirus B19 infection is not systematically monitored, but a national laboratory-based surveillance system is currently being established in Denmark.


Subject(s)
Parvoviridae Infections , Parvovirus B19, Human , Pregnancy Complications, Infectious , Humans , Female , Pregnancy , Denmark/epidemiology , Parvovirus B19, Human/isolation & purification , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/virology , Adult , Incidence , Parvoviridae Infections/epidemiology , Parvoviridae Infections/diagnosis , Epidemics , Hydrops Fetalis/epidemiology , Hydrops Fetalis/virology , Severity of Illness Index , Young Adult , Erythema Infectiosum/epidemiology , Erythema Infectiosum/diagnosis , Adolescent , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/virology , Population Surveillance
9.
J Med Virol ; 96(6): e29706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888111

ABSTRACT

The diversity and evolution of the genomes of human bocavirus (HBoV), which causes respiratory diseases, have been scarcely studied. Here, we aimed to obtain and characterize HBoV genomes from patients's nasopharyngeal samples collected between 2017 and 2022 period (5 years and 7 months). Next-generation sequencing (NGS) used Illumina technology after having implemented using GEMI an in-house multiplex PCR amplification strategy. Genomes were assembled and analyzed with CLC Genomics, Mafft, BioEdit, MeV, Nextclade, MEGA, and iTol. A total of 213 genomes were obtained. Phylogeny classified them all as of Bocavirus 1 (HBoV1) species. Five HBoV1 genotypic clusters determined by hierarchical clustering analysis of 27 variable genome positions were scattered over the study period although with differences in yearly prevalence. A total of 167 amino acid substitutions were detected. Besides, coinfection was observed for 52% of the samples, rhinoviruses then adenoviruses (HAdVs) being the most common viruses. Principal component analysis showed that HBoV1 genotypic cluster α tended to be correlated with HAdV co-infection. Subsequent HAdV typing for HBoV1-positive samples and negative controls demonstrated that HAdVC species predominated but HAdVB was that significantly HBoV1-associated. Overall, we described here the first HBoV1 genomes sequenced for France. HBoV1 and HAdVB association deserves further investigation.


Subject(s)
Coinfection , Genome, Viral , Genotype , High-Throughput Nucleotide Sequencing , Human bocavirus , Parvoviridae Infections , Phylogeny , Humans , Human bocavirus/genetics , Human bocavirus/classification , Human bocavirus/isolation & purification , Genome, Viral/genetics , France/epidemiology , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Female , Child, Preschool , Male , Child , Adult , Infant , Middle Aged , Coinfection/virology , Coinfection/epidemiology , Adolescent , Nasopharynx/virology , Young Adult , Aged , Sequence Analysis, DNA , Genetic Variation , DNA, Viral/genetics
10.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932156

ABSTRACT

Reports of newly discovered equine hepatotropic flavi- and parvoviruses have emerged throughout the last decade in many countries, the discovery of which has stimulated a great deal of interest and clinical research. Although commonly detected in horses without signs of disease, equine parvovirus hepatitis (EqPV-H) and equine hepacivirus (EqHV) have been associated with liver disease, including following the administration of contaminated anti-toxin. Our aim was to determine whether EqPV-H and EqHV are present in Australian horses and whether EqPV-H was present in French horses and to examine sequence diversity between strains of both viruses amongst infected horses on either side of the globe. Sera from 188 Australian horses and 256 French horses from horses with and without clinical signs of disease were collected. Twelve out of 256 (4.7%) and 6 out of 188 (3.2%) French and Australian horses, respectively, were positive for the molecular detection of EqPV-H. Five out of 256 (1.9%) and 21 out of 188 (11.2%) French and Australian horses, respectively, were positive for the molecular detection of EqHV. Australian strains for both viruses were genomically clustered, in contrast to strains from French horses, which were more broadly distributed. The findings of this preliminary survey, with the molecular detection of EqHV and EqPV-H in Australia and the latter in France, adds to the growing body of awareness regarding these recently discovered hepatotropic viruses. It has provided valuable information not just in terms of geographic endemicity but will guide equine clinicians, carers, and authorities regarding infectious agents and potential impacts of allogenic tissue contamination. Although we have filled many gaps in the world map regarding equine hepatotropic viruses, further prospective studies in this emerging field may be useful in terms of elucidating risk factors and pathogenesis of these pathogens and management of cases in terms of prevention and diagnosis.


Subject(s)
Hepacivirus , Hepatitis, Viral, Animal , Horse Diseases , Parvoviridae Infections , Parvovirus , Phylogeny , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Horse Diseases/blood , Australia/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Parvoviridae Infections/blood , France/epidemiology , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/epidemiology , Hepatitis, Viral, Animal/blood , Parvovirus/genetics , Parvovirus/isolation & purification , Parvovirus/classification , Parvovirus/immunology , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepacivirus/immunology , Hepatitis C/veterinary , Hepatitis C/virology , Hepatitis C/epidemiology
11.
Proc Natl Acad Sci U S A ; 121(25): e2320782121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38875150

ABSTRACT

Human bocavirus 1 (HBoV1) is a human parvovirus that causes lower respiratory tract infections in young children. It contains a single-stranded (ss) DNA genome of ~5.5 kb that encodes a small noncoding RNA of 140 nucleotides known as bocavirus-encoded small RNA (BocaSR), in addition to viral proteins. Here, we determined the secondary structure of BocaSR in vivo by using DMS-MaPseq. Our findings reveal that BocaSR undergoes N6-methyladenosine (m6A) modification at multiple sites, which is critical for viral DNA replication in both dividing HEK293 cells and nondividing cells of the human airway epithelium. Mechanistically, we found that m6A-modified BocaSR serves as a mediator for recruiting Y-family DNA repair DNA polymerase (Pol) η and Pol κ likely through a direct interaction between BocaSR and the viral DNA replication origin at the right terminus of the viral genome. Thus, this report represents direct involvement of a viral small noncoding RNA in viral DNA replication through m6A modification.


Subject(s)
Adenosine , DNA Replication , DNA, Viral , DNA-Directed DNA Polymerase , RNA, Viral , Virus Replication , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Virus Replication/genetics , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , HEK293 Cells , RNA, Viral/genetics , RNA, Viral/metabolism , Human bocavirus/genetics , Human bocavirus/metabolism , Genome, Viral/genetics , Parvoviridae Infections/virology
12.
Virulence ; 15(1): 2366874, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38869140

ABSTRACT

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Subject(s)
Capsid Proteins , Ducks , Parvoviridae Infections , Point Mutation , Poultry Diseases , Recombination, Genetic , Animals , Virulence , Parvoviridae Infections/virology , Parvoviridae Infections/veterinary , Poultry Diseases/virology , Capsid Proteins/genetics , Parvovirinae/genetics , Parvovirinae/pathogenicity
13.
J Infect Dev Ctries ; 18(5): 809-816, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865411

ABSTRACT

INTRODUCTION: The objective of the present study was to report, for the first time, the presence of canine parvovirus type 2c (CPV-2c) in domesticated dogs with acute gastroenteritis and to characterize the antigenic variants circulating in Palestine. METHODOLOGY: A veterinary clinical-based epidemiological study was carried out between December 2022 and April 2023. Fifty fecal samples were collected from dogs with gastroenteritis and screened for CPV-2 infection by polymerase chain reaction. The distribution of positive cases according to various epidemiological factors was studied. Partial sequencing of the viral protein 2 (VP2) gene was performed for the analysis of CPV-2 variants. RESULTS: Most of the investigated samples (60%; n = 50) during the study period were found positive for CPV-2 infection. There was no difference in the distribution of positive cases of CPV-2 infection based on age group, gender, location, and vaccination status. The analysis of nucleotide and amino acid sequences from amplified products, as well as phylogenetic analysis, revealed the presence of CPV-2c clustered with Asian CPV-2c variants. CONCLUSIONS: In summary, this study represents the initial genetic analysis of CPV-2 present in Palestinian dogs with gastroenteritis and provides evidence that confirms the existence of the CPV-2c variants. To determine the prevailing CPV-2 variant associated with the infection, it is crucial to conduct further sequence analysis using large populations of both domestic and wild canines.


Subject(s)
Dog Diseases , Feces , Gastroenteritis , Parvoviridae Infections , Parvovirus, Canine , Phylogeny , Dogs , Animals , Parvovirus, Canine/genetics , Parvovirus, Canine/isolation & purification , Parvovirus, Canine/classification , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Dog Diseases/virology , Dog Diseases/epidemiology , Feces/virology , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/veterinary , Middle East/epidemiology , Female , Male , Polymerase Chain Reaction
14.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932224

ABSTRACT

Porcine parvoviruses (PPVs) are among the most important agents of reproductive failure in swine worldwide. PPVs comprise eight genetically different species ascribed to four genera: Protoparvovirus (PPV1, PPV8), Tetraparvovirus (PPV2-3), Copiparvovirus (PPV4-6), and Chaphamaparvovirus (PPV7). In 2016, PPV7 was firstly detected in the USA and afterwards in Europe, Asia, and South America. Recently, it was also identified in Italy in pig farms with reproductive failure. This study aimed to evaluate the circulation of PPV7 in domestic and wild pigs in Sardinia, Italy. In addition, its coinfection with Porcine Circovirus 2 (PCV2) and 3 (PCV3) was analysed, and PPV7 Italian strains were molecularly characterised. PPV7 was detected in domestic pigs and, for the first time, wild pigs in Italy. The PPV7 viral genome was detected in 20.59% of domestic and wild pig samples. PPV7 detection was significantly lower in domestic pigs, with higher PCV2/PCV3 co-infection rates observed in PPV7-positive than in PPV7-negative domestic pigs. Molecular characterisation of the NS1 gene showed a very high frequency of recombination that could presumably promote virus spreading.


Subject(s)
Coinfection , Parvoviridae Infections , Parvovirus, Porcine , Phylogeny , Swine Diseases , Animals , Parvovirus, Porcine/genetics , Parvovirus, Porcine/classification , Parvovirus, Porcine/isolation & purification , Italy/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Coinfection/virology , Coinfection/veterinary , Coinfection/epidemiology , Genome, Viral , Circovirus/genetics , Circovirus/classification , Circovirus/isolation & purification , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Circoviridae Infections/epidemiology , DNA, Viral/genetics
15.
J Vet Intern Med ; 38(4): 2373-2379, 2024.
Article in English | MEDLINE | ID: mdl-38899610

ABSTRACT

BACKGROUND: Equine parvovirus hepatitis (EqPV-H) can cause Theiler's disease and subclinical hepatitis in horses. OBJECTIVES: Assess the frequency of subclinical EqPV-H infection in hospitalized horses and to study viral transmission by investigating potential shedding routes. ANIMALS: One hundred sixteen equids, that presented to the University Equine Hospital of the University of Veterinary Medicine Vienna between February 2021 and March 2022, for causes other than hepatopathy. METHODS: In this cross-sectional study, samples (serum, feces, nasal, and buccal swabs) of hospitalized horses were collected. Sera were screened for the presence of anti-EqPV-H antibodies by a luciferase immunoprecipitation system assay. Quantitative PCR was used for the detection of EqPV-H DNA in the samples and a nested PCR was used for further validation. RESULTS: Seroprevalence was 10.3% (12/116) and viremia occurred in 12.9% (15/116) of the serologically positive horses. The detected viral load in serum varied from non-quantifiable amount to 1.3 × 106 genome equivalents per milliliter of serum. A low viral load of EqPV-H DNA was detected in 2 nasal swabs and 1 fecal sample. CONCLUSION AND CLINICAL IMPORTANCE: EqPV-H DNA was detected in nasal secretions and feces of viremic horses, which could pose a risk to naive hospitalized horses. It is advisable to screen hospitalized horses that are potential donors of blood or plasma to reduce the risk of iatrogenic EqPV-H transmission.


Subject(s)
Hepatitis, Viral, Animal , Horse Diseases , Parvoviridae Infections , Parvovirus , Virus Shedding , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Austria/epidemiology , Cross-Sectional Studies , Hepatitis, Viral, Animal/virology , Hepatitis, Viral, Animal/epidemiology , Male , Female , Parvovirus/isolation & purification , Feces/virology , Antibodies, Viral/blood , Asymptomatic Infections/epidemiology , Seroepidemiologic Studies , Viremia/veterinary , DNA, Viral , Viral Load/veterinary
16.
Arch Virol ; 169(7): 139, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849620

ABSTRACT

Amdoparvoviruses infect various carnivores, including mustelids, canids, skunks, and felids. Aleutian mink disease virus (AMDV) belongs to the prototypical species Amdoparvovirus carnivoran1. Here, we identified a novel amdoparvovirus in farmed Asian badgers (Meles meles), and we named this virus "Meles meles amdoparvovirus" (MMADV). A total of 146 clinical samples were collected from 134 individual badgers, and 30.6% (41/134) of the sampled badgers tested positive for amdoparvovirus by PCR. Viral DNA was detected in feces, blood, spleen, liver, lung, and adipose tissue from these animals. Viral sequences from eight samples were determined, five of which represented nearly full-length genome sequences (4,237-4,265 nt). Six serum samples tested positive by PCR, CIEP, and IAT, four of which had high antibody titers (> 512) against AMDV-G. Twenty-six of the 41 amdoparvovirus-positive badgers showed signs of illness, and necropsy revealed lesions in their organs. Sequence comparisons and phylogenetic analysis of the viral NS1 and VP2 genes of these badger amdoparvoviruses showed that their NS1 proteins shared 62.6%-88.8% sequence identity with known amdoparvoviruses, and they clustered phylogenetically into two related clades. The VP2 proteins shared 76.6%-97.2% identity and clustered into two clades, one of which included raccoon dog and arctic fox amdoparvovirus (RFAV), and the other of which did not include other known amdoparvoviruses. According to the NS1-protein-based criterion for parvovirus species demarcation, the MMADV isolate from farm YS should be classified as a member of a new species of the genus Amdoparvovirus. In summary, we have discovered a novel MMADV and other badger amdoparvoviruses that naturally infect Asian badgers and are possibly pathogenic in badgers.


Subject(s)
Aleutian Mink Disease Virus , Mustelidae , Phylogeny , Animals , Mustelidae/virology , Aleutian Mink Disease Virus/genetics , Aleutian Mink Disease Virus/isolation & purification , Aleutian Mink Disease Virus/classification , DNA, Viral/genetics , Genome, Viral/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Aleutian Mink Disease/virology , Aleutian Mink Disease/epidemiology , Antibodies, Viral/blood
17.
Virol J ; 21(1): 132, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844968

ABSTRACT

Tetraparvovirus is an emerging parvovirus infecting a variety of mammals and humans, and associated with human diseases including severe acute respiratory infection and acute encephalitis syndrome. In the present study, a Tetraparvovirus ungulate 1 (formerly known as bovine hokovirus) strain HNU-CBY-2023 was identified and characterized from diseased Chinese Simmental from Hunan province, China. The nearly complete genome of HNU-CBY-2023 is 5346 nt in size and showed genomic identities of 85-95.5% to the known Tetraparvovirus ungulate 1 strains from GenBank, indicating a rather genetic variation. Phylogenetic and genetic divergence analyses indicated that Tetraparvovirus ungulate 1 could be divided into two genotypes (I and II), and HNU-CBY-2023 was clustered into genotype II. This study, for the first time, identified Tetraparvovirus ungulate 1 from domestic cattle from mainland China, which will be helpful to understand the prevalence and genetic diversity of Tetraparvovirus ungulate 1.


Subject(s)
Cattle Diseases , Genetic Variation , Genome, Viral , Genotype , Parvoviridae Infections , Phylogeny , Animals , Cattle , China , Cattle Diseases/virology , Cattle Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Genome, Viral/genetics , Parvovirinae/genetics , Parvovirinae/isolation & purification , Parvovirinae/classification , Sequence Analysis, DNA , DNA, Viral/genetics , East Asian People
19.
Poult Sci ; 103(8): 103940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909506

ABSTRACT

Migratory wild birds can carry various pathogens, such as influenza A virus, which can spread to globally and cause disease outbreaks and epidemics. Continuous epidemiological surveillance of migratory wild birds is of great significance for the early warning, prevention, and control of epidemics. To investigate the pathogen infection status of migratory wild birds in eastern China, fecal samples were collected from wetlands to conduct pathogen surveillance. The results showed that duck orthoreovirus (DRV) and goose parvovirus (GPV) nucleic acid were detected positive in the fecal samples collected from wild ducks, egrets, and swan. Phylogenetic analysis of the amplified viral genes reveals that the isolates were closely related to the prevalent strains in the regions involved in East Asian-Australasian (EAA) migratory flyway. Phylogenetic analysis of the amplified viral genes confirmed that they were closely related to circulating strains in the regions involved in the EAA migration pathway. The findings of this study have expanded the host range of the orthoreovirus and parvovirus, and revealed possible virus transmission between wild migratory birds and poultry.


Subject(s)
Animals, Wild , Bird Diseases , Orthoreovirus, Avian , Parvoviridae Infections , Parvovirus , Phylogeny , Reoviridae Infections , Animals , Reoviridae Infections/veterinary , Reoviridae Infections/epidemiology , Reoviridae Infections/virology , Orthoreovirus, Avian/isolation & purification , Orthoreovirus, Avian/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , China/epidemiology , Bird Diseases/virology , Bird Diseases/epidemiology , Animals, Wild/virology , Parvovirus/genetics , Parvovirus/isolation & purification , Feces/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Ducks/virology , Anseriformes/virology , Epidemiological Monitoring/veterinary
20.
Microbiol Spectr ; 12(6): e0391423, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38742903

ABSTRACT

Porcine parvovirus (PPV) is one of the most important pathogens that cause reproductive failure in pigs. However, the pathogenesis of PPV infection remains unclear. Proteomics is a powerful tool to understand the interaction between virus and host cells. In the present study, we analyzed the proteomics of PPV-infected PK-15 cells. A total of 32 and 345 proteins were differentially expressed at the early and replication stages, respectively. Subsequent gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed these differentially expressed proteins were significantly enriched in pathways including toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and viral carcinogenesis. The expression of poly (rC) binding protein 1 (PCBP1) was observed to decrease after PPV infection. Overexpressed or silenced PCBP1 expression inhibited or promoted PPV infection. Our studies established a foundation for further exploration of the multiplication mechanism of PPV. IMPORTANCE: Porcine parvovirus (PPV) is a cause of reproductive failure in the swine industry. Our knowledge of PPV remains limited, and there is no effective treatment for PPV infection. Proteomics of PPV-infected PK-15 cells was conducted to identify differentially expressed proteins at 6 hours post-infection (hpi) and 36 hpi. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that various pathways participate in PPV infection. Poly (rC) binding protein 1 was confirmed to inhibit PPV replication, which provided potential targets for anti-PPV infection. Our findings improve the understanding of PPV infection and pave the way for future research in this area.


Subject(s)
Parvoviridae Infections , Parvovirus, Porcine , Proteomics , RNA-Binding Proteins , Swine Diseases , Virus Replication , Parvovirus, Porcine/genetics , Parvovirus, Porcine/physiology , Animals , Swine , Cell Line , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Parvoviridae Infections/virology , Parvoviridae Infections/metabolism , Parvoviridae Infections/veterinary , Swine Diseases/virology , Swine Diseases/metabolism , Swine Diseases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL