Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Front Cell Infect Microbiol ; 14: 1448480, 2024.
Article in English | MEDLINE | ID: mdl-39224701

ABSTRACT

Introduction: Muscovy duck parvovirus (MDPV), Goose parvovirus (GPV), Duck circovirus, (DuCV) and Duck adenovirus 3 (DAdV-3) are important pathogens that cause high morbidity and mortality in ducks, causing huge economic loss for the duck industry. Methods: The present study, a quadruplex one-step real time quantitative PCR method for the detection of MDPV, GPV, DuCV, and DAdV-3 was developed. Results: The results showed that assay had no cross-reactivity with other poultry pathogens [Duck plague virus (DPV), Duck tembusu virus (DTMUV), H6 avian influenza virus (H6 AIV), New duck reovirus (NDRV), Newcastle disease virus (NDV), H4 avian influenza virus (H4 AIV), Escherichia coli (E. coli), Muscovy duck reovirus (MDRV), Egg drop syndrome virus (EDSV), Pasteurella multocida (P. multocida)]. The sensitivity result showed that the limits of detection for MDPV, GPV, DuCV, and DAdV-3 were 10, 10, 1 and 10 copies/µl, respectively; The coefficients of variation intra- and inter-method was 1-2%; The range of linear (109 to 103 copies/µL) demonstrated the R2 values for MDPV, GPV, DuCV, and DAdV-3 as 0.9975, 0.998, 0.9964, and 0.996, respectively. The quadruplex real time quantitative PCR method efficiency was 90.30%, 101.10%, 90.72%, and 90.57% for MDPV, GPV, DuCV, and DAdV-3, respectively. 396 clinical specimens collected in some duck sausages from June 2022 to July 2023 were simultaneously detected using the established quadruplex real time quantitative PCR method and the reported assays. The detection rates for MDPV, GPV, DuCV, and DAdV-3 were 8.33% (33/396), 17.93% (71/396), 33.58% (133/396), and 29.04% (115/396), respectively. The agreement between these assays was greater than 99.56%. Discussion: The developed quadruplex real-time quantitative PCR assay can accurately detect these four viruses infecting ducks, providing a rapid, sensitive, specific and accurate technique for clinical testing.


Subject(s)
Ducks , Poultry Diseases , Real-Time Polymerase Chain Reaction , Animals , Ducks/virology , Real-Time Polymerase Chain Reaction/methods , Poultry Diseases/virology , Poultry Diseases/diagnosis , Sensitivity and Specificity , Parvovirinae/genetics , Parvovirinae/isolation & purification , Parvovirinae/classification , Aviadenovirus/genetics , Aviadenovirus/isolation & purification , Aviadenovirus/classification , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/classification , Parvoviridae Infections/veterinary , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology
2.
BMC Bioinformatics ; 25(1): 229, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956474

ABSTRACT

Adeno-associated viruses 2 (AAV2) are minute viruses renowned for their capacity to infect human cells and akin organisms. They have recently emerged as prominent candidates in the field of gene therapy, primarily attributed to their inherent non-pathogenic nature in humans and the safety associated with their manipulation. The efficacy of AAV2 as gene therapy vectors hinges on their ability to infiltrate host cells, a phenomenon reliant on their competence to construct a capsid capable of breaching the nucleus of the target cell. To enhance their infection potential, researchers have extensively scrutinized various combinatorial libraries by introducing mutations into the capsid, aiming to boost their effectiveness. The emergence of high-throughput experimental techniques, like deep mutational scanning (DMS), has made it feasible to experimentally assess the fitness of these libraries for their intended purpose. Notably, machine learning is starting to demonstrate its potential in addressing predictions within the mutational landscape from sequence data. In this context, we introduce a biophysically-inspired model designed to predict the viability of genetic variants in DMS experiments. This model is tailored to a specific segment of the CAP region within AAV2's capsid protein. To evaluate its effectiveness, we conduct model training with diverse datasets, each tailored to explore different aspects of the mutational landscape influenced by the selection process. Our assessment of the biophysical model centers on two primary objectives: (i) providing quantitative forecasts for the log-selectivity of variants and (ii) deploying it as a binary classifier to categorize sequences into viable and non-viable classes.


Subject(s)
Mutation , Humans , Capsid Proteins/genetics , Dependovirus/genetics , Parvovirinae/genetics
3.
Microb Pathog ; 194: 106825, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074517

ABSTRACT

Short beak and dwarfism syndrome (SBDS) is attributed to Novel Goose Parvovirus (NGPV), which has inflicted significant economic losses on farming in China. Despite its significant impact, limited research has been conducted on the pathogenesis of this disease. The SD strain, a parvovirus variant isolated from ducks in Shandong province, was identified and characterized in our study. Phylogenetic analysis and sequence comparisons confirmed the classification of the SD strain as a member of NGPV. Based on this information, we established an animal model of SBDS by inoculating Cherry Valley ducks with the SD strain. Our findings indicate that infection with the SD strain leads to a reduction in body weight, beak length, width, and tibia length. Notably, significant histopathological alterations were observed in the thymus, spleen, and intestine of the infected ducks. Furthermore, the SD strain induces bone disorders and inflammatory responses. To evaluate the impact of NGPV on intestinal homeostasis, we performed 16S rDNA sequencing and gas chromatography to analyze the composition of intestinal flora and levels of short-chain fatty acids (SCFAs) in the cecal contents. Our findings revealed that SD strain infection induces dysbiosis in cecal microbial and a decrease in SCFAs production. Subsequent analysis revealed a significant correlation between bacterial genera and the clinical symptoms in NGPV SD infected ducks. Our research providing novel insights into clinical pathology of NGPV in ducks and providing a foundation for the research of NGPV treatment targeting gut microbiota.


Subject(s)
Ducks , Parvoviridae Infections , Phylogeny , Poultry Diseases , Animals , Ducks/virology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/pathology , Poultry Diseases/virology , Poultry Diseases/pathology , China , Parvovirinae/genetics , Parvovirinae/isolation & purification , Parvovirinae/pathogenicity , Gastrointestinal Microbiome , Intestines/pathology , Intestines/virology , RNA, Ribosomal, 16S/genetics , Disease Models, Animal , Dysbiosis/virology , Dysbiosis/veterinary , Fatty Acids, Volatile/metabolism , Geese/virology , Spleen/pathology , Spleen/virology , Beak/virology , Beak/pathology
4.
Poult Sci ; 103(9): 104065, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043024

ABSTRACT

Outbreaks of short beak and dwarfism syndrome (SBDS), caused by a novel goose parvovirus (NGPV), have occurred in China since 2015. The NGPV, a single-stranded DNA virus, is thought to be vertically transmitted. However, the mechanism of NGPV immune evasion remains unclear. In this study, we investigated the impact of NGPV infection on the Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in duck embryonic fibroblast (DEF) cells. Our findings demonstrate that NGPV infection stimulates the mRNA expression of cGAS but results in weak IFN-ß induction. NGPV impedes the expression of IFN-ß and downstream interferon-stimulated genes, thereby reducing the secretion of IFN-ß induced by interferon-stimulating DNA (ISD) and poly (I: C). RNA-seq results show that NGPV infection downregulates interferon mRNA expression while enhancing the mRNA expression of inflammatory factors. Additionally, the results of viral protein over-expression indicate that VP1 exhibits a remarkable ability to inhibit IFN-ß expression compared to other viral proteins. Results indicated that only the intact VP1 protein could inhibit the expression of IFN-ß, while the truncated proteins VP1U and VP2 do not possess such characteristics. The immunoprecipitation experiment showed that both VP1 and VP2 could interact with IRF7 protein, while VP1U does not. In summary, our findings indicate that NGPV infection impairs the host's innate immune response by potentially modulating the expression and secretion of interferons and interferon-stimulating factors via IRF7 molecules, which are regulated by the VP1 protein.


Subject(s)
Interferon Regulatory Factor-7 , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Signal Transduction , Animals , Poultry Diseases/virology , Poultry Diseases/immunology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/immunology , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Parvovirinae/genetics , Parvovirinae/physiology , Avian Proteins/genetics , Avian Proteins/metabolism , Ducks , Geese , Interferon Type I/metabolism , Interferon Type I/genetics , Interferon Type I/immunology
5.
Virulence ; 15(1): 2366874, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38869140

ABSTRACT

Recombinant Muscovy duck parvovirus (rMDPV) is a product of genetic recombination between classical Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV). The recombination event took place within a 1.1-kb DNA segment located in the middle of the VP3 gene, and a 187-bp sequence extending from the P9 promoter to the 5' initiation region of the Rep1 ORF. This resulted in the alteration of five amino acids within VP3. Despite these genetic changes, the precise influence of recombination and amino acid mutations on the pathogenicity of rMDPV remains ambiguous. In this study, based on the rMDPV strain ZW and the classical MDPV strain YY, three chimeric viruses (rZW-mP9, rZW-mPR187, and rYY-rVP3) and the five amino acid mutations-introduced mutants (rZW-g5aa and rYY-5aa(ZW)) were generated using reverse genetic technology. When compared to the parental virus rZW, rZW-g5aa exhibited a prolonged mean death time (MDT) and a decreased median lethal dose (ELD50) in embryonated duck eggs. In contrast, rYY-5aa(ZW) did not display significant differences in MDT and ELD50 compared to rYY. In 2-day-old Muscovy ducklings, infection with rZW-g5aa and rYY-5aa(ZW) resulted in mortality rates of only 20% and 10%, respectively, while infections with the three chimeric viruses (rZW-mP9, rZW-mPR187, rYY-rVP3) and rZW still led to 100% mortality. Notably, rYY-rVP3, containing the VP3 region from strain ZW, exhibited 50% mortality in 6-day-old Muscovy ducklings and demonstrated significant horizontal transmission. Collectively, our findings indicate that recombination and consequent amino acid changes in VP3 have a synergistic impact on the heightened virulence of rMDPV in Muscovy ducklings.


Subject(s)
Capsid Proteins , Ducks , Parvoviridae Infections , Point Mutation , Poultry Diseases , Recombination, Genetic , Animals , Virulence , Parvoviridae Infections/virology , Parvoviridae Infections/veterinary , Poultry Diseases/virology , Capsid Proteins/genetics , Parvovirinae/genetics , Parvovirinae/pathogenicity
6.
Virol J ; 21(1): 132, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844968

ABSTRACT

Tetraparvovirus is an emerging parvovirus infecting a variety of mammals and humans, and associated with human diseases including severe acute respiratory infection and acute encephalitis syndrome. In the present study, a Tetraparvovirus ungulate 1 (formerly known as bovine hokovirus) strain HNU-CBY-2023 was identified and characterized from diseased Chinese Simmental from Hunan province, China. The nearly complete genome of HNU-CBY-2023 is 5346 nt in size and showed genomic identities of 85-95.5% to the known Tetraparvovirus ungulate 1 strains from GenBank, indicating a rather genetic variation. Phylogenetic and genetic divergence analyses indicated that Tetraparvovirus ungulate 1 could be divided into two genotypes (I and II), and HNU-CBY-2023 was clustered into genotype II. This study, for the first time, identified Tetraparvovirus ungulate 1 from domestic cattle from mainland China, which will be helpful to understand the prevalence and genetic diversity of Tetraparvovirus ungulate 1.


Subject(s)
Cattle Diseases , Genetic Variation , Genome, Viral , Genotype , Parvoviridae Infections , Phylogeny , Animals , Cattle , China , Cattle Diseases/virology , Cattle Diseases/epidemiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Genome, Viral/genetics , Parvovirinae/genetics , Parvovirinae/isolation & purification , Parvovirinae/classification , Sequence Analysis, DNA , DNA, Viral/genetics , East Asian People
7.
J Virol ; 98(7): e0011024, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38837381

ABSTRACT

We determined the transcription profile of adeno-associated virus type 2 (AAV2)-infected primary human fibroblasts. Subsequent analysis revealed that cells respond to AAV infection through changes in several significantly affected pathways, including cell cycle regulation, chromatin modulation, and innate immune responses. Various assays were performed to validate selected differentially expressed genes and to confirm not only the quality but also the robustness of the raw data. One of the genes upregulated in AAV2-infected cells was interferon-γ inducible factor 16 (IFI16). IFI16 is known as a multifunctional cytosolic and nuclear innate immune sensor for double-stranded as well as single-stranded DNA, exerting its effects through various mechanisms, such as interferon response, epigenetic modifications, or transcriptional regulation. IFI16 thereby constitutes a restriction factor for many different viruses among them, as shown here, AAV2 and thereof derived vectors. Indeed, the post-transcriptional silencing of IFI16 significantly increased AAV2 transduction efficiency, independent of the structure of the virus/vector genome. We also show that IFI16 exerts its inhibitory effect on AAV2 transduction in an immune-modulatory independent way by interfering with Sp1-dependent transactivation of wild-type AAV2 and AAV2 vector promoters. IMPORTANCE: Adeno-associated virus (AAV) vectors are among the most frequently used viral vectors for gene therapy. The lack of pathogenicity of the parental virus, the long-term persistence as episomes in non-proliferating cells, and the availability of a variety of AAV serotypes differing in their cellular tropism are advantageous features of this biological nanoparticle. To deepen our understanding of virus-host interactions, especially in terms of antiviral responses, we present here the first transcriptome analysis of AAV serotype 2 (AAV2)-infected human primary fibroblasts. Our findings indicate that interferon-γ inducible factor 16 acts as an antiviral factor in AAV2 infection and AAV2 vector-mediated cell transduction in an immune-modulatory independent way by interrupting the Sp1-dependent gene expression from viral or vector genomes.


Subject(s)
Dependovirus , Fibroblasts , Nuclear Proteins , Phosphoproteins , Transduction, Genetic , Humans , Dependovirus/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Fibroblasts/virology , Fibroblasts/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Immunity, Innate , Genetic Vectors/genetics , Parvovirinae/genetics , Cells, Cultured
8.
Poult Sci ; 103(7): 103853, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795515

ABSTRACT

Short-beak and dwarf syndrome (SBDS) is caused by infection with novel goose parvovirus (NGPV), which leads to intestinal dysbiosis, developmental delay, short beak, lameness, and paralysis in ducks and is the cause of skeletal health problems. NGPV infection can cause intestinal microbial disturbances, but it is still unclear whether the intestinal microbiota affects the pathogenicity of NGPV. Here, the effects of intestinal microbiota on NGPV-induced SBDS in Cherry Valley ducks were assessed by establishing a duck model for gut microflora depletion/reestablishment through antibiotics (ABX) treatment/fecal microbiota transplanted (FMT). By measuring body weight, beak length, beak width and tarsal length, we found that SBDS clinical symptoms were alleviated in ducks treated with ABX, but not in FMT ducks. Next, we conducted a comprehensive analysis of bone metabolism, gut barrier integrity, and inflammation levels using quantitative real-time PCR (qPCR), enzyme linked immunosorbent assay (ELISA), biochemical analysis and histological analysis. The results showed that ABX treatment improved bone quality reduced bone resorption, mitigated tissue lesions, protected intestinal barrier integrity, and inhibited systemic inflammation in NGPV-infected ducks. Moreover, cecal microflora composition and short-chain fatty acids (SCFAs) production were examined by bacterial 16S rRNA sequencing and gas chromatography. The results revealed that ABX treatment mitigated the decreased abundance of Firmicutes and Bacteroidota in NGPV-infected ducks, as well as increased SCFAs production. Furthermore, ABX treatment reduced the mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) and nuclear factor κB (NF-κB) expression, which are correlated with systemic inflammation in SBDS ducks. These findings suggested that intestinal microflora depletion alleviated NGPV-induced SBDS by maintaining intestinal homeostasis, inhibiting inflammatory response and alleviating bone resorption. These results provide evidence for the pivotal role of intestinal microbiota in the process of SBDS and contribute a theoretical basis for the feasibility of microecological preparation as a method to control SBDS.


Subject(s)
Ducks , Gastrointestinal Microbiome , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Animals , Gastrointestinal Microbiome/drug effects , Poultry Diseases/virology , Poultry Diseases/microbiology , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirinae/genetics , Parvovirinae/physiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Fecal Microbiota Transplantation/veterinary
9.
Protein Expr Purif ; 220: 106502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38754753

ABSTRACT

Adeno-associated Virus (AAV) is a promising vector for gene therapy. However, few studies have focused on producing virus-like particles (VLPs) of AAV in cells, especially in E. coli. In this study, we describe a method to produce empty VP3-only VLPs of AAV2 in E. coli by co-expressing VP3 and assembly-activating protein (AAP) of AAV2. Although the yields of VLPs produced with our method were low, the VLPs were able to self-assemble in E. coli without the need of in vitro capsid assembly. The produced VLPs were characterized by immunological detection and transmission electron microscopy (TEM). In conclusion, this study demonstrated that capsid assembly of AAV2 is possible in E. coli, and E. coli may be a candidate system for production of VLPs of AAV.


Subject(s)
Capsid Proteins , Dependovirus , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Dependovirus/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/biosynthesis , Virion/genetics , Virion/metabolism , Virus Assembly , Genetic Vectors/metabolism , Genetic Vectors/genetics , Genetic Vectors/chemistry , Parvovirinae/genetics , Humans
10.
Vet Pathol ; 61(5): 829-838, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38712876

ABSTRACT

Novel goose parvovirus (NGPV) is continuously threatening the global duck industry, as it causes short beak and dwarfism syndrome among different duck breeds. In this study, we investigated the viral pathogenesis in the tongue of affected ducks, as a new approach for deeper understanding of the syndrome. Seventy-three, 14- to 60-day-old commercial Pekin ducks were clinically examined. Thirty tissue pools of intestine and tongue (15 per tissue) were submitted for molecular identification. Clinical signs in the examined ducks were suggestive of parvovirus infection. All examined ducks had short beaks. Necrotic, swollen, and congested protruding tongues were recorded in adult ducks (37/73, 51%). Tongue protrusion without any marked congestion or swelling was observed in 20-day-old ducklings (13/73, 18%), and no tongue protrusion was observed in 15-day-old ducklings (23/73, 32%). Microscopically, the protruding tongues of adult ducks showed necrosis of the superficial epithelial layer with vacuolar degeneration. Glossitis was present in the nonprotruding tongues of young ducks, which was characterized by multifocal lymphoplasmacytic aggregates and edema in the propria submucosa. Immunohistochemical examination displayed parvovirus immunolabeling, mainly in the tongue propria submucosa. Based on polymerase chain reaction, goose parvovirus was detected in 9 out of 15 tongue sample pools (60%). Next-generation sequencing confirmed the presence of a variant goose parvovirus that is globally named NGPV and closely related to Chinese NGPV isolates. Novel insights are being gained from the study of NGPV pathogenesis in the tongue based on molecular and immunohistochemical identification.


Subject(s)
Beak , Ducks , Dwarfism , Parvoviridae Infections , Parvovirinae , Poultry Diseases , Tongue , Animals , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/pathology , Poultry Diseases/virology , Poultry Diseases/pathology , Tongue/virology , Tongue/pathology , Beak/virology , Beak/pathology , Ducks/virology , Dwarfism/veterinary , Dwarfism/virology , Dwarfism/pathology , Dwarfism/genetics , Parvovirinae/genetics , Parvovirinae/isolation & purification , Immunohistochemistry/veterinary , Whole Genome Sequencing , Parvovirus/genetics , Parvovirus/isolation & purification , Phylogeny
11.
Biotechnol J ; 19(3): e2300667, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38479987

ABSTRACT

The recombinant adeno-associated virus (rAAV) vectors used in gene therapy are usually produced by transfecting three different plasmids (Adenoviral helper plasmid (pHelper), AAV rep/cap plasmids (pRepCap), and Transgene plasmid (pAAV-GOI)) into human embryonic kidney 293 (HEK293) cells. However, the high proportion of unwanted empty capsids generated during rAAV production is problematic. To simultaneously enhance the genome titer and full capsid ratio, the ratio of the three plasmids transfected into HEK293 cells was optimized using design-of-experiment (DoE). AAV2 and AAV9, which have different production kinetics, were selected as cell-associated and secreted model AAVs, respectively. In 125 mL Erlenmeyer flasks, the genome titers of rAAV2 and rAAV9 at DoE-optimized plasmid weight ratios (pHelper:pRep2Cap2:pAAV-GOI = 1:3.52:0.50 for rAAV2 and pHelper:pRep2Cap9:pAAV-GOI = 1:1.44:0.27 for rAAV9) were 2.23-fold and 2.26-fold higher than those in the widely used plasmid weight ratio (1:1:1), respectively. In addition, compared with the plasmid ratio of 1:1:1, the relative VP3 band intensities of rAAV2 and rAAV9, which represent the relative empty capsid ratios, were reduced by 26% and 25%, respectively, at the DoE-optimized plasmid ratio. Reduced empty capsid ratios in the DoE-optimized plasmid ratios were also confirmed using transmission electron microscopy (TEM). Taken together, regardless of the AAV serotype, DoE-aided optimization of the triple plasmid ratio was found to be an efficient means of improving the production of rAAV with a high full capsid ratio.


Subject(s)
Capsid , Parvovirinae , Humans , HEK293 Cells , Genetic Vectors/genetics , Dependovirus/genetics , Plasmids/genetics , Capsid Proteins/genetics , Parvovirinae/genetics
12.
Gene Ther ; 31(3-4): 175-186, 2024 03.
Article in English | MEDLINE | ID: mdl-38200264

ABSTRACT

Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken ß-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.


Subject(s)
Cytomegalovirus Infections , Parvovirinae , Humans , Retinal Ganglion Cells/metabolism , Genetic Therapy , Transgenes , Optic Nerve , Dependovirus/genetics , Parvovirinae/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Genetic Vectors/genetics
13.
Nat Commun ; 14(1): 4762, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37553329

ABSTRACT

Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV2). Following the injection into the frontal cortex of macaque monkeys, this mosaic vector, termed AAV2.1 vector, was found to exhibit the excellence in transgene expression (for AAV1 vector) and neuron specificity (for AAV2 vector) simultaneously. To explore its applicability to chemogenetic manipulation and in vivo calcium imaging, the AAV2.1 vector expressing excitatory DREADDs or GCaMP was injected into the striatum or the visual cortex of macaque monkeys, respectively. Our results have defined that such vectors secure intense and stable expression of the target proteins and yield conspicuous modulation and imaging of neuronal activity.


Subject(s)
Dependovirus , Parvovirinae , Animals , Dependovirus/metabolism , Transduction, Genetic , Genetic Vectors/genetics , Brain/diagnostic imaging , Brain/metabolism , Transgenes , Primates/genetics , Parvovirinae/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Neurons/metabolism
14.
Gene Ther ; 30(9): 723-735, 2023 09.
Article in English | MEDLINE | ID: mdl-37386155

ABSTRACT

Adeno-associated virus serotype 2 (AAV2) is a viral vector that can be used to deliver therapeutic genes to diseased cells in the retina. One strategy for altering AAV2 vectors involves the mutation of phosphodegron residues, which are thought to be phosphorylated/ubiquitinated in the cytosol, facilitating degradation of the vector and the inhibition of transduction. As such, mutation of phosphodegron residues have been correlated with increased transduction of target cells, however, an assessment of the immunobiology of wild-type and phosphodegron mutant AAV2 vectors following intravitreal (IVT) delivery to immunocompetent animals is lacking in the current literature. In this study, we show that IVT of a triple phosphodegron mutant AAV2 capsid is associated with higher levels of humoral immune activation, infiltration of CD4 and CD8 T-cells into the retina, generation of splenic germinal centre reactions, activation of conventional dendritic cell subsets, and elevated retinal gliosis compared to wild-type AAV2 capsids. However, we did not detect significant changes in electroretinography arising after vector administration. We also demonstrate that the triple AAV2 mutant capsid is less susceptible to neutralisation by soluble heparan sulphate and anti-AAV2 neutralising antibodies, highlighting a possible utility for the vector in terms of circumventing pre-existing humoral immunity. In summary, the present study highlights novel aspects of rationally-designed vector immunobiology, which may be relevant to their application in preclinical and clinical settings.


Subject(s)
Capsid , Parvovirinae , Mice , Animals , Capsid/metabolism , Serogroup , Transduction, Genetic , Capsid Proteins/genetics , Capsid Proteins/metabolism , Parvovirinae/genetics , Dependovirus/metabolism , Genetic Vectors/genetics
15.
J Virol ; 97(7): e0177222, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37310260

ABSTRACT

Adeno-associated virus (AAV) is a nonenveloped single-stranded DNA (ssDNA) icosahedral T=1 virus being developed as a vector for clinical gene delivery systems. Currently, there are approximately 160 AAV clinical trials, with AAV2 being the most widely studied serotype. To further understand the AAV gene delivery system, this study investigates the role of viral protein (VP) symmetry interactions on capsid assembly, genome packaging, stability, and infectivity. A total of 25 (seven 2-fold, nine 3-fold, and nine 5-fold symmetry interface) AAV2 VP variants were studied. Six 2-fold and two 5-fold variants did not assemble capsids based on native immunoblots and anti-AAV2 enzyme-linked immunosorbent assays (ELISAs). Seven of the 3-fold and seven of the 5-fold variants that assembled capsids were less stable, while the only 2-fold variant that assembled had ~2°C higher thermal stability (Tm) than recombinant wild-type AAV2 (wtAAV2). Three of the 3-fold variants (AAV2-R432A, AAV2-L510A, and N511R) had an approximately 3-log defect in genome packaging. Consistent with previous reports of the 5-fold axes, the region of the capsid is important for VP1u externalization and genome ejection, and one 5-fold variant (R404A) had a significant defect in viral infectivity. The structures of wtAAV2 packaged with a transgene (AAV2-full) and without a transgene (AAV2-empty) and one 5-fold variant (AAV2-R404A) were determined by cryo-electron microscopy and three dimensional (3D)-image reconstruction to 2.8, 2.9, and 3.6 Å resolution, respectively. These structures revealed the role of stabilizing interactions on the assembly, stability, packaging, and infectivity of the virus capsid. This study provides insight into the structural characterization and functional implications of the rational design of AAV vectors. IMPORTANCE Adeno-associated viruses (AAVs) have been shown to be useful vectors for gene therapy applications. Consequently, AAV has been approved as a biologic for the treatment of several monogenic disorders, and many additional clinical trials are ongoing. These successes have generated significant interest in all aspects of the basic biology of AAV. However, to date, there are limited data available on the importance of the capsid viral protein (VP) symmetry-related interactions required to assemble and maintain the stability of the AAV capsids and the infectivity of the AAV capsids. Characterizing the residue type and interactions at these symmetry-driven assembly interfaces of AAV2 has provided the foundation for understanding their role in AAV vectors (serotypes and engineered chimeras) and has determined the residues or regions of the capsid that can or cannot tolerate alterations.


Subject(s)
Capsid , Parvovirinae , Capsid/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Serogroup , Cryoelectron Microscopy , Capsid Proteins/metabolism , Parvovirinae/genetics , Parvovirinae/metabolism , Viral Proteins/metabolism , Genetic Vectors , Virus Assembly
16.
Arch Virol ; 168(6): 163, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198283

ABSTRACT

Birds carry a large number of viruses that may cause diseases in animals or humans. At present, information about the virome of zoo birds is limited. In this study, using viral metagenomics, we investigated the fecal virome of zoo birds collected from a zoo in Nanjing, Jiangsu Province, China. Three novel parvoviruses were obtained and characterized. The genomes of the three viruses are 5,909, 4,411, and 4,233 nt in length, respectively, and contain four or five ORFs. Phylogenetic analysis showed that these three novel parvoviruses clustered with other strains and formed three different clades. Pairwise comparison of NS1 amino acid sequences showed that Bir-01-1 shared 44.30-74.92% aa sequence identity with other parvoviruses belonging to the genus Aveparvovirus, while Bir-03-1 and Bir-04-1 shared less than 66.87% and 53.09% aa sequence identity, respectively, with other parvoviruses belonging to the genus Chaphamaparvovirus. Each of these three viruses was identified as a member of a novel species based on the species demarcation criteria for parvoviruses. These findings broaden our knowledge of the genetic diversity of parvoviruses and provide epidemiological data regarding potential outbreaks of parvovirus disease in birds.


Subject(s)
Parvoviridae Infections , Parvovirinae , Parvovirus , Viruses , Animals , Humans , Phylogeny , Parvovirus/genetics , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Birds , Parvovirinae/genetics
17.
Gene Ther ; 30(6): 503-519, 2023 06.
Article in English | MEDLINE | ID: mdl-36635457

ABSTRACT

Recombinant adeno-associated viral vectors (AAVs) are an effective system for gene transfer. AAV serotype 2 (AAV2) is commonly used to deliver transgenes to retinal ganglion cells (RGCs) via intravitreal injection. The AAV serotype however is not the only factor contributing to the effectiveness of gene therapies. Promoters influence the strength and cell-selectivity of transgene expression. This study compares five promoters designed to maximise AAV2 cargo space for gene delivery: chicken ß-actin (CBA), cytomegalovirus (CMV), short CMV early enhancer/chicken ß-actin/short ß-globulin intron (sCAG), mouse phosphoglycerate kinase (PGK), and human synapsin (SYN). The promoters driving enhanced green fluorescent protein (eGFP) were examined in adult C57BL/6J mice eyes and tissues of the visual system. eGFP expression was strongest in the retina, optic nerves and brain when driven by the sCAG and SYN promoters. CBA, CMV, and PGK had moderate expression by comparison. The SYN promoter had almost exclusive transgene expression in RGCs. The PGK promoter had predominant expression in both RGCs and AII amacrine cells. The ubiquitous CBA, CMV, and sCAG promoters expressed eGFP in a variety of cell types across multiple retinal layers including Müller glia and astrocytes. We also found that these promoters could transduce human retina ex vivo, although expression was predominantly in glial cells due to low RGC viability. Taken together, this promoter comparison study contributes to optimising AAV-mediated transduction in the retina, and could be valuable for research in ocular disorders, particularly those with large or complex genetic cargos.


Subject(s)
Cytomegalovirus Infections , Parvovirinae , Mice , Animals , Humans , Retinal Ganglion Cells/metabolism , Actins/genetics , Actins/metabolism , Transduction, Genetic , Mice, Inbred C57BL , Transgenes , Dependovirus/genetics , Dependovirus/metabolism , Parvovirinae/genetics , Green Fluorescent Proteins/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Genetic Vectors/genetics
18.
Am J Ophthalmol ; 249: 108-125, 2023 05.
Article in English | MEDLINE | ID: mdl-36496192

ABSTRACT

PURPOSE: To evaluate the safety profile of lenadogene nolparvovec (Lumevoq) in patients with Leber hereditary optic neuropathy. DESIGN: Pooled analysis of safety data from 5 clinical studies. METHODS: A total of 189 patients received single unilateral or bilateral intravitreal injections of a recombinant adeno-associated virus 2 (rAAV2/2) vector encoding the human wild-type ND4 gene. Adverse events (AEs) were collected throughout the studies, up to 5 years. Intraocular inflammation and increased intraocular pressure (IOP) were ocular AEs of special interest. Other assessments included ocular examinations, vector bio-dissemination, and systemic immune responses against rAAV2/2. RESULTS: Almost all patients (95.2%) received 9 × 1010 viral genomes and 87.8% had at least 2 years of follow-up. Most patients (75.1%) experienced at least one systemic AE, but systemic treatment-related AEs occurred in 3 patients; none were serious. Intraocular inflammation was reported in 75.6% of lenadogene nolparvovec-treated eyes. Almost all intraocular inflammations occurred in the anterior chamber (58.8%) or in the vitreous (40.3%), and were of mild (90.3%) or moderate (8.8%) intensity; most resolved with topical corticosteroids alone. All IOP increases were mild to moderate in intensity. No AE led to study discontinuation. Bio-dissemination of lenadogene nolparvovec and systemic immune response were limited. The safety profile was comparable for patients treated bilaterally and unilaterally. CONCLUSIONS: Lenadogene nolparvovec had a good overall safety profile with excellent systemic tolerability, consistent with limited bio-dissemination. The product was well tolerated, with mostly mild ocular side effects responsive to conventional ophthalmologic treatments.


Subject(s)
Optic Atrophy, Hereditary, Leber , Parvovirinae , Humans , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/genetics , Genetic Vectors , Parvovirinae/genetics , Genetic Therapy , Inflammation/etiology
19.
Viruses ; 14(7)2022 07 03.
Article in English | MEDLINE | ID: mdl-35891451

ABSTRACT

Waterfowl parvovirus (WPFs) has multiple effects on the intestinal tract, but the effects of recombinant Muscovy duck parvovirus (rMDPV) have not been elucidated. In this study, 48 one-day-old Muscovy ducklings were divided into an infected group and a control group. Plasma and ileal samples were collected from both groups at 2, 4, 6, and 8 days post-infection (dpi), both six ducklings at a time. Next, we analyzed the genomic sequence of the rMDPV strain. Results showed that the ileal villus structure was destroyed seriously at 4, 6, 8 dpi, and the expression of ZO-1, Occludin, and Claudin-1 decreased at 4, 6 dpi; 4, 6, 8 dpi; and 2, 6 dpi, respectively. Intestinal cytokines IFN-α, IL-1ß and IL-6 increased at 6 dpi; 8 dpi; and 6, 8 dpi, respectively, whereas IL-2 decreased at 6, 8 dpi. The diversity of ileal flora increased significantly at 4 dpi and decreased at 8 dpi. The bacteria Ochrobactrum and Enterococcus increased and decreased at 4, 8 dpi; 2, 4 dpi, respectively. Plasma MDA increased at 2 dpi, SOD, CAT, and T-AOC decreased at 2, 4, 8 dpi; 4, 8 dpi; and 4, 6, 8 dpi, respectively. These results suggest that rMDPV infection led to early intestinal barrier dysfunction, inflammation, ileac microbiota disruption, and oxidative stress.


Subject(s)
Parvoviridae Infections , Parvovirinae , Parvovirus , Poultry Diseases , Animals , Ducks , Parvoviridae Infections/veterinary , Parvovirinae/genetics , Parvovirus/genetics
20.
PLoS One ; 17(6): e0269937, 2022.
Article in English | MEDLINE | ID: mdl-35696413

ABSTRACT

Choroidal neovascularization (CNV) is a defining characteristic feature of neovascular age-related macular degeneration (nAMD) that frequently results in irreversible vision loss. The current strategies for the treatment of nAMD are mainly based on neutralizing vascular endothelial growth factor (VEGF). However, anti-VEGF therapies are often associated with subretinal fibrosis that eventually leads to damages in macula. In this study, we tested whether an anti-fibrotic and anti-angiogenic protein CCN5 can potentially be an effective and safe therapeutic modality in a mouse model of CNV. Laser photocoagulation was utilized to induce CNV, which was followed by intravitreal injection of recombinant adeno-associated virus serotype 2 encoding CCN5 (rAAV2-CCN5). Our data demonstrated that rAAV2-CCN5, but not a control viral vector, rAAV2-VLP, prominently attenuated both CNV lesions and angiogenesis. Aflibercept, which was utilized as a positive control, exhibited similar effects on CNV lesions and angiogenesis in our experimental settings. Upon laser photocoagulation, retinal pigmented epithelium (RPE) cells underwent significant morphological changes including cellular enlargement and loss of hexagonality. rAAV2-CCN5 significantly normalized these morphological defects. Laser photocoagulation also led to fibrotic deformation in RPE cells through inducing epithelial-mesenchymal transition (EMT), which was completely blocked by rAAV2-CCN5. In a striking contrast, aflibercept as well as rAAV2-VLP failed to exhibit any effects on EMT. Collectively, this study suggest that CCN5 might provide a potential novel strategy for the treatment of nAMD with a capability to inhibit CNV and fibrosis simaultaneously.


Subject(s)
Choroidal Neovascularization , Parvovirinae , Animals , Choroidal Neovascularization/metabolism , Dependovirus/genetics , Disease Models, Animal , Epithelial-Mesenchymal Transition , Epithelium/metabolism , Fibrosis , Mice , Mice, Inbred C57BL , Parvovirinae/genetics , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL