Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.104
Filter
1.
Microb Biotechnol ; 17(9): e70007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39235571

ABSTRACT

Previous studies have reported the functional role, biochemical features and synthesis pathway of podophyllotoxin (PTOX) in plants. In this study, we employed combined morphological and molecular techniques to identify an endophytic fungus and extract PTOX derivatives. Based on the analysis of ITS sequences and the phylogenetic tree, the isolate was classified as Penicillium herquei HGN12.1C, with a sequence identity of 98.58%. Morphologically, the HGN12.1C strain exhibits white colonies, short-branched mycelia and densely packed hyphae. Using PacBio sequencing at an average read depth of 195×, we obtained a high-quality genome for the HGN12.1C strain, which is 34.9 Mb in size, containing eight chromosomes, one mitochondrial genome and a GC content of 46.5%. Genome analysis revealed 10 genes potentially involved in PTOX biosynthesis. These genes include VdtD, Pinoresinollariciresinol reductase (PLR), Secoisolariciresinol dehydrogenase (SDH), CYP719A23, CYP71BE54, O-methyltransferase 1 (OMT1), O-methyltransferase 3 (OMT3), 2-ODD, CYP71CU and CYP82D61. Notably, the VdtD gene in fungi shares functional similarities with the DIR gene found in plants. Additionally, we identified peltatin, a PTOX derivative, in the HGN12.1C extract. Docking analysis suggests a potential role for the 2-ODD enzyme in converting yatein to deoxypodophyllotoxin. These findings offer invaluable insights into the synthesis mechanism of PTOX in fungi, shedding light on the relationship between host plants and endophytes.


Subject(s)
Biosynthetic Pathways , Genome, Fungal , Penicillium , Phylogeny , Podophyllotoxin , Podophyllotoxin/biosynthesis , Podophyllotoxin/analogs & derivatives , Penicillium/genetics , Penicillium/metabolism , Biosynthetic Pathways/genetics , Endophytes/genetics , Endophytes/metabolism , Sequence Analysis, DNA , Base Composition , Genomics
2.
Fungal Biol ; 128(6): 1992-2006, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39174235

ABSTRACT

The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 µg mL-1, respectively. It was suggested that 100 µg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.


Subject(s)
Lactobacillus plantarum , Probiotics , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/isolation & purification , Penicillium/growth & development , Penicillium/drug effects , Penicillium/isolation & purification , Penicillium/metabolism , Antibiosis , Humans , Antifungal Agents/pharmacology
3.
Protein Expr Purif ; 223: 106562, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39094814

ABSTRACT

Previous studies have demonstrated the presence of chitinase in Bacillus velezensis through extensive genomic sequencing and experimental analyses. However, the detailed structure, functional roles, and antifungal activity of these chitinases remain poorly characterized. In this study, genomic screening identified three genes-chiA, chiB, and lpmo10-associated with chitinase degradation in B. velezensis S161. These genes encode chitinases ChiA and ChiB, and lytic polysaccharide monooxygenase LPMO10. Both ChiA and ChiB contain two CBM50 binding domains and one catalytic domain, whereas LPMO10 includes a signal peptide and a single catalytic domain. The chitinases ChiA, its truncated variant ChiA2, and ChiB were heterologously expressed in Escherichia coli. The purified enzymes efficiently degraded colloidal chitin and inhibited the spore germination of Penicillium digitatum. Notably, even after losing one CBM50 domain, the resultant enzyme, consisting of the remaining CBM50 domain and the catalytic domain, maintained its colloidal chitin hydrolysis and antifungal activity, indicating commendable stability. These results underscore the role of B. velezensis chitinases in suppressing plant pathogenic fungi and provide a solid foundation for developing and applying chitinase-based biocontrol strategies.


Subject(s)
Antifungal Agents , Bacillus , Chitinases , Penicillium , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Chitin/chemistry , Chitinases/chemistry , Chitinases/pharmacology , Escherichia coli , Penicillium/drug effects , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology
4.
Prog Chem Org Nat Prod ; 124: 185-233, 2024.
Article in English | MEDLINE | ID: mdl-39101985

ABSTRACT

A lichen is a symbiotic association composed of a primary mycobionts and one or more photobionts living mutualistically together, forming a distinct morphological entity beneficial to their partnership and to other associated fungi, photobionts, and bacteria that collectively make up the lichen biome. The taxonomic identification of a lichen species often requires determination of the primary mycobiont's secondary metabolites, the key morphological characteristics of the thallus, and how it relates to other lichen species as seen in DNA phylogeny. This chapter covers lichens and their bionts, taxonomic identification, and their chemical constituents as exemplified by what is found in lichen biomes, especially those endemic to North America. Extraction and isolation, as well as updates on dereplication methods using mass spectrometric GNPS and NMR spectroscopic spin network fingerprint procedures, and marker-based techniques to identify lichens are discussed. The isolation and structure elucidation of secondary metabolites of an endolichenic Penicillium species that produces bioactive compounds will be described in detail.


Subject(s)
Lichens , Lichens/chemistry , North America , Molecular Structure , Penicillium/chemistry , Biological Products/chemistry , Biological Products/isolation & purification
5.
J Agric Food Chem ; 72(35): 19447-19461, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39177289

ABSTRACT

α-Terpineol, an alcoholic monoterpene with lilac-like aroma, possesses diverse biological activities and has found applications in the food, pharmaceutical, cosmetic, and agricultural industries. Our previous studies indicated that gene PdTP1 was highly expressed in Penicillium digitatum DSM 62840 during the biotransformation of limonene to α-terpineol, while its actual biological functions are not fully understood. Here, PdTP1 was functionally characterized with bioinformatics analysis, subcellular localization, transcriptional activation activity, overexpression, and RNA interference (RNAi) silencing and RNA-seq analysis. Results showed that PdTP1 protein contained a GAL4-like Zn2Cys6 DNA-binding domain and a fungal_trans domain, was located in the nucleus and cell membrane and presented transcriptional activation effect, suggesting that PdTP1 encoded a Zn2Cys6 type transcription factor. Overexpression of PdTP1 in P. digitatum promoted limonene biotransformation and increased α-terpineol production, and opposite results were observed after the silencing of PdTP1. Moreover, transcription factor PdTP1 was found to affect the growth of P. digitatum and participate in ionic stress and oxidative stress responses. RNA-seq data revealed that altering the PdTP1 expression influenced the expression of some genes related to terpene metabolism or biosynthesis, fungal growth, and stress responses. In summary, PdTP1, which encoded a Zn2Cys6 transcription factor, played important roles in improving the production of α-terpineol from limonene and regulating fungal growth and environmental stress responses.


Subject(s)
Biotransformation , Cyclohexane Monoterpenes , Fungal Proteins , Limonene , Penicillium , Transcription Factors , Penicillium/metabolism , Penicillium/genetics , Penicillium/growth & development , Limonene/metabolism , Limonene/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Cyclohexane Monoterpenes/metabolism , Gene Expression Regulation, Fungal , Terpenes/metabolism
6.
Mar Drugs ; 22(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39195476

ABSTRACT

Four new polyketides, namely furantides A-B (1-2), talamin E (3) and arugosinacid A (4), and two known polyketides were obtained from the mangrove-derived fungus Penicillium sp. HDN15-312 using the One Strain Many Compounds (OSMAC) strategy. Their chemical structures, including configurations, were elucidated by detailed analysis of extensive NMR spectra, HRESIMS and ECD. The DPPH radicals scavenging activity of 3, with an IC50 value of 6.79 µM, was better than vitamin C.


Subject(s)
Penicillium , Polyketides , Penicillium/chemistry , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Picrates , Rhizophoraceae/microbiology , Biphenyl Compounds
7.
Molecules ; 29(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39202967

ABSTRACT

Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.


Subject(s)
Penicillium , Talaromyces , Talaromyces/chemistry , Penicillium/chemistry , Penicillium/metabolism , Biological Products/chemistry , Biological Products/pharmacology , Molecular Structure , Humans , Endophytes/chemistry
8.
Food Res Int ; 192: 114787, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147489

ABSTRACT

This original work investigated the optical properties and Monte-Carlo (MC) based simulation of light propagation in the flavedo of Nanfeng tangerine (NF) and Gannan navel orange (GN) infected by Penicillium italicum. The increase of absorption coefficient (µa) at around 482 nm and the decrease at around 675 nm were both observed in infected NF and GN during storage, indicating the accumulation of carotenoids and loss of chlorophyll. Particularly, the µa in NF varied more intensively than GN, but the limited differences of reduced scattering coefficient (µs') were detected while postharvest infection. Besides, MC simulation of light propagation indicated that the photon packets weight and penetration depth at 482 nm in NF were reduced more than in GN flavedo, while there were almost no changes at the relatively low absorption wavelength of 926 nm. The simulated absorption energy at 482 nm in NF and GN presented more changes than those at 675 nm during infection, thus could provide better detection of citrus diseases. Furthermore, PLS-DA models can discriminate healthy and infected citrus, with the accuracy of 95.24 % for NF and 98.67 % for GN, respectively. Consequently, these results can provide theoretical fundamentals to improve modelling prediction robustness and accuracy.


Subject(s)
Citrus , Light , Monte Carlo Method , Penicillium , Citrus/microbiology , Plant Diseases/microbiology , Chlorophyll/analysis , Fruit/microbiology , Carotenoids/analysis , Carotenoids/metabolism
9.
BMC Microbiol ; 24(1): 301, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134942

ABSTRACT

BACKGROUND: Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS: The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS: In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.


Subject(s)
Bacteria , Composting , Manure , Microbiota , Penicillium , Animals , Penicillium/metabolism , Cattle , Manure/microbiology , Manure/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Temperature , Soil Microbiology , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Biodiversity , RNA, Ribosomal, 16S/genetics
10.
Mol Genet Genomics ; 299(1): 82, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196386

ABSTRACT

Blue mold, caused by Penicillium italicum, is one of the main postharvest diseases of citrus fruits during storage and marketing. The pathogenic mechanism remains largely unclear. To explore the potential pathogenesis-related genes of this pathogen, a T-DNA insertion library of P. italicum PI5 was established via Agrobacterium tumefaciens-mediated transformation (ATMT). The system yielded 200-250 transformants per million conidia, and the transformants were genetically stable after five generations of successive subcultures on hygromycin-free media. 2700 transformants were obtained to generate a T-DNA insertion library of P. italicum. Only a few of the 200 randomly selected mutants exhibited significantly weakened virulence on citrus fruits, with two mutants displaying attenuated sporulation. The T-DNA in the two mutants existed as a single copy. Moreover, the mutant genes PiBla (PITC_048370) and PiFTF1 (PITC_077280) identified may be involved in conidia production by regulating expressions of the key regulatory components for conidiogenesis. These results demonstrated that the ATMT system is useful to obtain mutants of P. italicum for further investigation of the molecular mechanisms of pathogenicity and the obtained two pathogenesis-related genes might be novel loci associated with pathogenesis and conidia production.


Subject(s)
Agrobacterium tumefaciens , Penicillium , Transformation, Genetic , Penicillium/genetics , Penicillium/pathogenicity , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/pathogenicity , Citrus/microbiology , Virulence/genetics , Mutation , Spores, Fungal/genetics , Spores, Fungal/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , DNA, Bacterial/genetics , Mutagenesis, Insertional , Genes, Fungal/genetics
11.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125741

ABSTRACT

The Penicillium genus exhibits a broad global distribution and holds substantial economic value in sectors including agriculture, industry, and medicine. Particularly in agriculture, Penicillium species significantly impact plants, causing diseases and contamination that adversely affect crop yields and quality. Timely detection of Penicillium species is crucial for controlling disease and preventing mycotoxins from entering the food chain. To tackle this issue, we implement a novel species identification approach called Analysis of whole GEnome (AGE). Here, we initially applied bioinformatics analysis to construct specific target sequence libraries from the whole genomes of seven Penicillium species with significant economic impact: P. canescens, P. citrinum, P. oxalicum, P. polonicum, P. paneum, P. rubens, and P. roqueforti. We successfully identified seven Penicillium species using the target we screened combined with Sanger sequencing and CRISPR-Cas12a technologies. Notably, based on CRISPR-Cas12a technology, AGE can achieve rapid and accurate identification of genomic DNA samples at a concentration as low as 0.01 ng/µL within 30 min. This method features high sensitivity and portability, making it suitable for on-site detection. This robust molecular approach provides precise fungal species identification with broad implications for agricultural control, industrial production, clinical diagnostics, and food safety.


Subject(s)
Genome, Fungal , Penicillium , Penicillium/genetics , Penicillium/classification , Penicillium/isolation & purification , CRISPR-Cas Systems , Whole Genome Sequencing/methods , Computational Biology/methods , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/economics , Phylogeny
12.
BMJ Case Rep ; 17(8)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134335

ABSTRACT

Fibrotic hypersensitivity pneumonitis (HP) has a poor prognosis when no antigen is identified, which occurs in many cases. We present a case of HP due to foam exposure in bedding, an unrecognised cause of HP. A woman was referred for dyspnoea and cough. High-resolution chest computed tomography (HRCT) showed a three-density pattern with gas trapping. Pulmonary function tests (PFTs) revealed restriction and reduced diffusing capacity. Bronchoalveolar lavage showed lymphocytosis (43%) and lung cryobiopsy showed fibrosis, lymphocytic infiltration and multinucleated giant cells. She had foam in mattress and pillows but no other exposures. Her symptoms, PFTs, and imaging improved after avoiding foam in her bedding. After re-exposure to a foam pillow, her symptoms, PFTs, and HRCT worsened. Microbiological analysis of the foam pillow reported Penicillium spp, known to cause HP. Foam exposure is a novel cause of HP, and foam avoidance can prevent disease progression and death.


Subject(s)
Alveolitis, Extrinsic Allergic , Bedding and Linens , Penicillium , Tomography, X-Ray Computed , Humans , Alveolitis, Extrinsic Allergic/etiology , Alveolitis, Extrinsic Allergic/diagnosis , Female , Bedding and Linens/adverse effects , Beds/adverse effects , Respiratory Function Tests , Middle Aged , Lung/diagnostic imaging , Lung/pathology , Dyspnea/etiology
13.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3548-3551, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041126

ABSTRACT

An OSMAC strategy was used to study secondary metabolites and anti-inflammatory activities of the endophytic fungus Penicillium herquei JX4 hosted in Ceriops tagal. The PDB ferment of fungus P. herquei JX4 was isolated, purified, and identified by using silica gel column chromatography, gel column chromatography, octadecylsilyl(ODS) column chromatography, and semi-preparative high-performance liquid chromatography. Two new pinophol derivatives, pinophol H(1) and pinophol I(2) were isolated and identified, and they were evaluated in terms of the inhibitory activities against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse macrophage RAW264.7 cells. The results showed that compound 1 had significant inhibitory activity on NO production, with an IC_(50) value of 8.12 µmol·L~(-1).


Subject(s)
Nitric Oxide , Penicillium , Penicillium/chemistry , Mice , Animals , RAW 264.7 Cells , Macrophages/drug effects , Endophytes/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
14.
PLoS One ; 19(7): e0299421, 2024.
Article in English | MEDLINE | ID: mdl-38954713

ABSTRACT

Mold infestations in buildings pose significant challenges to human health, affecting both private residences and hospitals. While molds commonly trigger asthma and allergies in the immunocompetent, they can cause life-threatening diseases in the immunocompromised. Currently, there is an unmet need for new strategies to reduce or prevent mold infestations. Far-UVC technology can inactivate microorganisms while remaining safe for humans. This study investigates the inhibitory efficacy of far-UVC light at 222 nm on the growth of common mold-producing fungi, specifically Penicillium candidum, when delivered in low-dose on-off duty cycles, a configuration consistent with its use in real-world settings. The inhibitory effect of the low-dose duty cycles was assessed on growth induced by i) an adjacent spore-producing P. candidum donor and ii) P. candidum spores seeded directly onto agar plates. In both setups, the far-UVC light significantly inhibited both vertical and horizontal growth of P. candidum, even when the UV doses were below the Threshold Value Limit of 23 mJ/cm2. These results suggest that far-UVC light holds the potential to improve indoor air quality by reducing or preventing mold growth, also when people are present.


Subject(s)
Penicillium , Ultraviolet Rays , Penicillium/growth & development , Penicillium/radiation effects , Spores, Fungal/radiation effects , Spores, Fungal/growth & development , Fungi/radiation effects , Fungi/growth & development , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Threshold Limit Values
15.
Appl Microbiol Biotechnol ; 108(1): 427, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046587

ABSTRACT

Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.


Subject(s)
CRISPR-Cas Systems , Penicillium , Secondary Metabolism , Penicillium/genetics , Penicillium/metabolism , Secondary Metabolism/genetics , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Multigene Family , Gene Targeting/methods , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Biosynthetic Pathways/genetics , Metabolic Engineering/methods , Gene Expression
16.
Meat Sci ; 216: 109591, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38991481

ABSTRACT

Penicillium nordicum is the main ochratoxin A (OTA)-producing species on the surface of dry-fermented sausages, such as the "chorizo". New antifungal strategies are being developed using biocontrol agents (BCAs), such as plant extracts and native microorganisms. This work aimed to evaluate the antiochratoxigenic capacity and the causative modes of action of BCAs (rosemary essential oil (REO), acorn shell extract and the yeast Debaryomyces hansenii (Dh)) in a "chorizo"-based medium (Ch-DS). BCAs were inoculated on Ch-DS together with P. nordicum and incubated at 12 °C for 15 days to collect mycelia for OTA analyses and comparative proteomics. Both REO and Dh alone decreased OTA accumulation up to 99% and affected the abundance of P. nordicum proteins linked to cell wall organisation, synthesis of OTA-related metabolites and ergosterol synthesis. It is worth highlighting the increased abundance of an amidase by REO, matching with the decrease in OTA. The use of REO and Dh as BCAs could be an effective strategy to reduce the OTA hazard in the meat industry. Based on their not fully coincident modes of action, their combined application could be of interest in "chorizo" to maximise their potential against ochratoxigenic strains.


Subject(s)
Meat Products , Ochratoxins , Penicillium , Plant Extracts , Proteomics , Penicillium/drug effects , Meat Products/microbiology , Meat Products/analysis , Ochratoxins/analysis , Proteomics/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Debaryomyces , Food Microbiology , Oils, Volatile/pharmacology , Cistus/chemistry , Antifungal Agents/pharmacology , Fungal Proteins/metabolism
17.
J Agric Food Chem ; 72(30): 16801-16811, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39016690

ABSTRACT

Nine new sesquiterpene alkaloids, eurochevalierines A-I (1-9), were separated from the rice cultures of the endophytic fungus Penicillium sp. HZ-5 originated from the fresh leaf of Hypericum wilsonii N. Robson. The structures' illumination was conducted by single-crystal X-ray diffraction, extensive spectroscopic analysis, alkaline hydrolysis reaction, and Snatzke's method. Importantly, the antitumor activities screen of these isolates indicated that 1 could suppress triple negative breast cancer (TNBC) cell proliferation and induce apoptosis, with an IC50 value of 5.4 µM, which is comparable to the positive control docetaxel (DXT). Flow cytometry experiments mentioned that compound 1 significantly reduced mitochondrial membrane potential (MMP) of TNBC cells. In addition, 1 could activate caspase-3 and elevated the levels of reactive oxygen species (ROS) and expressions of suppressive cytokines and chemokines. Further Western blot analysis showed that 1 could selectively induce mitochondria-dependent apoptosis in TNBC cells via the BAX/BCL-2 pathway. Remarkably, these finding provide a new natural product skeleton for the treatment of TNBC.


Subject(s)
Alkaloids , Antineoplastic Agents , Apoptosis , Cell Proliferation , Penicillium , Sesquiterpenes , Triple Negative Breast Neoplasms , Penicillium/chemistry , Humans , Triple Negative Breast Neoplasms/drug therapy , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Apoptosis/drug effects , Alkaloids/pharmacology , Alkaloids/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Female , Molecular Structure
18.
Appl Environ Microbiol ; 90(8): e0039024, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39023351

ABSTRACT

Filamentous fungi can produce raw-starch-degrading enzyme, however, regulation of production of raw-starch-degrading enzyme remains poorly understood thus far. Here, two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) were identified to participate in the production of raw-starch-degrading enzyme in Penicillium oxalicum. Individual knockout of rsrD and rsrE in the parental strain Δku70 resulted in 31.1%-92.9% reduced activity of raw-starch-degrading enzyme when cultivated in the presence of commercial starch from corn. RsrD and RsrE contained a basic leucine zipper and a Zn2Cys6-type DNA-binding domain, respectively, but with unknown functions. RsrD and RsrE dynamically regulated the expression of genes encoding major amylases over time, including raw-starch-degrading glucoamylase gene PoxGA15A and α-amylase gene amy13A. Interestingly, RsrD and RsrE regulated each other at transcriptional level, through binding to their own promoter regions; nevertheless, both failed to bind to the promoter regions of PoxGA15A and amy13A, as well as the known regulatory genes for regulation of amylase gene expression. RsrD appears to play an epistatic role in the module RsrD-RsrE on regulation of amylase gene expression. This study reveals a novel regulatory pathway of fungal production of raw-starch-degrading enzyme.IMPORTANCETo survive via combating with complex extracellular environment, filamentous fungi can secrete plant polysaccharide-degrading enzymes that can efficiently hydrolyze plant polysaccharide into glucose or other mono- and disaccharides, for their nutrients. Among the plant polysaccharide-degrading enzymes, raw-starch-degrading enzymes directly degrade and convert hetero-polymeric starch into glucose and oligosaccharides below starch gelatinization temperature, which can be applied in industrial biorefinery to save cost. However, the regulatory mechanism of production of raw-starch-degrading enzyme in fungi remains unknown thus far. Here, we showed that two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) positively regulate the production of raw-starch-degrading enzyme by Penicillium oxalicum. RsrD and RsrE indirectly control the expression of genes encoding enzymes with amylase activity but directly regulate each other at transcriptional level. These findings expand diversity of gene expression regulation in fungi.


Subject(s)
Fungal Proteins , Gene Expression Regulation, Fungal , Penicillium , Starch , Transcription Factors , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Starch/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Amylases/metabolism , Amylases/genetics , Promoter Regions, Genetic
19.
Int J Food Microbiol ; 423: 110841, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39059140

ABSTRACT

Penicillium exopolysaccharide (EPS) inhibits galactose lectins and enhances immunity. However, EPS production is low and its synthesis mechanism remains unclear. Penicillium EF-2 strains with high EPS production were selected for this study, and Penicillium fermentation conditions were subsequently improved. The optimal culture conditions were 30 g/L lactose, 6 g/L yeast extract powder, 4 d seed age, 10 % inoculation amount, 3 d of secondary fermentation time, and the final EPS yield was 3.97 g/L. UHPLC-Q-TOF-MS/MS was used to explore the mechanism of EPS synthesis at the metabolic level. Optimal carbon source: lactose and optimal nitrogen source: yeast extract can provide precursors for EPS synthesis through related metabolic pathways. Moreover, regulating the energy, vitamin, and lipid metabolic pathways created favourable conditions for EPS synthesis and secretion. These findings explain the mechanism of EPS synthesis at the metabolic level and provide a theoretical basis for optimising and industrialising EPS production.


Subject(s)
Fermentation , Metabolomics , Penicillium , Tandem Mass Spectrometry , Penicillium/metabolism , Penicillium/growth & development , Metabolomics/methods , Chromatography, High Pressure Liquid , Culture Media/chemistry , Nitrogen/metabolism
20.
Mar Drugs ; 22(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057405

ABSTRACT

Traditional isolation methods often lead to the rediscovery of known natural products. In contrast, genome mining strategies are considered effective for the continual discovery of new natural products. In this study, we discovered a unique prenyltransferase (PT) through genome mining, capable of catalyzing the transfer of a prenyl group to an aromatic nucleus to form C-C or C-O bonds. A pair of new hydroxyphenylacetic acid derivative enantiomers with prenyl units, (±)-peniprenydiol A (1), along with 16 known compounds (2-17), were isolated from a marine fungus, Penicillium sp. W21C371. The separation of 1 using chiral HPLC led to the isolation of the enantiomers 1a and 1b. Their structures were established on the basis of extensive spectroscopic analysis, including 1D, 2D NMR and HRESIMS. The absolute configurations of the new compounds were determined by a modified Mosher method. A plausible biosynthetic pathway for 1 was deduced, facilitated by PT catalysis. In the in vitro assay, 2 and 3 showed promising inhibitory activity against Escherichia coli ß-glucuronidase (EcGUS), with IC50 values of 44.60 ± 0.84 µM and 21.60 ± 0.76 µM, respectively, compared to the positive control, D-saccharic acid 1,4-lactone hydrate (DSL). This study demonstrates the advantages of genome mining in the rational acquisition of new natural products.


Subject(s)
Dimethylallyltranstransferase , Penicillium , Aquatic Organisms/chemistry , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/isolation & purification , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Penicillium/chemistry , Phenylacetates/pharmacology , Phenylacetates/chemistry , Phenylacetates/isolation & purification , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL