Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.533
1.
BMC Microbiol ; 24(1): 209, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38877423

Fungi can spoil the majority of baked products. Spoilage of cake during storage is commonly associated with fungi. Therefore, this study aimed to assess the quality of different types of cakes sold in the market. The most predominant fungal genera in the tested cake samples (14 samples) were Aspergillus spp., and Penicillium spp. On Potato Dextrose Agar (PDA), the medium fungal total count was 43.3 colonies /g. Aspergillus was the most dominant genus and was isolated from six samples of cake. Aspergillus was represented by 3 species namely, A. flavus, A. niger, and A. nidulans, represented by 13.32, 19.99, and 3.33 colonies /g respectively. On Malt Extract Agar (MEA) Medium, the fungal total count was 123.24 colonies / g. Aspergillus was the most dominant isolated genus from 11 samples of cake and was represented by 5 species, namely, A. flavus, A. niger, A. ochraceous, A. terreus, and A. versicolor (26. 65, 63.29, 3.33, 6.66, and 3.33 colonies / g , respectively). Twenty-four isolates (88.88 %) of the total tested twenty-seven filamentous fungi showed positive results for amylase production. Ten isolates (37.03%) of the total tested filamentous fungi showed positive results for lipase production, and finally eleven isolates (40.74 %) of the total fungal isolates showed positive results for protease production. Aflatoxins B1, B2, G1, G2, and ochratoxin A were not detected in fourteen collected samples of cake. In this study, clove oil was the best choice overpeppermint oil and olive oil for preventing mold development when natural agents were compared. It might be due to the presence of a varietyof bioactive chemical compounds in clove oil, whose major bioactive component is eugenol, which acts as an antifungal reagent. Therefore, freshly baked cake should be consumed within afew days to avoid individuals experiencing foodborne illnesses.


Food Microbiology , Fungi , Mycotoxins , Fungi/isolation & purification , Fungi/classification , Fungi/enzymology , Fungi/genetics , Mycotoxins/analysis , Aspergillus/isolation & purification , Aspergillus/enzymology , Penicillium/isolation & purification , Penicillium/enzymology , Food Contamination/analysis , Aflatoxins/analysis , Lipase/metabolism , Amylases/metabolism , Amylases/analysis
2.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Article En | MEDLINE | ID: mdl-38759097

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


14-alpha Demethylase Inhibitors , Ascomycota , Drug Design , Fungal Proteins , Fungicides, Industrial , Pyrimidines , Rhizoctonia , Sterol 14-Demethylase , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Rhizoctonia/drug effects , 14-alpha Demethylase Inhibitors/pharmacology , 14-alpha Demethylase Inhibitors/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Ascomycota/drug effects , Ascomycota/enzymology , Models, Molecular , Botrytis/drug effects , Penicillium/drug effects , Penicillium/enzymology , Molecular Structure , Molecular Docking Simulation
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732010

L-asparaginase is an essential drug used to treat acute lymphoid leukemia (ALL), a cancer of high prevalence in children. Several adverse reactions associated with L-asparaginase have been observed, mainly caused by immunogenicity and allergenicity. Some strategies have been adopted, such as searching for new microorganisms that produce the enzyme and applying protein engineering. Therefore, this work aimed to elucidate the molecular structure and predict the immunogenic profile of L-asparaginase from Penicillium cerradense, recently revealed as a new fungus of the genus Penicillium and producer of the enzyme, as a motivation to search for alternatives to bacterial L-asparaginase. In the evolutionary relationship, L-asparaginase from P. cerradense closely matches Aspergillus species. Using in silico tools, we characterized the enzyme as a protein fragment of 378 amino acids (39 kDa), including a signal peptide containing 17 amino acids, and the isoelectric point at 5.13. The oligomeric state was predicted to be a homotetramer. Also, this L-asparaginase presented a similar immunogenicity response (T- and B-cell epitopes) compared to Escherichia coli and Dickeya chrysanthemi enzymes. These results suggest a potentially useful L-asparaginase, with insights that can drive strategies to improve enzyme production.


Asparaginase , Computer Simulation , Penicillium , Asparaginase/chemistry , Asparaginase/immunology , Asparaginase/metabolism , Penicillium/immunology , Penicillium/enzymology , Amino Acid Sequence , Fungal Proteins/chemistry , Fungal Proteins/immunology , Fungal Proteins/metabolism , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Humans , Aspergillus/immunology , Aspergillus/enzymology , Escherichia coli/genetics , Dickeya chrysanthemi/enzymology , Dickeya chrysanthemi/immunology , Models, Molecular
4.
Appl Environ Microbiol ; 90(6): e0029924, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38786360

Bacteria, fungi, and mammals contain lactonases that can degrade the Gram-negative bacterial quorum sensing (QS) molecules N-acyl homoserine lactones (AHLs). AHLs are critical for bacteria to coordinate gene expression and pathogenicity with population density. However, AHL-degrading lactonases present variable substrate ranges, including degradation of the Pencillium expansum lactone mycotoxin patulin. We selected Erwinia spp. as our model bacteria to further investigate this interaction. We find both native apple microbiome Erwinia spp. and the fruit tree pathogen Erwinia amylovora to be inhibited by patulin. At patulin concentrations that inhibited E. amylovora growth, expression of E. amylovora lactonase encoded by EaaiiA was increased. EaAiiA demonstrated the ability to degrade patulin in vitro, as well, as in vivo where it reduced apple disease and patulin production by P. expansum. Fungal-bacterial co-cultures revealed that the E. amylovora Δeaaiia strain failed to protect apples from P. expansum infections, which contained significant amounts of patulin. Our results suggest that bacterial lactonase production can modulate the pathogenicity of P. expansum in response to the secretion of toxic patulin. IMPORTANCE: Chemical signaling in the microbial world facilitates the regulation of gene expression as a function of cell population density. This is especially true for the Gram-negative bacterial signal N-acyl homoserine lactone (AHL). Lactonases that deactivate AHLs have attracted a lot of attention because of their antibacterial potential. However, the involvement of these enzymes in inhibiting fungal pathogens and the potential role of these enzymes in bacterial-fungal interactions are unknown. Here, we find that a bacterial enzyme involved in the degradation of AHLs is also induced by and degrades the fungal lactone mycotoxin, patulin. This work supports the potential use of bacterial enzymes and/or the producing bacteria in controlling the post-harvest fruit disease caused by the patulin-producing fungus Penicillium expansum.


Carboxylic Ester Hydrolases , Erwinia amylovora , Malus , Patulin , Patulin/metabolism , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Malus/microbiology , Erwinia amylovora/genetics , Erwinia amylovora/drug effects , Erwinia amylovora/enzymology , Erwinia amylovora/metabolism , Plant Diseases/microbiology , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Microbial Interactions , Quorum Sensing , Lactones/metabolism , Lactones/pharmacology
5.
J Microbiol Biotechnol ; 34(5): 1017-1028, 2024 May 28.
Article En | MEDLINE | ID: mdl-38803105

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of ß-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 µg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.


Fermentation , Lignin , Olea , Lignin/metabolism , Olea/microbiology , Aspergillus/enzymology , Aspergillus/metabolism , Cellulase/metabolism , Cellulase/biosynthesis , Laccase/metabolism , Laccase/biosynthesis , Penicillium/enzymology , Penicillium/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/biosynthesis , Fusarium/enzymology , Fusarium/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Fungi/enzymology , Fungi/metabolism , Morocco , Fungal Proteins/metabolism
6.
World J Microbiol Biotechnol ; 40(6): 179, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668807

Core histones in the nucleosome are subject to a wide variety of posttranslational modifications (PTMs), such as methylation, phosphorylation, ubiquitylation, and acetylation, all of which are crucial in shaping the structure of the chromatin and the expression of the target genes. A putative histone methyltransferase LaeA/Lae1, which is conserved in numerous filamentous fungi, functions as a global regulator of fungal growth, virulence, secondary metabolite formation, and the production of extracellular glycoside hydrolases (GHs). LaeA's direct histone targets, however, were not yet recognized. Previous research has shown that LaeA interacts with core histone H2B. Using S-adenosyl-L-methionine (SAM) as a methyl group donor and recombinant human histone H2B as the substrate, it was found that Penicillium oxalicum LaeA can transfer the methyl groups to the C-terminal lysine (K) 108 and K116 residues in vitro. The H2BK108 and H2BK116 sites on recombinant histone correspond to P. oxalicum H2BK122 and H2BK130, respectively. H2BK122A and H2BK130A, two mutants with histone H2B K122 or K130 mutation to alanine (A), were constructed in P. oxalicum. The mutants H2BK122A and H2BK130A demonstrated altered asexual development and decreased extracellular GH production, consistent with the findings of the laeA gene deletion strain (ΔlaeA). The transcriptome data showed that when compared to wild-type (WT) of P. oxalicum, 38 of the 47 differentially expressed (fold change ≥ 2, FDR ≤ 0.05) genes that encode extracellular GHs showed the same expression pattern in the three mutants ΔlaeA, H2BK122A, and H2BK130A. The four secondary metabolic gene clusters that considerably decreased expression in ΔlaeA also significantly decreased in H2BK122A or H2BK130A. The chromatin of promotor regions of the key cellulolytic genes cel7A/cbh1 and cel7B/eg1 compacted in the ΔlaeA, H2BK122A, and H2BK130A mutants, according to the results of chromatin accessibility real-time PCR (CHART-PCR). The chromatin accessibility index dropped. The histone binding pocket of the LaeA-methyltransf_23 domain is compatible with particular histone H2B peptides, providing appropriate electrostatic and steric compatibility to stabilize these peptides, according to molecular docking. The findings of the study demonstrate that H2BK122 and H2BK130, which are histone targets of P. oxalicum LaeA in vitro, are crucial for fungal conidiation, the expression of gene clusters encoding secondary metabolites, and the production of extracellular GHs.


Fungal Proteins , Gene Expression Regulation, Fungal , Glycoside Hydrolases , Histones , Lysine , Multigene Family , Penicillium , Secondary Metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Histones/genetics , Lysine/metabolism , Lysine/biosynthesis , Methylation , Penicillium/genetics , Penicillium/enzymology , Penicillium/metabolism , Penicillium/growth & development , Protein Processing, Post-Translational , Reproduction, Asexual/genetics , Secondary Metabolism/genetics
7.
Angew Chem Int Ed Engl ; 63(26): e202403963, 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38635317

(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.


Cytochrome P-450 Enzyme System , Indoles , Penicillium , Cytochrome P-450 Enzyme System/metabolism , Indoles/chemistry , Indoles/metabolism , Penicillium/enzymology , Penicillium/metabolism , Biocatalysis , Stereoisomerism , Molecular Structure
8.
Enzyme Microb Technol ; 178: 110441, 2024 Aug.
Article En | MEDLINE | ID: mdl-38574421

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.


Citrus , Computational Biology , Fungal Proteins , Glucans , Glycoside Hydrolases , Penicillium , Xylans , Penicillium/enzymology , Penicillium/genetics , Citrus/microbiology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Xylans/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity , Amino Acid Sequence , Enzyme Stability , Temperature , Hydrolysis
9.
Int J Biol Macromol ; 266(Pt 1): 130836, 2024 May.
Article En | MEDLINE | ID: mdl-38492700

Glycosylation, a general post-translational modification for fungal cellulase, has been shown to affect cellulase binding to its substrate. However, the exact impact of glycosylation on cellulase-lignin interaction remain unclear. Here, we demonstrated that the lignin isolated from tetrahydrofuran-pretreated corn stover exhibits strong adsorption capability to cellulase due to its negatively charged and porous structure. For the cellulases with varying glycosylation levels, the less-glycosylated protein showed high adsorption capability to lignin, and that trend was observed for the main cellulase components secreted by Penicillium oxilicum, including endoglucanase PoCel5B, cellobiohydrolase PoCel7A-2, and ß-glucosidase PoBgl1. Additionally, N-glycan sites and motifs were examined using mass spectrometry, and protein structures with N-glycans were constructed, where PoBgl1 and PoCel7A-2 contained 13 and 1 glycosylated sites respectively. The results of molecular dynamics simulations indicated that the N-glycans impacted on the solvent-accessible surface area and secondary structure of protein, and the binding conformation of lignin fragment on cellulase, resulting in a decrease in binding energy (14 kcal/mol for PoBgl1 and 13 kcal/mol for PoCel7A-2), particularly for van der Waals and electrostatic interaction. Those findings suggested that glycosylation negatively impacted the lignin-cellulase interaction, providing a theoretical basis for the rational engineering of enzymes to reduce lignin-enzyme interaction.


Cellulase , Lignin , Molecular Dynamics Simulation , Zea mays , Glycosylation , Lignin/chemistry , Zea mays/chemistry , Cellulase/chemistry , Cellulase/metabolism , Adsorption , Penicillium/enzymology , Penicillium/chemistry , Protein Binding , Polysaccharides/chemistry
10.
Res Microbiol ; 175(4): 104178, 2024.
Article En | MEDLINE | ID: mdl-38160731

In this study, CRISPR/Cas9 genome editing was used to knockout the bgl2 gene encoding intracellular ß-glucosidase filamentous fungus Penicillium verruculosum. This resulted in a dramatic reduction of secretion of cellulolytic enzymes. The study of P. verruculosum Δbgl2 found that the transcription of the cbh1 gene, which encodes cellobiohydrolase 1, was impaired when induced by cellobiose and cellotriose. However, the transcription of the cbh1 gene remains at level of the host strain when induced by gentiobiose. This implies that gentiobiose is the true inducer of the cellulolytic response in P. verruculosum, in contrast to Neurospora crassa where cellobiose acts as an inducer.


Penicillium , beta-Glucosidase , Penicillium/genetics , Penicillium/enzymology , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Cellulose/metabolism , Cellobiose/metabolism , CRISPR-Cas Systems , Gene Knockout Techniques , Neurospora crassa/genetics , Neurospora crassa/enzymology , Cellulose 1,4-beta-Cellobiosidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Gene Editing
11.
Microbiol Spectr ; 11(1): e0354522, 2023 02 14.
Article En | MEDLINE | ID: mdl-36633412

Fruit blue mold disease and patulin contamination caused by Penicillium expansum lead to huge economic losses and food safety concerns worldwide. Many genes have been proven to be involved in the regulation of pathogenic and toxigenic processes of P. expansum. Histone H3 lysine 4 (H3K4) methylation is well recognized for its association with chromatin regulation and gene transcription. However, it is not clear whether H3K4 methylation is related to infection and patulin biosynthesis in Penicillium. Here, we characterized PeSet1, which is responsible for H3K4me1/me2/me3 in P. expansum. The deletion of PeSet1 caused severe defects in hyphal growth, conidiation, colonization, patulin biosynthesis, and stress responses. Moreover, we demonstrated that PeSet1 is involved in the regulation of patulin biosynthesis by mediating the expression of patulin cluster genes and crucial global regulatory factors. Likewise, PeSet1 positively regulated key genes in ß-1,3-glucan biosynthesis and the reactive oxygen species scavenging process to modulate cell wall integrity and oxidative stress responses, respectively. Collectively, we have proven for the first time the function of Set1 in patulin biosynthesis and the crucial role of Set1 in colonization and stress responses in P. expansum. IMPORTANCE Penicillium expansum is one of the most important plant fungal pathogens, which not only causes blue mold rot in various fruits, leading to huge decay losses, but also produces mycotoxin patulin, posing a threat to human health. Both pathogenesis and patulin biosynthesis in P. expansum are regulated by complex and sophisticated networks. We focused on the epigenetic modification and identified a conserved histone H3K4 methyltransferase PeSet1 in P. expansum. Our work revealed the important role of PeSet1 in growth, development, colonization, patulin production, and stress responses of P. expansum. In particular, we originally described the regulation of Set1 on patulin biosynthetic pathway. These findings will provide new targets for the prevention and control of blue mold disease and patulin contamination.


Histone Methyltransferases , Patulin , Penicillium , Fruit/microbiology , Histones/genetics , Histones/metabolism , Patulin/biosynthesis , Penicillium/enzymology , Penicillium/genetics , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism
12.
Appl Microbiol Biotechnol ; 105(24): 9181-9189, 2021 Dec.
Article En | MEDLINE | ID: mdl-34761275

Cytochrome P450 monooxygenases (P450s) are considered nature's most versatile catalysts and play a crucial role in regio- and stereoselective oxidation reactions on a broad range of organic molecules. The oxyfunctionalisation of unactivated carbon-hydrogen (C-H) bonds, in particular, represents a key step in the biosynthesis of many natural products as it provides substrates with increased reactivity for tailoring reactions. In this study, we investigated the function of the P450 enzyme TraB in the terrestric acid biosynthetic pathway. We firstly deleted the gene coding for the DNA repair subunit protein Ku70 by using split marker-based deletion plasmids for convenient recycling of the selection marker to improve gene targeting in Penicillium crustosum. Hereby, we reduced ectopic DNA integration and facilitated genetic manipulation in P. crustosum. Afterward, gene deletion in the Δku70 mutant of the native producer P. crustosum and heterologous expression in Aspergillus nidulans with precursor feeding proved the involvement of TraB in the formation of crustosic acid by catalysing the essential hydroxylation reaction of viridicatic acid. KEY POINTS: •Deletion of Ku70 by using split marker approach for selection marker recycling. •Functional identification of the cytochrome P450 enzyme TraB. •Fulfilling the reaction steps in the terrestric acid biosynthesis.


Acids/metabolism , Cytochrome P-450 Enzyme System , Penicillium/enzymology , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Oxidation-Reduction
13.
Molecules ; 26(22)2021 Nov 22.
Article En | MEDLINE | ID: mdl-34834154

The purpose of this systematic review was to identify the available literature of production, purification, and characterization of proteases by endophytic fungi. There are few complete studies that entirely exhibit the production, characterization, and purification of proteases from endophytic fungi. This study followed the PRISMA, and the search was conducted on five databases: PubMed, PMC, Science Direct, Scopus Articles, and Web of Science up until 18 May 2021, with no time or language restrictions. The methodology of the selected studies was evaluated using GRADE. Protease production, optimization, purification, and characterization were the main evaluated outcomes. Of the 5540 initially gathered studies, 15 met the inclusion criteria after a two-step selection process. Only two studies optimized the protease production using statistical design and two reported enzyme purification and characterization. The genus Penicillium and Aspergillus were the most cited among the eleven different genera of endophytic fungi evaluated in the selected articles. Six studies proved the ability of some endophytic fungi to produce fibrinolytic proteases, demonstrating that endophytic fungi can be exploited for the further production of agents used in thrombolytic therapy. However, further characterization and physicochemical studies are required to evaluate the real potential of endophytic fungi as sources of industrial enzymes.


Aspergillus/enzymology , Endophytes/enzymology , Fungal Proteins/biosynthesis , Penicillium/enzymology , Peptide Hydrolases/biosynthesis , Fungal Proteins/chemistry , Peptide Hydrolases/chemistry
14.
Chembiochem ; 22(22): 3225-3233, 2021 11 16.
Article En | MEDLINE | ID: mdl-34523783

The vanillyl-alcohol oxidase (VAO) family is a rich source of biocatalysts for the oxidative bioconversion of phenolic compounds. Through genome mining and sequence comparisons, we found that several family members lack a generally conserved catalytic aspartate. This finding led us to study a VAO-homolog featuring a glutamate residue in place of the common aspartate. This 4-ethylphenol oxidase from Gulosibacter chungangensis (Gc4EO) shares 42 % sequence identity with VAO from Penicillium simplicissimum, contains the same 8α-N3 -histidyl-bound FAD and uses oxygen as electron acceptor. However, Gc4EO features a distinct substrate scope and product specificity as it is primarily effective in the dehydrogenation of para-substituted phenols with little generation of hydroxylated products. The three-dimensional structure shows that the characteristic glutamate side chain creates a closely packed environment that may limit water accessibility and thereby protect from hydroxylation. With its high thermal stability, well defined structural properties and high expression yields, Gc4EO may become a catalyst of choice for the specific dehydrogenation of phenolic compounds bearing small substituents.


Actinobacteria/enzymology , Alkenes/metabolism , Hydroxybenzoates/metabolism , Oxidoreductases/metabolism , Phenols/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Alkenes/chemistry , Biocatalysis , Hydroxybenzoates/chemistry , Molecular Structure , Oxidoreductases/chemistry , Penicillium/enzymology , Phenols/chemistry
15.
Carbohydr Polym ; 271: 118430, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34364570

An enzymatic membrane reactor (EMR) with immobilized dextranase provides an excellent opportunity for tailoring the molecular weight (Mw) of oligodextran to significantly improve product quality. However, a highly efficient EMR for oligodextran production is still lacking and the effect of enzyme immobilization strategy on dextranase hydrolysis behavior has not been studied yet. In this work, a functional layer of polydopamine (PDA) or nanoparticles made of tannic acid (TA) and hydrolysable 3-amino-propyltriethoxysilane (APTES) was first coated on commercial membranes. Then cross-linked dextranase or non-cross-linked dextranase was loaded onto the modified membranes using incubation mode or fouling-induced mode. The fouling-induced mode was a promising enzyme immobilization strategy on the membrane surface due to its higher enzyme loading and activity. Moreover, unlike the non-cross-linked dextranase that exhibited a normal endo-hydrolysis pattern, we surprisingly found that the cross-linked dextranase loaded on the PDA modified surface exerted an exo-hydrolysis pattern, possibly due to mass transfer limitations. Such alteration of hydrolysis pattern has rarely been reported before. Based on the hydrolysis behavior of the immobilized dextranase in different EMRs, we propose potential applications for the oligodextran products. This study presents a unique perspective on the relation between the enzyme immobilization process and the immobilized enzyme hydrolysis behavior, and thus opens up a variety of possibilities for the design of a high-performance EMR.


Bioreactors , Dextranase/chemistry , Dextrans/chemistry , Enzymes, Immobilized/chemistry , Membranes, Artificial , Oligosaccharides/chemistry , Bacterial Proteins/chemistry , Biocatalysis , Penicillium/enzymology
16.
Biochem Biophys Res Commun ; 575: 85-89, 2021 10 20.
Article En | MEDLINE | ID: mdl-34461440

Some rare sugars can be potently medicinal, such as l-gulose. In this study, we present a novel alditol oxidase (fAldOx) from the soil fungus Penicillium sp. KU-1, and its application for the effective production of l-gulose. To the best of our knowledge, this is the first report of a successful direct conversion of d-sorbitol to l-gulose. We further purified it to homogeneity with a ∼108-fold purification and an overall yield of 3.26%, and also determined the effectors of fAldOx. The enzyme possessed broad substrate specificity for alditols such as erythritol (kcat/KM, 355 m-1 s-1), thus implying that the effective production of multiple rare sugars for medicinal applications may be possible.


Alcohol Oxidoreductases/metabolism , Fungal Proteins/metabolism , Hexoses/chemistry , Penicillium/enzymology , Sorbitol/metabolism , Sugar Alcohols/metabolism , Sugars/chemistry , Alcohol Oxidoreductases/chemistry , Bioengineering , Fungal Proteins/chemistry , Hexoses/metabolism , Substrate Specificity , Sugars/metabolism
17.
J Ind Microbiol Biotechnol ; 48(9-10)2021 Dec 23.
Article En | MEDLINE | ID: mdl-34387324

Heterologous expression of eukaryotic gene clusters in yeast has been widely used for producing high-value chemicals and bioactive secondary metabolites. However, eukaryotic transcription cis-elements are still undercharacterized, and the cross-species expression mechanism remains poorly understood. Here we used the whole expression unit (including original promoter, terminator, and open reading frame with introns) of orotidine 5'-monophosphate decarboxylases from 14 Penicillium species as a showcase, and analyzed their cross-species expression in Saccharomyces cerevisiae. We found that pyrG promoters from the Penicillium species could drive URA3 expression in yeast, and that inefficient cross-species splicing of Penicillium introns might result in weak cross-species expression. Thus, this study demonstrates cross-species expression from Penicillium to yeast, and sheds light on the opportunities and challenges of cross-species expression of fungi expression units and gene clusters in yeast without refactoring for novel natural product discovery.


Carboxy-Lyases , Penicillium , Saccharomyces cerevisiae , Industrial Microbiology , Microorganisms, Genetically-Modified , Penicillium/enzymology , Penicillium/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics
18.
Appl Biochem Biotechnol ; 193(11): 3753-3764, 2021 Nov.
Article En | MEDLINE | ID: mdl-34398422

Nuclease P1 (NP1) can hydrolyze nucleic acids into four 5'-mononucleotides, which are widely used in the pharmaceutical and food industries. In this paper, an aqueous two-phase system (ATPS) was developed to purify NP1 from Penicillium citrinum. Polyethylene glycol (PEG) and nucleotides salts were studied to form ATPSs, among which PEG3000/disodium guanosine monophosphate (GMPNa2) was researched, including the phase composition and pH. Using 14% (w/w) PEG3000 and 20% (w/w) GMPNa2 ATPS at pH 5.0, the best recovery and purification factor, 82.4% and 3.59, were obtained. The recovery of NP1 was 98.3% by the separation of ultrafiltration from the PEG-rich phase. The recycling use of GMPNa2 was also studied, and 95.1% of GMPNa2 in the salt-rich phase was obtained with the addition of ethanol as the solvent. These results showed that the ATPS was effective for purification of NP1.


Fungal Proteins , Guanosine Monophosphate/chemistry , Penicillium/enzymology , Polyethylene Glycols/chemistry , Single-Strand Specific DNA and RNA Endonucleases , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Single-Strand Specific DNA and RNA Endonucleases/chemistry , Single-Strand Specific DNA and RNA Endonucleases/isolation & purification
19.
Appl Biochem Biotechnol ; 193(11): 3512-3527, 2021 Nov.
Article En | MEDLINE | ID: mdl-34292478

In this research, eugenyl acetate, a compound with flavoring, antioxidant, and antimicrobial properties, was obtained from essential oil of clove (Syzygium aromaticum) via liquid lipase-mediated acetylation. Clove essential oil was extracted by drag water vapor from dry flower buds and its physic-chemical characteristics were analyzed. For the enzymatic synthesis, an extensive evaluation of reaction parameters was accomplished through employment of distinct reaction temperatures, acetic anhydride to eugenol molar ratios, enzyme loads, and three different lipases (a lyophilized enzyme produced by solid-state fermentation of sunflower seed with Penicillium sumatrense microorganism and other two commercial lipases - Lipozyme TL 100L and CALB L). The product eugenyl acetate was confirmed by 1H-NMR, 13C-NMR Distortionless Enhancement by Polarization Transfer (DEPT 135), and Heteronuclear Multiple Bond Correlation (HMBC). Through optimized conditions (55 °C, acetic anhydride to eugenol molar ratio of 1:1, 10 wt% of Lipozyme TL 100L), 91.80% of conversion after 2 h was achieved to the eugenyl acetate production. With the results obtained, it was possible to conclude that the use of lipases in liquid formulation is a promising alternative for the synthesis of essential esters largely applied on food, cosmetic, and pharmaceutical industries.


Eugenol/analogs & derivatives , Fungal Proteins/chemistry , Lipase/chemistry , Oils, Volatile/chemistry , Penicillium/enzymology , Syzygium/chemistry , Biocatalysis , Eugenol/chemical synthesis , Eugenol/chemistry
20.
J Basic Microbiol ; 61(9): 782-794, 2021 Sep.
Article En | MEDLINE | ID: mdl-34309887

Cold-active catalase (CAT) elicits great interest because of its vast prospective at the medical, commercial, and biotechnological levels. The study paper reports the production of cold-active CAT by the strain Penicillium griseofulvum P29 isolated from Antarctic soil. Improved enzyme production was achieved by optimization of medium and culture conditions. Maximum CAT was demonstrated under low glucose content (2%), 10% inoculum size, temperature 20°C, and dissolved oxygen concentration (DO) 40%. An effective laboratory technology based on changing the oxidative stress level through an increase of DO in the bioreactor was developed. The used strategy resulted in a 1.7- and 1.4-fold enhanced total enzyme activity and maximum enzyme productivity. The enzyme was purified and characterized. P. griseofulvum P29 CAT was most active at approximately 20°C and pH 6.0. Its thermostability was in the range between 5°C and 40°C.


Biotechnology/methods , Catalase/genetics , Catalase/metabolism , Cold Temperature , Penicillium/genetics , Antarctic Regions , Catalase/analysis , Hydrogen-Ion Concentration , Oxidative Stress , Penicillium/enzymology , Penicillium/growth & development , Penicillium/isolation & purification , Temperature
...