Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20.896
1.
Biomolecules ; 14(5)2024 May 15.
Article En | MEDLINE | ID: mdl-38785993

Despite the extensive research conducted on Alzheimer's disease (AD) over the years, no effective drug for AD treatment has been found. Therefore, the development of new drugs for the treatment of AD is of the utmost importance. We recently reported the proteolytic activities of JAL-TA9 (YKGSGFRMI) and ANA-TA9 (SKGQAYRMA), synthetic peptides of nine amino acids each, derived from the Box A region of Tob1 and ANA/BTG3 proteins, respectively. Furthermore, two components of ANA-TA9, ANA-YA4 (YRMI) at the C-terminus end and ANA-SA5 (SKGQA) at the N-terminus end of ANA-TA9, exhibited proteolytic activity against amyloid-ß (Aß) fragment peptides. In this study, we identified the active center of ANA-SA5 using AEBSF, a serine protease inhibitor, and a peptide in which the Ser residue of ANA-SA5 was replaced with Leu. In addition, we demonstrate the proteolytic activity of ANA-SA5 against the soluble form Aß42 (a-Aß42) and solid insoluble form s-Aß42. Furthermore, ANA-SA5 was not cytotoxic to A549 cells. These results indicate that ANA-SA5 is a promising Catalytide and a potential candidate for the development of new peptide drugs targeting Aß42 for AD treatment.


Amyloid beta-Peptides , Proteolysis , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Humans , Proteolysis/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Line, Tumor
2.
Molecules ; 29(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731472

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Amyloid beta-Peptides , Nanowires , Silicon , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Nanowires/chemistry , Animals , PC12 Cells , Rats , Silicon/chemistry , Peptide Fragments/chemistry , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism
3.
J Nanobiotechnology ; 22(1): 278, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783363

Amyloid-ß (Aß) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aß aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aß42, we developed an Aß42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aß-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aß42 misfolding, accelerating Aß42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aß clearance exhibited by this Aß42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.


Alzheimer Disease , Amyloid beta-Peptides , Cerium , Nanocomposites , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Reactive Oxygen Species/metabolism , Amyloid beta-Peptides/metabolism , Nanocomposites/chemistry , Mice , Cerium/chemistry , Cerium/pharmacology , Mice, Transgenic , Silicon Dioxide/chemistry , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Humans , Brain/metabolism , Nanoparticles/chemistry , Glycoproteins/chemistry , Glycoproteins/pharmacology , Glycoproteins/metabolism , Disease Models, Animal , Viral Proteins
4.
Brain Behav ; 14(5): e3503, 2024 May.
Article En | MEDLINE | ID: mdl-38775292

BACKGROUND: Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD. METHODS: AD mice were set up by injecting Aß25-35 solution into the hippocampus. Then, the AD mice were injected intraperitoneally with 40 mg/kg/day of Crocin for 14 days. Following the completion of Crocin treatment, an open-field test, Y-maze test and Morris water maze test were conducted to evaluate the impact of Crocin on spatial learning and memory deficiency in mice. The effects of Crocin on hippocampal neuron injury, proinflammatory cytokine expressions (IL-1ß, IL-6, and TNF-α), and PI3K/AKT signaling-related protein expressions were measured using hematoxylin and eosin staining, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) experiments, respectively. RESULTS: Crocin attenuated Aß25-35-induced spatial learning and memory deficiency and hippocampal neuron injury. Furthermore, the Western blot and qRT-PCR results showed that Crocin effectively suppressed inflammation and activated the PI3K/AKT pathway in Aß25-35-induced mice. CONCLUSION: Crocin restrained neuroinflammation via the activation of the PI3K/AKT pathway, thereby ameliorating the cognitive dysfunction of AD mice.


Alzheimer Disease , Amyloid beta-Peptides , Carotenoids , Cognitive Dysfunction , Hippocampus , Neuroinflammatory Diseases , Neuroprotective Agents , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Carotenoids/pharmacology , Carotenoids/administration & dosage , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/administration & dosage , Amyloid beta-Peptides/metabolism , Neuroinflammatory Diseases/drug therapy , Disease Models, Animal , Peptide Fragments/pharmacology , Maze Learning/drug effects , Spatial Learning/drug effects , Neurons/drug effects , Neurons/metabolism
5.
Ann Clin Lab Sci ; 54(2): 137-148, 2024 Mar.
Article En | MEDLINE | ID: mdl-38802154

OBJECTIVE: We have previously shown that the anti-cancer peptide PNC-27 kills cancer cells by co-localizing with membrane-expressed HDM-2, resulting in transmembrane pore formation causing extrusion of intracellular contents. We have also observed cancer cell mitochondrial disruption in PNC-27-treated cancer cells. Our objectives are to determine: 1. if PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) in the cancer cell membrane and 2. if this peptide causes selective disruption of cancer cell mitochondria. METHODS: For aim 1, we incubated MIA-PaCa-2 human pancreatic carcinoma cells with PNC-27 in the presence of a monoclonal antibody against the amino terminal p53 binding site of HDM-2 to determine if it, but not negative control immune serum, blocks PNC-27-induced tumor cell necrosis. For the second aim, we incubated these cells with PNC-27 in the presence of two specific dyes that highlight normal organelle function: mitotracker for mitochondria and lysotracker for lysosomes. We also performed immuno-electron microscopy (IEM) with gold-labeled anti-PNC-27 antibody on the mitochondria of these cells treated with PNC-27. RESULTS: Monoclonal antibody to the p53 binding site of HDM-2 blocks PNC-27-induced cancer cell necrosis, whereas negative control immune serum does not. The mitochondria of PNC-27-treated cancer cells fail to retain mitotracker dye while their lysosomes retain lysotracker dye. IEM of the mitochondria cancer cells reveals gold particles present on the mitochondrial membranes. CONCLUSIONS: PNC-27 binds to the p53 binding site of HDM-2 (residues 1-109) inducing transmembrane pore formation and cancer cell necrosis. Furthermore, this peptide enters cancer cells and binds to the membranes of mitochondria, resulting in their disruption.


Cell Membrane , Mitochondrial Membranes , Proto-Oncogene Proteins c-mdm2 , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/drug effects , Proto-Oncogene Proteins c-mdm2/metabolism , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria/pathology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Binding/drug effects , Peptides/pharmacology , Peptides/metabolism , Necrosis
6.
Cytokine ; 179: 156637, 2024 Jul.
Article En | MEDLINE | ID: mdl-38723454

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Angiotensin I , Hypoglycemia , Lipopolysaccharides , Peptide Fragments , Rats, Wistar , Sepsis , Animals , Angiotensin I/pharmacology , Male , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Peptide Fragments/pharmacology , Hypoglycemia/drug therapy , Hypoglycemia/metabolism , Rats , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Nitric Oxide/metabolism , Hepatitis/drug therapy , Hepatitis/metabolism , Endotoxemia/drug therapy , Cytokines/metabolism , Gluconeogenesis/drug effects , Blood Glucose/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Sci Rep ; 14(1): 11487, 2024 05 20.
Article En | MEDLINE | ID: mdl-38769091

Alzheimer's disease (AD) is an age-associated neurodegenerative disease. Recently, studies have demonstrated the potential involvement of microRNA-181c-5p (miR-181c-5p) in AD. However, the mechanism through which miR-181c-5p is responsible for the onset and progression of this disease remains unclear, and our study aimed to explore this problem. Differential expression analysis of the AD dataset was performed to identify dysregulated genes. Based on hypergeometric analysis, AD differential the upstream regulation genes miR-181c-5p was found. We constructed a model where SH-SY5Y and BV2 cells were exposed to Aß1-42 to simulate AD. Levels of tumor necrosis factor-alpha, interleukin-6, and IL-1ß were determined using enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Phosphorylation levels of p-P38 and P38 were detected by Western blot. The level of apoptosis in BV2 cells under Aß1-42 stress was exacerbated by miR-181c-5p mimic. Downregulated miR-181c-5p impaired the phagocytosis and degradation of Aß by BV2 cells. The release of proinflammatory cytokines in BV2 cells with Aß1-42 stress was alleviated by miR-181c-5p upregulation. Additionally, miR-181c-5p downregulation alleviated the phosphorylation of P38 in Aß1-42-induced SH-SY5Y cells. In conclusion, miR-181c-5p improves the phagocytosis of Aß by microglial cells in AD patients, thereby reducing neuroinflammation.


Alzheimer Disease , Amyloid beta-Peptides , Down-Regulation , MicroRNAs , Microglia , Phagocytosis , MicroRNAs/genetics , MicroRNAs/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Humans , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Apoptosis , Peptide Fragments/pharmacology , Mice , Animals , Cell Line, Tumor , Cell Line , Cytokines/metabolism
8.
Phytochemistry ; 222: 114098, 2024 Jun.
Article En | MEDLINE | ID: mdl-38648960

Nine undescribed compounds, along with eight known compounds, were isolated from the stipes of Lentinus edodes. Their structures were established by extensive spectroscopic and circular dichroism analyses. The protective effects against Aß25-35-induced N9 microglia cells injury of these compounds were tested by MTT method, and the levels of apoptosis and ROS were detected by flow cytometry. In addition, the binding sites and interactions of compound with amyloid precursor protein were revealed using molecular docking simulations. These findings further establish the structural diversity and bioactivity of stipes of L. edodes, and provide an experimental basis for targeting Alzheimer's disease as a potential strategy.


Amyloid beta-Peptides , Apoptosis , Microglia , Molecular Docking Simulation , Peptide Fragments , Microglia/drug effects , Microglia/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Peptide Fragments/pharmacology , Animals , Apoptosis/drug effects , Mice , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Dose-Response Relationship, Drug , Lentinula/chemistry , Cell Line
9.
J Alzheimers Dis ; 99(2): 477-483, 2024.
Article En | MEDLINE | ID: mdl-38669543

Alzheimer's disease (AD) is a progressive neurodegenerative disease with limited therapeutic strategies. NB-02 is a novel botanical drug that has shown promise as a protective and therapeutic treatment for AD in an APP/PS1 preclinical mouse model. In this paper, we investigate the underlying mechanisms by which NB-02 provides these therapeutic advantages using in vitro neuron-astrocyte co-cultures. Pretreatment with NB-02 prevented pathological calcium elevations in neurons and astrocytes after application of toxic soluble amyloid-ß (Aß) oligomers. NB-02 also prevented cell death associated with the addition of soluble Aß oligomers suggesting NB-02 is effective at protecting both neurons and astrocytes from Aß-mediated damage.


Amyloid beta-Peptides , Astrocytes , Coculture Techniques , Neurons , Neuroprotective Agents , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Mice , Cells, Cultured , Calcium/metabolism , Peptide Fragments/toxicity , Peptide Fragments/pharmacology , Humans
10.
Cancer Cell ; 42(5): 850-868.e9, 2024 May 13.
Article En | MEDLINE | ID: mdl-38670091

TP53-mutant blood cancers remain a clinical challenge. BH3-mimetic drugs inhibit BCL-2 pro-survival proteins, inducing cancer cell apoptosis. Despite acting downstream of p53, functional p53 is required for maximal cancer cell killing by BH3-mimetics through an unknown mechanism. Here, we report p53 is activated following BH3-mimetic induced mitochondrial outer membrane permeabilization, leading to BH3-only protein induction and thereby potentiating the pro-apoptotic signal. TP53-deficient lymphomas lack this feedforward loop, providing opportunities for survival and disease relapse after BH3-mimetic treatment. The therapeutic barrier imposed by defects in TP53 can be overcome by direct activation of the cGAS/STING pathway, which promotes apoptosis of blood cancer cells through p53-independent BH3-only protein upregulation. Combining clinically relevant STING agonists with BH3-mimetic drugs efficiently kills TRP53/TP53-mutant mouse B lymphoma, human NK/T lymphoma, and acute myeloid leukemia cells. This represents a promising therapy regime that can be fast-tracked to tackle TP53-mutant blood cancers in the clinic.


Apoptosis , Membrane Proteins , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Humans , Animals , Mice , Membrane Proteins/genetics , Apoptosis/drug effects , Cell Line, Tumor , Mutation , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Peptide Fragments/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Proto-Oncogene Proteins/genetics
11.
Neuropeptides ; 105: 102427, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579490

Obesity is a critical health condition worldwide that increases the risks of comorbid chronic diseases, but it can be managed with weight loss. However, conventional interventions relying on diet and exercise are inadequate for achieving and maintaining weight loss, thus there is significant market interest for pharmaceutical anti-obesity agents. For decades, receptor agonists for the gut peptide glucagon-like peptide 1 (GLP-1) featured prominently in anti-obesity medications by suppressing appetite and food reward to elicit rapid weight loss. As the neurocircuitry underlying food motivation overlaps with that for drugs of abuse, GLP-1 receptor agonism has also been shown to decrease substance use and relapse, thus its therapeutic potential may extend beyond weight management to treat addictions. However, as prolonged use of anti-obesity drugs may increase the risk of mood-related disorders like anxiety and depression, and individuals taking GLP-1-based medication commonly report feeling demotivated, the long-term safety of such drugs is an ongoing concern. Interestingly, current research now focuses on dual agonist approaches that include GLP-1 receptor agonism to enable synergistic effects on weight loss or associated functions. GLP-1 is secreted from the same intestinal cells as the anorectic gut peptide, Peptide YY3-36 (PYY3-36), thus this review assessed the therapeutic potential and underlying neural circuits targeted by PYY3-36 when administered independently or in combination with GLP-1 to curb the appetite for food or drugs of abuse like opiates, alcohol, and nicotine. Additionally, we also reviewed animal and human studies to assess the impact, if any, for GLP-1 and/or PYY3-36 on mood-related behaviors in relation to anxiety and depression. As dual agonists targeting GLP-1 and PYY3-36 may produce synergistic effects, they can be effective at lower doses and offer an alternative approach for therapeutic benefits while mitigating undesirable side effects.


Glucagon-Like Peptide 1 , Peptide YY , Humans , Animals , Peptide YY/metabolism , Peptide YY/pharmacology , Glucagon-Like Peptide 1/metabolism , Anxiety/drug therapy , Anxiety/metabolism , Peptide Fragments/pharmacology , Drug-Seeking Behavior/drug effects , Obesity/drug therapy , Obesity/metabolism , Brain/drug effects , Brain/metabolism
12.
Neuropharmacology ; 252: 109946, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38599494

The spontaneous firing activity of nigral dopaminergic neurons is associated with some important roles including modulation of dopamine release, expression of tyrosine hydroxylase (TH), as well as neuronal survival. The decreased neuroactivity of nigral dopaminergic neurons has been revealed in Parkinson's disease. Central glucagon-like peptide-1 (GLP-1) functions as a neurotransmitter or neuromodulator to exert multiple brain functions. Although morphological studies revealed the expression of GLP-1 receptors (GLP-1Rs) in the substantia nigra pars compacta, the possible modulation of GLP-1 on spontaneous firing activity of nigral dopaminergic neurons is unknown. The present extracellular in vivo single unit recordings revealed that GLP-1R agonist exendin-4 significantly increased the spontaneous firing rate and decreased the firing regularity of partial nigral dopaminergic neurons of adult male C57BL/6 mice. Blockade of GLP-1Rs by exendin (9-39) decreased the firing rate of nigral dopaminergic neurons suggesting the involvement of endogenous GLP-1 in the modulation of firing activity. Furthermore, the PKA and the transient receptor potential canonical (TRPC) 4/5 channels are involved in activation of GLP-1Rs-induced excitatory effects of nigral dopaminergic neurons. Under parkinsonian state, both the exogenous and endogenous GLP-1 could still induce excitatory effects on the surviving nigral dopaminergic neurons. As the mild excitatory stimuli exert neuroprotective effects on nigral dopaminergic neurons, the present GLP-1-induced excitatory effects may partially contribute to its antiparkinsonian effects.


Action Potentials , Dopaminergic Neurons , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Mice, Inbred C57BL , Substantia Nigra , Animals , Male , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Exenatide/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Action Potentials/drug effects , Action Potentials/physiology , Mice , Venoms/pharmacology , Peptides/pharmacology , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Peptide Fragments/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism
13.
Biomed Pharmacother ; 174: 116484, 2024 May.
Article En | MEDLINE | ID: mdl-38565058

A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aß1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aß1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 µM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aß, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.


Acetylcholinesterase , Alzheimer Disease , Amyloid beta-Peptides , Benzothiazoles , Cholinesterase Inhibitors , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Acetylcholinesterase/metabolism , Mice , Male , Humans , Piperazines/pharmacology , Piperazines/chemistry , Scopolamine , Piperazine/pharmacology , Piperazine/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Molecular Dynamics Simulation , Computer Simulation , Disease Models, Animal , Maze Learning/drug effects
14.
Inflamm Res ; 73(6): 1019-1031, 2024 Jun.
Article En | MEDLINE | ID: mdl-38656426

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator. It is not known whether the pro-resolving effects of Ang-(1-7) are sustained and protect the lung from a subsequent inflammatory challenge. This study sought to investigate the impact of treatment in face of a second allergic or lipopolysaccharide (LPS) challenge. METHODS: Mice, sensitized and challenged with ovalbumin (OVA), received a single Ang-(1-7) dose at the peak of eosinophilic inflammation, 24 h after the final OVA challenge. Subsequently, mice were euthanized at 48, 72, 96, and 120 h following the OVA challenge, and cellular infiltrate, inflammatory mediators, lung histopathology, and macrophage-mediated efferocytic activity were evaluated. The secondary inflammatory stimulus (OVA or LPS) was administered 120 h after the last OVA challenge, and subsequent inflammatory analyses were performed. RESULTS: Treatment with Ang-(1-7) resulted in elevated levels of IL-10, CD4+Foxp3+, Mres in the lungs and enhanced macrophage-mediated efferocytic capacity. Moreover, in allergic mice treated with Ang-(1-7) and then subjected to a secondary OVA challenge, inflammation was also reduced. Similarly, in mice exposed to LPS, Ang-(1-7) effectively prevented the lung inflammation. CONCLUSION: A single dose of Ang-(1-7) resolves lung inflammation and protect the lung from a subsequent inflammatory challenge highlighting its potential therapeutic for individuals with asthma.


Angiotensin I , Lipopolysaccharides , Lung , Ovalbumin , Peptide Fragments , Animals , Angiotensin I/therapeutic use , Angiotensin I/pharmacology , Angiotensin I/administration & dosage , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Peptide Fragments/administration & dosage , Lung/drug effects , Lung/pathology , Lung/immunology , Ovalbumin/immunology , Mice , Male , Macrophages/drug effects , Macrophages/immunology , Eosinophils/drug effects , Eosinophils/immunology , Mice, Inbred BALB C , Inflammation/drug therapy , Eosinophilia/drug therapy , Eosinophilia/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology
15.
J Physiol Pharmacol ; 75(1)2024 02.
Article En | MEDLINE | ID: mdl-38583442

Using duodenocolic fistula in rats, this study attempts to highlight the particular cytoprotection aspects of the healing of fistulas and therapy potential of the stable gastric pentadecapeptide BPC 157, a cytoprotection mediator (i.e. upgrading minor vessels to induce healing at both fistula's sides). Upon duodenocolic fistula creation (two 'perforated' lesions put together) (assessed at 3, 6, 9, 12, and 15 min), BPC 157, given locally at the fistula, or intragastrically (10 µg/kg, 10 ng/kg), rapidly induces vessel 'recruitment', 'running' toward the defect, simultaneously at duodenum and colon, providing numerous collaterals and branching. The mRNA expression studies done at that time provided strongly elevated (nitric oxide synthase 2) and decreased (cyclooxygenase-2, vascular endothelial growth factor A, nitric oxide synthase (NOS)-1, NOS-3, nuclear factor-kappa-B-activating protein) gene expression. As therapy, rats with duodenocolic fistulas, received BPC 157 10 µg/kg, 10 ng/kg, per-orally, in drinking water till sacrifice, or alternatively, intraperitoneally, first application at 30 min after surgery, last at 24 h before sacrifice, at day 1, 3, 7, 14, 21, and 28. Controls exhibited both defects persisting, continuous fistula leakage, diarrhea, continuous weight loss, advanced adhesion formation and intestinal obstruction. Contrary, all BPC 157-treated rats have closed both defects, duodenal and colonic, no fistula leakage (finally, maximal instilled volume corresponds to healthy rats), no cachexia, the same weight as before surgery, no diarrhea, markedly less adhesion formation and intestinal passage obstruction. Thus, BPC 157 regimens resolve the duodenal/colon lesions and duodenocolic fistulas in rats, and rapid vessels recovery appears as the essential point in the implementation of the cytoprotection concept in the fistula therapy.


Anti-Ulcer Agents , Fistula , Proteins , Rats , Animals , Rats, Wistar , Vascular Endothelial Growth Factor A , Cytoprotection , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Nitric Oxide Synthase , Anti-Ulcer Agents/pharmacology
16.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38538744

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


AMP-Activated Protein Kinases , Aniline Compounds , Myeloid Cell Leukemia Sequence 1 Protein , Pyrimidines , Sulfonamides , bcl-X Protein , Humans , Animals , Aniline Compounds/pharmacology , Sulfonamides/pharmacology , AMP-Activated Protein Kinases/metabolism , Mice , bcl-X Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Pyrimidines/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Pyrazoles/pharmacology , bcl-Associated Death Protein/metabolism , Apoptosis/drug effects , Cell Death/drug effects , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Phosphorylation/drug effects , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Drug Synergism
17.
Neuropeptides ; 105: 102426, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527407

Galectins are a group of ß-galactoside-binding lectins associated with regulating immunological response. In the brains of AD patients and 5xFAD (familial AD) mice, galectin-3 (Gal-3) was highly upregulated and found to be expressed in microglia associated with Aß plaques. However, the participation of other galectins, specifically galectin-9 (Gal-9) and T-cell immunoglobulin and mucin domain 3 (Tim-3) receptors, are unknown in the inflammatory response. The experimental model of the Aß25-35 peptide will allow us to study the mechanisms of neuroinflammation and describe the changes in the expression of the Gal-9 and Tim-3 receptor. This study aimed to evaluate whether Aß25-35 peptide administration into the lateral ventricles of rats upregulated Gal-9 and Tim-3 implicated in the modulation of neuroinflammation. The vehicle or Aß25-35 peptide (1 µg/µL) was bilaterally administered into the lateral ventricles of the rat, and control group. After the administration of the Aß25-35 peptide, animals were tested for learning (day 29) and spatial memory (day 30) in the novel object recognition test (NOR). On day 31, hippocampus was examined for morphological changes by Nilss stain, biochemical changes by NO2 and MDA, immunohistochemical analysis by astrocytes (GFAP), microglia (Iba1), Gal-9 and Tim-3, and western blot. Our results show the administration of the Aß25-35 peptide into the lateral ventricles of rats induce memory impairment in the NOR by increases the oxidative stress and inflammatory response. This result is associated with an upregulation of Gal-9 and Tim-3 predominantly detected in the microglia cells of Aß25-35-treated rats with respect to the control group. Gal-9 and Tim-3 are upregulated in activated microglia that could modulate the inflammatory response and damage in neurodegenerative processes induced by the Aß25-35 peptide. Therefore, we suggest that Gal-9 and Tim-3 participate in the inflammatory process induced by the administration of the Aß25-35 peptide.


Amyloid beta-Peptides , Galectins , Hepatitis A Virus Cellular Receptor 2 , Microglia , Peptide Fragments , Up-Regulation , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/pharmacology , Galectins/metabolism , Galectins/pharmacology , Microglia/metabolism , Microglia/drug effects , Peptide Fragments/pharmacology , Hepatitis A Virus Cellular Receptor 2/metabolism , Up-Regulation/drug effects , Male , Rats , Rats, Wistar , Hippocampus/metabolism , Hippocampus/drug effects , Neuroinflammatory Diseases/metabolism , Alzheimer Disease/metabolism , Receptors, Cell Surface
18.
Arterioscler Thromb Vasc Biol ; 44(6): 1225-1245, 2024 Jun.
Article En | MEDLINE | ID: mdl-38511325

BACKGROUND: Restoring the capacity of endothelial progenitor cells (EPCs) to promote angiogenesis is the major therapeutic strategy of diabetic peripheral artery disease. The aim of this study was to investigate the effects of GLP-1 (glucagon-like peptide 1; 32-36)-an end product of GLP-1-on angiogenesis of EPCs and T1DM (type 1 diabetes) mice, as well as its interaction with the classical GLP-1R (GLP-1 receptor) pathway and its effect on mitochondrial metabolism. METHODS: In in vivo experiments, we conducted streptozocin-induced type 1 diabetic mice as a murine model of unilateral hind limb ischemia to examine the therapeutic potential of GLP-1(32-36) on angiogenesis. We also generated Glp1r-/- mice to detect whether GLP-1R is required for angiogenic function of GLP-1(32-36). In in vitro experiments, EPCs isolated from the mouse bone marrow and human umbilical cord blood samples were used to detect GLP-1(32-36)-mediated angiogenic capability under high glucose treatment. RESULTS: We demonstrated that GLP-1(32-36) did not affect insulin secretion but could significantly rescue angiogenic function and blood perfusion in ischemic limb of streptozocin-induced T1DM mice, a function similar to its parental GLP-1. We also found that GLP-1(32-36) promotes angiogenesis in EPCs exposed to high glucose. Specifically, GLP-1(32-36) has a causal role in improving fragile mitochondrial function and metabolism via the GLP-1R-mediated pathway. We further demonstrated that GLP-1(32-36) rescued diabetic ischemic lower limbs by activating the GLP-1R-dependent eNOS (endothelial NO synthase)/cGMP/PKG (protein kinase G) pathway. CONCLUSIONS: Our study provides a novel mechanism with which GLP-1(32-36) acts in modulating metabolic reprogramming toward glycolytic flux in partnership with GLP-1R for improved angiogenesis in high glucose-exposed EPCs and T1DM murine models. We propose that GLP-1(32-36) could be used as a monotherapy or add-on therapy with existing treatments for peripheral artery disease. REGISTRATION: URL: www.ebi.ac.uk/metabolights/; Unique identifier: MTBLS9543.


Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Glycolysis , Hindlimb , Ischemia , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction , Animals , Ischemia/drug therapy , Ischemia/physiopathology , Ischemia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Neovascularization, Physiologic/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycolysis/drug effects , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide 1/pharmacology , Humans , Hindlimb/blood supply , Male , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/drug effects , Diabetic Angiopathies/metabolism , Diabetic Angiopathies/physiopathology , Diabetic Angiopathies/drug therapy , Diabetic Angiopathies/etiology , Nitric Oxide Synthase Type III/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Cells, Cultured , Angiogenesis Inducing Agents/pharmacology , Peptide Fragments/pharmacology , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Disease Models, Animal , Incretins/pharmacology , Angiogenesis
19.
J Neuroendocrinol ; 36(5): e13384, 2024 May.
Article En | MEDLINE | ID: mdl-38516965

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.


Luteinizing Hormone , Quinolines , Receptors, Neurokinin-3 , Signal Transduction , Stress, Psychological , Substance P/analogs & derivatives , Animals , Female , Receptors, Neurokinin-3/metabolism , Receptors, Neurokinin-3/antagonists & inhibitors , Receptors, Neurokinin-3/agonists , Luteinizing Hormone/metabolism , Stress, Psychological/metabolism , Mice , Signal Transduction/physiology , Signal Transduction/drug effects , Corticomedial Nuclear Complex/metabolism , Corticomedial Nuclear Complex/drug effects , Corticomedial Nuclear Complex/physiology , Peptide Fragments/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Mice, Inbred C57BL , Amygdala/metabolism , Amygdala/drug effects
20.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38479167

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


HIV Fusion Inhibitors , HIV Infections , HIV-1 , Animals , Rats , Enfuvirtide/pharmacology , Enfuvirtide/metabolism , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , HIV Envelope Protein gp41/metabolism
...